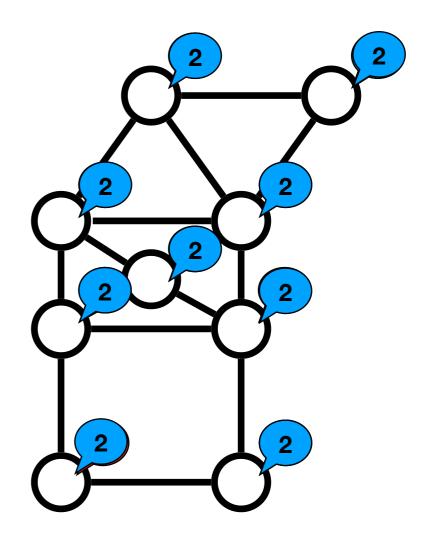
Synchronous *t*-Resilient Consensus in Arbitrary Graphs

- A. Castaneda, P. Fraigniaud, A. Paz,
- S. Rajsbaum, M. Roy and C. Travers

Consensus

- Agreement:
 Decide the same value
- Validity:
 Decided values are input values
- Termination:
 Non-faulty processes decide



How fast consensus can be reached in arbitrary failure-prone networks?

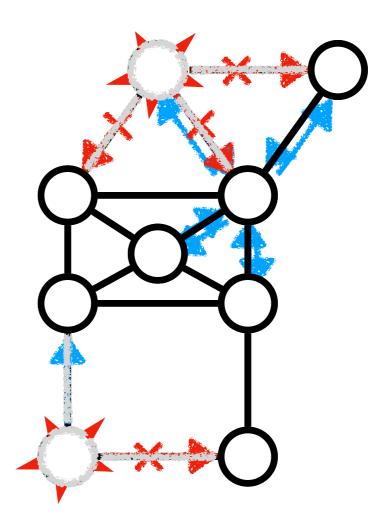
Synchronous Failure-prone Networks

Synchronous rounds: each node sends to/receive from neighbors

At most *t* nodes may crash

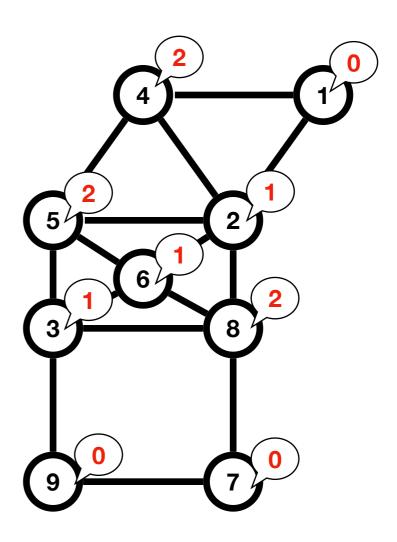
clean: no message sent

dirty: messages sent to some neighbors



Know-All model

- Each node has a unique id
- Graph G and ids assignment are known
- Only node i knows its input v_i
- At most t nodes fail



Given G and id assignment, design a consensus algorithm $\mathcal{A}_{G,id,t}$ How many rounds are necessary to solve t resilient consensus?

Synchronous Consensus in Complete Graphs

Theorem

t-resilient consensus in the clique:

(t+1) rounds necessary and sufficient

Distributed Computing 101

[Lamport Fischer 82]

[Aguilera Toueg 99]

[Charron-Bost Schiper 00]

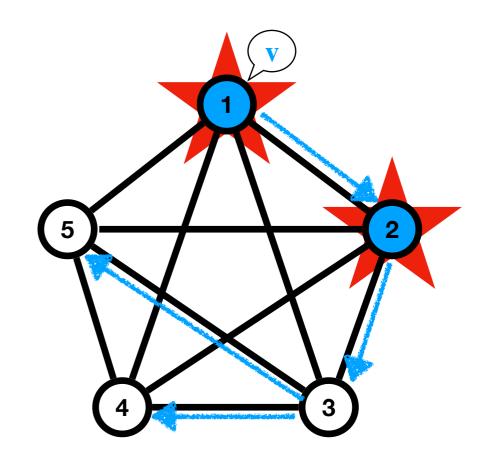
[Lamport 00]

[Moses Rajsbaum 02]

[Keidar Rajsbaum 03]

