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Information in distributed computing

Often: distributed computation ≈ gathering enough information to output.
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Information from an external source

A way to study information itself:

▶ Give every node additional information as a label from an external source.

▶ How different is the computation?

This label does not allow to completely solve the problem: because it is
non-trustable, or too small, or ... Several flavors: advice, certificates, predictions.



Flavor 1: Advice

Advice setting:

▶ Originate from complexity and online algorithms.

▶ Usually for construction problems (not decision problem).

▶ A piece of advice is trustable. (The oracle is your friend)

▶ The piece of advice is very small. Cannot encode the output.

▶ It usually helps to speed up computation or improve the
quality/approximation.

▶ Can also be seen as a compression of the output or best decision to take.



Advice in distributed computing
Example: (∆ + 1)-coloring with ≪ log(∆) advice bits (if sublogarithmic growth).
Oracle: Computes a coloring, clusters the graph, encodes borders colors.
Decoder: Find the borders, decodes the colors, fills in the gaps.
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Flavor 2: Local certification

▶ Usually for decision problems: checking a graph property or the output of an
algorithm.

▶ In a good instance, all nodes should accept
In a bad instance, at least one node should reject

▶ The labels are certificates, that are not trustable.
(The oracle is a prover, trying to make all nodes accept.)

▶ The nodes run a verifier algorithm which checks the certificates.

a.k.a proof-labeling schemes, locally checkable proofs, distributed certification.



Flavor 2: Local certification
Example: checking a spanning tree

▶ On good instances, certificates:
▶ Distance to root.
▶ ID of the root.

▶ Checking distances consistency
→ ensures acyclicity.

▶ Checking root-ID consistency
→ ensures connectivity.
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Flavor 3: Predictions

▶ Originates from online algorithms, now also centralized and distributed.

▶ For construction problems.

▶ A prediction setting comes with a quality measure.
▶ In an algorithm with predictions should:

▶ If the prediction is perfect then the algorithm is very good.
▶ If the prediction is garbage, the algorithm is ok.
▶ If possible, degrades smoothly.

▶ Typical example: warm-start a local search.

Related to another ANR projects (PREDICTIONS PI: Spyros Angelopoulos)
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Background

→ Tasks dum



Task 2.1: Awakening schedules

Typical shape of energy-efficient algorithms:

1. Scheduling phase: compute a good awakening schedule

2. Solving phase: use the schedule to solve the task.

Goal: We want to better understand awakening schedules.



Task 2.1: Awakening schedules

An corner case to keep in mind.

Problem: k-coloring.

Scheduling phase:
Compute a k-coloring, and give to every node the schedule: “index-of-color”.

Solving phase:
Every node wakes up at round index-of-color and takes color index-of-color.



Task 2.1: Awakening schedules

Different qualities of an awakening schedule:

can be computed fast | generic | robust
Research directions:

▶ The natural approach: balance scheduling complexity and solving complexity
for a specific problem.

▶ If reusing the schedule: we can allow more resources for scheduling phase,
e.g. computation in CONGEST.

▶ Isolating the scheduling phase: fix some constraint, find fastest algorithm
producing a schedule satisfying these constraints.



Task 2.1: Awakening schedules

Different qualities of an awakening schedule:

can be computed fast | generic | robust
Research directions:

▶ If we target one problem, we can tailor the schedule to that problem.

▶ What about more generic schedule? For example for a class of problem
defined by a logic or the locality. (DLT is one example.)

▶ Is there a trade-off between generality and efficiency?



Task 2.1: Awakening schedules

Different qualities of an awakening schedule:

can be computed fast | generic | robust
Research directions:

▶ In classic sleeping algorithms, if the schedule is not followed exactly, the
output is completely broken.

▶ In other words, sleeping algorithms are brittle.

▶ Can we make them more time-shift tolerant? Design generic error-correcting
techniques?

▶ Can we design algorithms such that the performance in solving phase degrades
smoothly with the number of “clock issues”?



Task 2.2: Informative-labeling schemes

Informative-labeling schemes are yet another model of labeling.

Example: distance labeling → labels such that from ℓu and ℓv , we can compute
distance between u and v .

Focus: size of the encoding

Research directions:

▶ Computing such labels in the sleeping model.

▶ Minimize size of the schedule encoding.

▶ Study the dependency in the network topology.



Task 2.3: From algorithms to certification, and
back

A generic way to design local certification for data structures (e.g. spanning trees)
from a distributed algorithm building the it.

For the prover:

1. Run virtually the algorithm on the graph. (A run producing the given output.)

2. Give to every node the full transcript of the algorithm at that node: for every
round all the messages sent.

For every node:

▶ Get the messages sent by neighbors in their certificates.

▶ Virtually check the algorithm run, round by round.

▶ Check that the given output is consistent with the run.



Task 2.3: From algorithms to certification, and
back

In general, the certificate size is only bounded by:

Number of rounds × maximum degree × maximum message size

→ Much larger than the optimal in general. Can sometimes be compressed in an ad
hoc manner, e.g. spanning tree.

We can get better bounds if:

▶ We bound message size: restrict to O(log n) or even O(1).

▶ We consider a broadcast model (same message for all neighbors): then a node
only needs to store one message per round.

▶ We reduce the number of interesting rounds → SLEEPING!



Task 2.3: From algorithms to certification, and
back

Wannabe Theorem: Efficient broadcast sleeping algorithm ⇒ Small local
certification.

Contrapositive: Lower bound for local certification ⇒ Lower bound for broadcast
sleeping algorithm.

Intuitively:

▶ Local certification captures the core information needed to verify a solution.

▶ The sleeping model removes some of the waste of information from LOCAL, when
it comes to computation.



Wrap-up

▶ One way to extract the notion of information is via labelings.

▶ Various types: advice, predictions, certificates, informative labelings.

▶ Task 2.1: Understand sleeping schedules better. Computation / universality /
robustness.

▶ Task 2.2: Focus on encoding size. In particular encoding of schedules.

▶ Task 2.3: Transfer results between certification and sleeping algorithms.


