Overview of WP2

Tradeoff between information
and efficiency
Laurent Feuilloley

ENEDISC Kick-off meeting - IRIF, Paris - February 2025

— Background
Tasks

Information in distributed computing

Often: distributed computation =~ gathering enough information to output

@ 0 royNps
(3 1 ROUND
3@ 2R0WVDsS
D 3 ROWDS

Information in distributed computing

Often: distributed computation =~ gathering enough information to output.

0 0
CoMPUTATION. e OUTPUT

®~—®y -~ ®

Information from an external source

A way to study information itself:
» Give every node additional information as a label from an external source.

» How different is the computation?

0 4 0 4
CompvTAtIOl
NS
0 0 0 0
iNPUT LABELS
GRAPH FROM ORACLE OUTPUTS

This label does not allow to completely solve the problem: because it is
non-trustable, or too small, or ... Several flavors: advice, certificates, predictions.

Flavor 1: Advice

Advice setting:
» Originate from complexity and online algorithms.
» Usually for construction problems (not decision problem).
» A piece of advice is trustable. (The oracle is your friend)
» The piece of advice is very small. Cannot encode the output.
» It usually helps to speed up computation or improve the
quality /approximation.

» Can also be seen as a compression of the output or best decision to take.

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.

Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

Advice in distributed computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).
Oracle: Computes a coloring, clusters the graph, encodes borders colors.
Decoder: Find the borders, decodes the colors, fills in the gaps.

980000008

...... 000090008
0 U O 0 9 O)
SOOO0000000090800
SoSsscasisssssss
...) ® O O. 9 O—(
Tl LT
Sessscasisasasss
o9 L L 90—
OO0
0000000009000

O) U O

o 909000

buted computing

istri

d

Advice in

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.

Decoder: Find the borders, decodes the colors, fills in the gaps.

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.
Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.
Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.
Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.
Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

.’bhﬁ"‘.’.
ﬁ&o@ﬁhﬂ@o&.

Yol oLal o T80T L0 W]]
OBGB.OU@OQO

00 E 000

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.
Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.

Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.

Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

6....?.......
90008063000
........'.0..
00090000090
800 40080C480

08000007000
9000007000

buted computing

Example: (A + 1)-coloring with < log(A) advice bits (if sublogarithmic growth).

Oracle: Computes a coloring, clusters the graph, encodes borders colors.

Decoder: Find the borders, decodes the colors, fills in the gaps.

istr

d

Advice in

.......2..
L L LIALLLY

Flavor 2: Local certification

» Usually for decision problems: checking a graph property or the output of an
algorithm.

» In a good instance, all nodes should accept
In a bad instance, at least one node should reject

» The labels are certificates, that are not trustable.
(The oracle is a prover, trying to make all nodes accept.)

» The nodes run a verifier algorithm which checks the certificates.

a.k.a proof-labeling schemes, locally checkable proofs, distributed certification.

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

MINIMUM DISTANCE
ON THE CYCLE

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

Flavor 2: Local certification

Example: checking a spanning tree

» On good instances, certificates:
» Distance to root.
» ID of the root.
» Checking distances consistency
— ensures acyclicity.

» Checking root-ID consistency
— ensures connectivity.

Flavor 3: Predictions

» Originates from online algorithms, now also centralized and distributed.
» For construction problems.
» A prediction setting comes with a quality measure.

» In an algorithm with predictions should:

» |f the prediction is perfect then the algorithm is very good.
» If the prediction is garbage, the algorithm is ok.
» If possible, degrades smoothly.

» Typical example: warm-start a local search.

Related to another ANR projects (PREDICTIONS PI: Spyros Angelopoulos)

Flavor 3: Predictions

Example: Search with predictions

stack: -
/ 2 zeojn sl.’cps
e U TR T LT LT T

Flavor 3: Predictions

Example: Search with predictions

stack: -
/ 2 zeojn sf&ps
e U TR T LT LT T

error YL

< pre dicted
volue

/

LIﬂTIHHHmnmnuanununTﬂlllmnmunumr]nﬂmnm

v

Flavor 3: Predictions

Example: Search with predictions

stark: I
/ 2 zeojn sf&ps
e U TR T LT LT T

error YL

< pre di.d'ul

Flavor 3: Predictions

Example: distributed coloring

Flavor 3: Predictions

Example: distributed coloring

000c0 090000
0000020080
90000000908
80000000080
00066000000
00280000000
00679000000
0000900000
00065400000