[Wang Teo Cao 05]

[Castaneda Gonczarowski Moses 14]



(t+1) rounds for v to <u>flood</u> G in the worst case

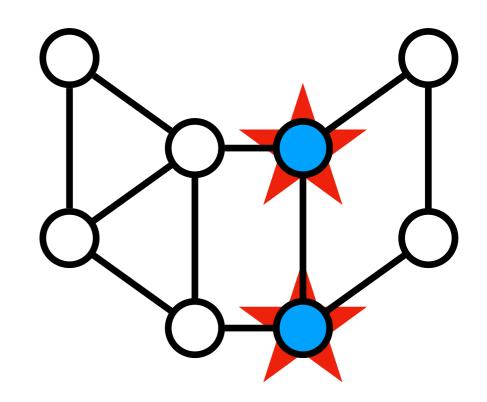
Synchronous Consensus in Arbitrary Graphs

Solvability

t-resilient consensus solvable iff

G is (t+1)-vertex connected

[Folklore]



Round complexity

??

Our Results

Definition

Dynamic notion of radius Radius(G, t) taking into account failures

Upper bound

Consensus is solvable in Radius(G, t) rounds

Lower bound

For symmetric graph, consensus cannot be solved in Radius(G, t) - 1 rounds

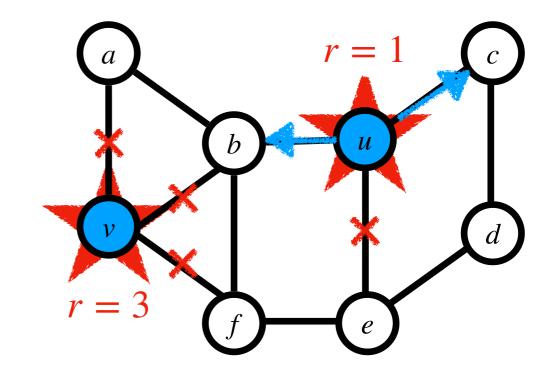
Roadmap

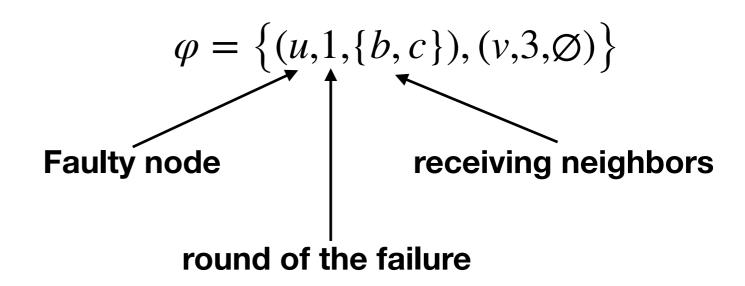
- 1. Failure-sensitive eccentricity and radius
- 2. A naive algorithm
- 3. An adaptive algorithm
- 4. Optimality for symmetric graphs

Failure Pattern

Failure pattern φ

- Which node fails, and when?
- Which neighbors received messages in the failing round





Failure Sensitive Eccentricity

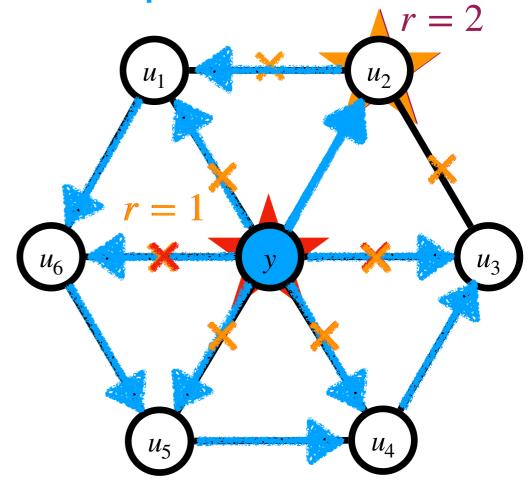
 $ecc_G(v, \varphi) = #round for v to flood G$

#rounds for every correct to receive input of ν

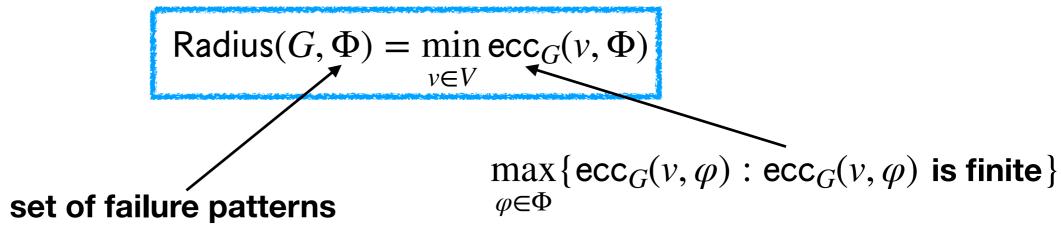
$$ecc(y, \varphi_{\varnothing}) = 1$$

$$ecc(y, \varphi_1) = + \infty$$

$$ecc(y, \varphi_2) = 6$$



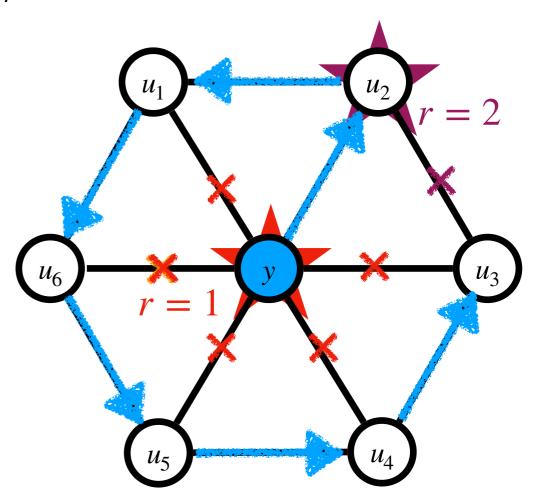
Radius



$$ecc(y, \Phi_{all}^2) = 6$$

$$ecc(u_i, \Phi_{all}^2) = 6$$

 $\mathsf{Radius}(G, \Phi_{all}^2) = 6$



A Naive Algorithm

$$\max_{\varphi \in \Phi} \{ \mathsf{ecc}_G(v_2, \varphi) : \mathsf{ecc}_G(v_2, \varphi) \text{ is finite} \}$$

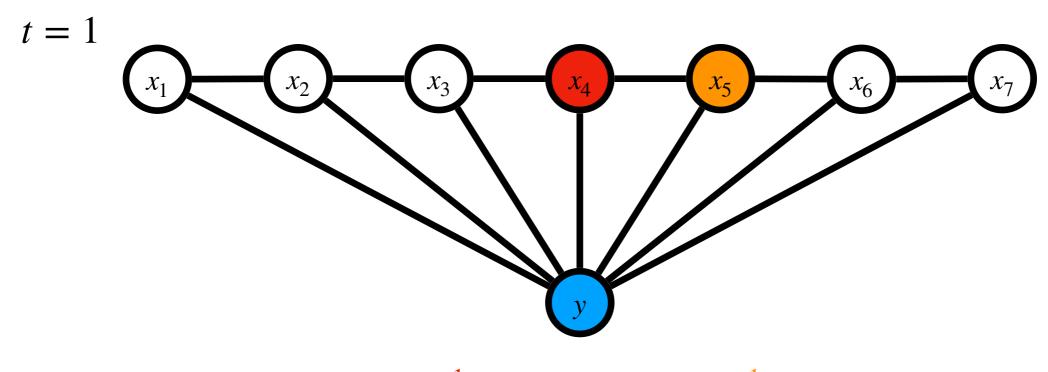
1. Order node according to their eccentricity

$$\mathsf{ecc}_G(v_1, \Phi^t_{all}) \leq \mathsf{ecc}_G(v_2, \Phi^t_{all}) \leq \cdots \leq \mathsf{ecc}_G(v_{t+1}, \Phi^t_{all})$$