......9).0.
LI T

800098 -.
.- JITIITL]
06530006280

Flavor 3: Predictions

Example: distributed coloring

0000090000
8000020080
00005000000
00000000000
0200650000600

o.......- 80 -.
O=0O)=0) O—0O~C

80022080000
00006000008
06520006020
00000000000
00000000000

Flavor 3: Predictions

Example: distributed coloring

00080007298
0000900008
dhiten o8
O-—¢ -
06520006020
000000000006
00000000000

Background
— Tasks

Task 2.1: Awakening schedules

Typical shape of energy-efficient algorithms:

1. Scheduling phase: compute a good awakening schedule

2. Solving phase: use the schedule to solve the task.

Goal: We want to better understand awakening schedules.

Task 2.1: Awakening schedules

An corner case to keep in mind.

Problem: k-coloring.

Scheduling phase:
Compute a k-coloring, and give to every node the schedule: “index-of-color”.

Solving phase:
Every node wakes up at round index-of-color and takes color index-of-color.

Task 2.1: Awakening schedules

Different qualities of an awakening schedule:

can be computed fast | generic | robust

Research directions:

» The natural approach: balance scheduling complexity and solving complexity
for a specific problem.

» If reusing the schedule: we can allow more resources for scheduling phase,
e.g. computation in CONGEST.

» |solating the scheduling phase: fix some constraint, find fastest algorithm
producing a schedule satisfying these constraints.

Task 2.1: Awakening schedules

Different qualities of an awakening schedule:
can be computed fast | generic | robust

Research directions:
> If we target one problem, we can tailor the schedule to that problem.

» What about more generic schedule? For example for a class of problem
defined by a logic or the locality. (DLT is one example.)

» Is there a trade-off between generality and efficiency?

Task 2.1: Awakening schedules

Different qualities of an awakening schedule:

can be computed fast | generic | robust

Research directions:

» In classic sleeping algorithms, if the schedule is not followed exactly, the
output is completely broken.

» |n other words, sleeping algorithms are brittle.

» Can we make them more time-shift tolerant? Design generic error-correcting
techniques?

» Can we design algorithms such that the performance in solving phase degrades
smoothly with the number of “clock issues”?

Task 2.2: Informative-labeling schemes

Informative-labeling schemes are yet another model of labeling.

Example: distance labeling — labels such that from ¢, and ¢,, we can compute
distance between u and v.

Focus: size of the encoding

Research directions:
» Computing such labels in the sleeping model.
» Minimize size of the schedule encoding.

» Study the dependency in the network topology.

Task 2.3: From algorithms to certification, and
back

A generic way to design local certification for data structures (e.g. spanning trees)
from a distributed algorithm building the it.
For the prover:

1. Run virtually the algorithm on the graph. (A run producing the given output.)

2. Give to every node the full transcript of the algorithm at that node: for every
round all the messages sent.

For every node:
» Get the messages sent by neighbors in their certificates.
» Virtually check the algorithm run, round by round.
» Check that the given output is consistent with the run.

Task 2.3: From algorithms to certification, and
back

In general, the certificate size is only bounded by:
Number of rounds x maximum degree X maximum message size

— Much larger than the optimal in general. Can sometimes be compressed in an ad
hoc manner, e.g. spanning tree.
We can get better bounds if:

» We bound message size: restrict to O(log n) or even O(1).

» We consider a broadcast model (same message for all neighbors): then a node
only needs to store one message per round.

» We reduce the number of interesting rounds — SLEEPING!

Task 2.3: From algorithms to certification, and
back

Wannabe Theorem: Efficient broadcast sleeping algorithm = Small local
certification.

Contrapositive: Lower bound for local certification = Lower bound for broadcast
sleeping algorithm.
Intuitively:

» Local certification captures the core information needed to verify a solution.

» The sleeping model removes some of the waste of information from LOCAL, when
it comes to computation.

Wrap-up

v

One way to extract the notion of information is via labelings.

» Various types: advice, predictions, certificates, informative labelings.

v

Task 2.1: Understand sleeping schedules better. Computation / universality /
robustness.

v

Task 2.2: Focus on encoding size. In particular encoding of schedules.

v

Task 2.3: Transfer results between certification and sleeping algorithms.