2. Perform flooding for $ecc_G(v_{t+1}, \Phi_{all}^t)$ rounds

3. Decide input of node with smallest index in $v_1, ..., v_{t+1}$

Example

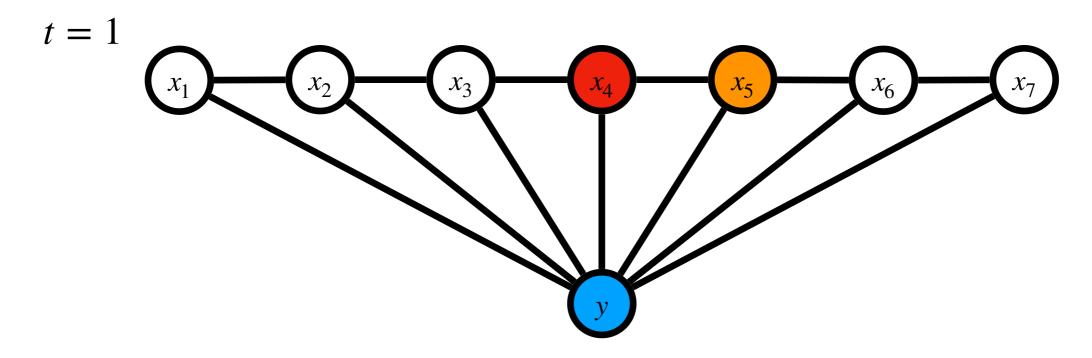


$$ecc(x_4, \Phi^1_{all}) = 3 < ecc(x_5, \Phi^1_{all}) = 4$$

Given $\varphi \in \Phi^1_{all}$, after 4 rounds:

- x_4 input received by every correct, or by none
- x_5 input received by every correct or by none
- Every correct has received the input of x_4 or x_5 , or both

Non-optimality



$$ecc(x_4, \Phi^1_{all}) = 3 < ecc(x_5, \Phi^1_{all}) = 4 < ecc(y, \Phi^1_{all}) = 7$$

let
$$\Phi_{x_4} = \{ \varphi : x_4 \text{ fails } \}$$

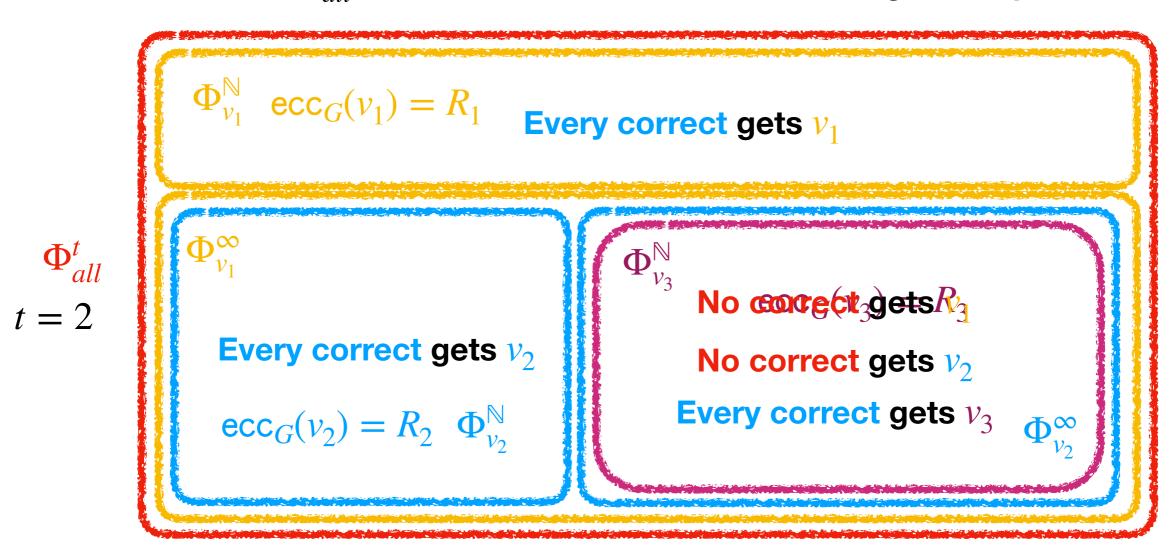
ecc $(y, \Phi_{x_4}) = 1$

Given $\varphi \in \Phi^1_{all}$, after 3 rounds:

- x_4 input received by every correct, or by none
- if no correct has reved x_4 input, every correct has received y input

Consensus in $Radius(G, \Phi_{all}^t)$ Rounds

```
\Phi_v^{\mathbb{N}} = \{ \varphi \in \Phi_{all}^t : \mathrm{ecc}_G(v, \varphi) < + \infty \} \quad \text{Every correct gets } v \text{ input}
\Phi_v^{\infty} = \{ \varphi \in \Phi_{all}^t : \mathrm{ecc}_G(v, \varphi) = + \infty \} \quad \text{No correct gets } v \text{ input}
```



Consensus in Radius(G, Φ_{all}^t) Rounds

Core sequence of t+1 nodes $v_1, v_2, ..., v_{t+1}$

$$v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t)$$

$$\Phi_{i-1} = \Phi^{\infty}_{v_{i-1}} \cap \cdots \cap \Phi^{\infty}_{v_1}$$

$$v_i : \mathsf{ecc}_G(v_i, \Phi_{v_i}^{\mathbb{N}} \cap \Phi_{i-1}) \le \mathsf{ecc}_G(v, \Phi_{v}^{\mathbb{N}} \cap \Phi_{i-1}) \forall v \ne v_1, \dots, v_{i-1}$$

Every correct gets v_i input No correct gets $v_1, ..., v_{i-1}$ input

Key Lemma

$$\mathsf{ecc}_G(v_i, \Phi^{\mathbb{N}}_{v_i} \cap \Phi_{i-1}) > \mathsf{ecc}_G(v_{i+1}, \Phi^{\mathbb{N}}_{v_{i+1}} \cap \Phi_i)$$

Algorithm

Perform flooding for Radius (G, Φ_{all}^t) rounds

Decide input of the core node with smallest index

Proof of Key Lemma

$$v_1 : \operatorname{ecc}_G(v_1, \Phi_{v_1}^{\mathbb{N}}) = \operatorname{Radius}(G, \Phi_{all}^t)$$

$$v_2 : \mathsf{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1) \leq \mathsf{ecc}_G(v, \Phi_v^{\mathbb{N}} \cap \Phi_1) \forall v \neq v_1$$

$$\Phi_1 = \Phi_{\nu_1}^{\infty}$$

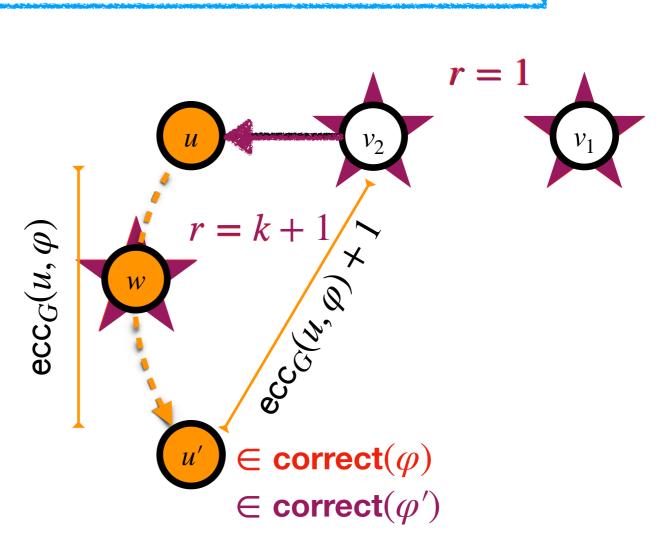
$$\Phi_2 = \Phi^{\infty}_{\nu_2} \cap \Phi^{\infty}_{\nu_1}$$

$$\exists u \neq v_1, v_2 : \mathsf{ecc}_G(u, \Phi_u^{\mathbb{N}} \cap \Phi_2) < \mathsf{ecc}_G(v_2, \Phi_{v_2}^{\mathbb{N}} \cap \Phi_1)$$

$$\varphi\in\Phi_u^{\mathbb{N}}\cap\Phi_2$$

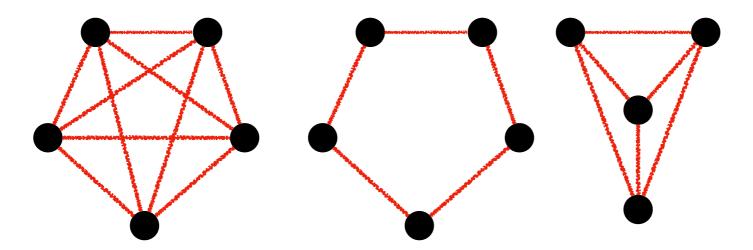
$$\varphi' \in \Phi_{\nu_2}^{\mathbb{N}} \cap \Phi_1$$

$$\mathrm{ecc}_G(u, \varphi) + 1 \leq \mathrm{ecc}_G(v_2, \varphi')$$



Lower Bound

Symmetric graphs (vertex transitive)



Oblivious algorithms

Perform R rounds of flooding

Decide: $\{(id_1, val_1), ..., (id_k, val_k)\} \rightarrow val$

Lower Bound

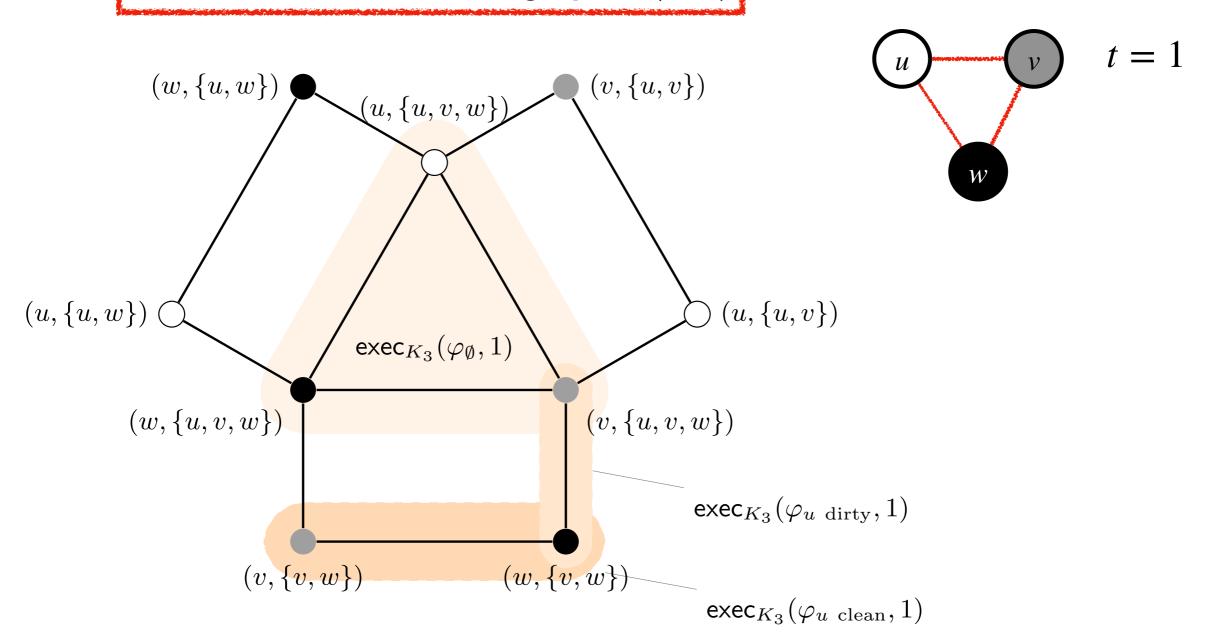
Theorem

For any symmetric graph G, there is no oblivious algorithm that solves consensus in less than $\mathsf{Radius}(G,\Phi^t_{all})$ rounds

Information Flow Graph

G

1 round information flow graph $\mathbb{IF}(G,1)$



Consensus and Domination

Definition

Node $v \in V(G)$ dominates a connected component C of $\mathbb{IF}_G(\Phi, r)$ iff

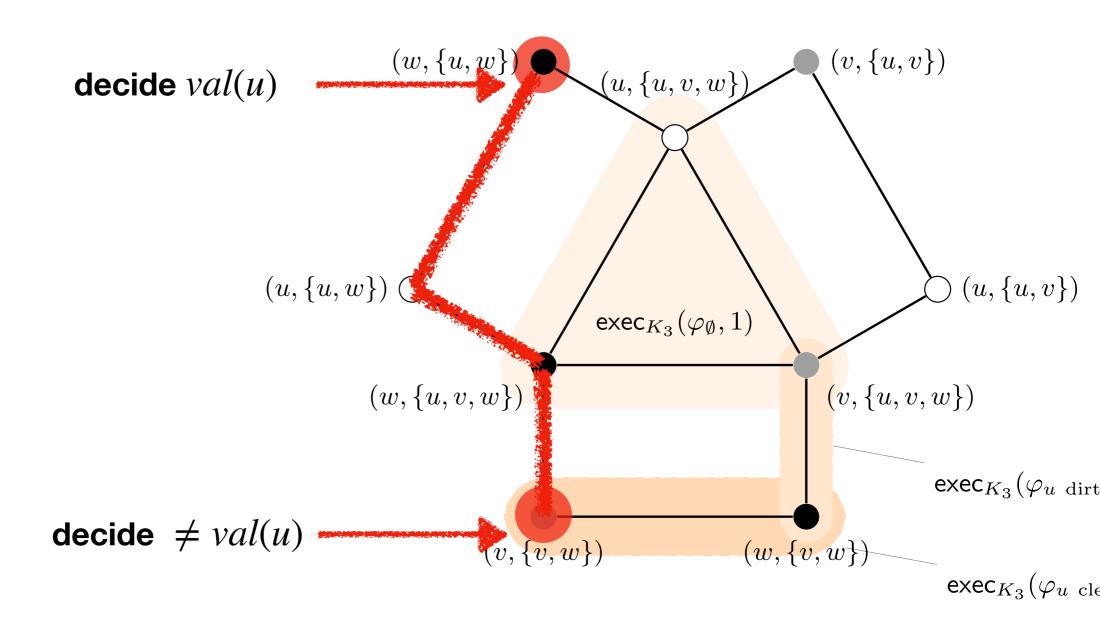
 $\exists \varphi \in \Phi \text{ s.t. } (v, \mathsf{view}_G(v, \varphi, r)) \text{ dominates } C$

Theorem

There is an oblivious consensus algorithm in r rounds in G under failure patterns Φ iff each connected component of $\mathbb{IF}_G(\Phi,r)$ is dominated

Consensus and Domination

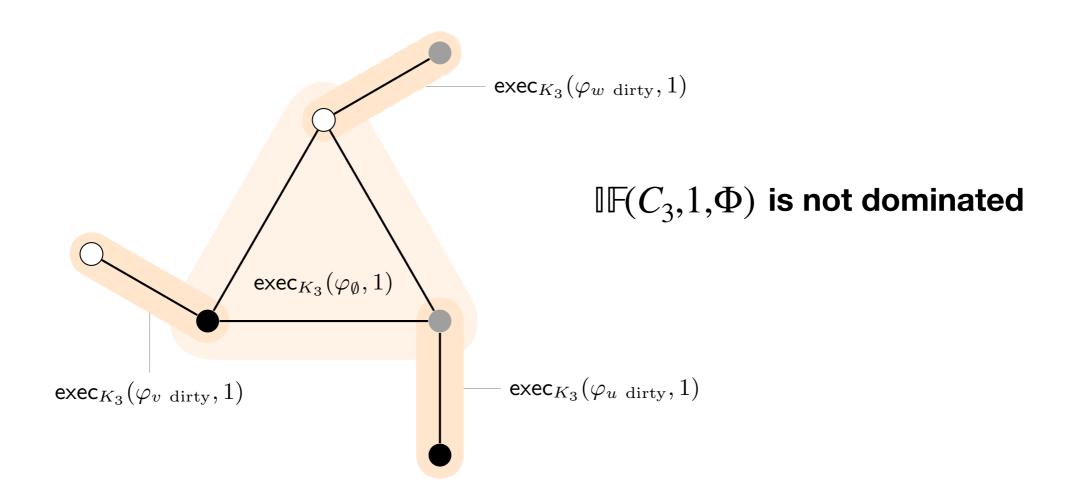
Suppose consensus solvable in r rounds and there is a non-dominated CC in $\mathbb{IF}_G(\Phi, r)$



Application: Symmetric Graphs

Theorem

For any symmetric graph G, there is no oblivious algorithm that solves consensus in less than $\mathsf{Radius}(G,\Phi^t_{all})$ rounds



Conclusion and Future Work

- Tight complexity bound for oblivious, crash-tolerant consensus in symmetric graph
- The information flow (a.k.a protocol complex) for study computability/complexity in network
- Are there faster non-oblivious algorithms?
- What is the lower bound for non-symmetric graphs?
- What are the round complexity of other classical agreement tasks in arbitrary graphs?

Thanks!