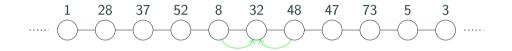
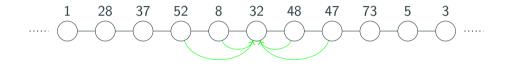
Introduction to the LOCAL SLEEPING Model

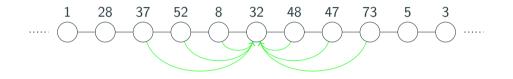
Mikaël Rabie ENEDISC Kickstart Meeting - February 2025

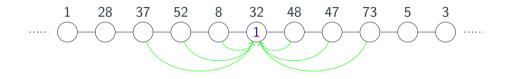
INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

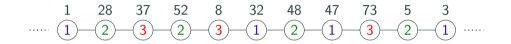
The LOCAL Model



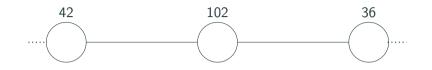


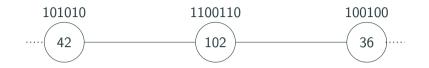


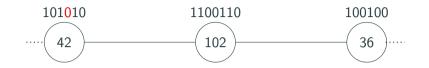


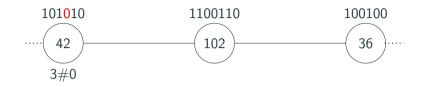


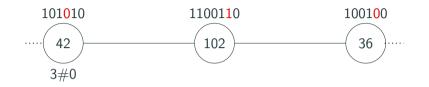
Cole, Vishkin (1986) There exists an algorithm to 3-color a path in $O(\log^* n)$ rounds in the LOCAL model.



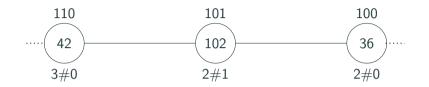


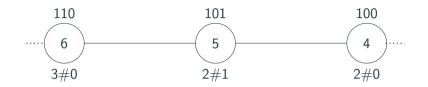


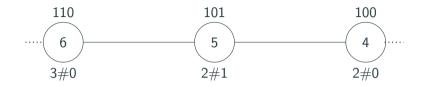




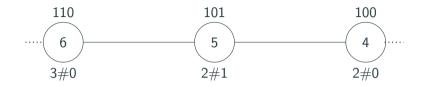








 $n \text{ colors } \Rightarrow \log n \text{ bits } \Rightarrow 2 \log n \text{ new colors } \Rightarrow \log \log n + 1 \text{ bits}$



 $n \operatorname{colors} \Rightarrow \log n \operatorname{bits} \Rightarrow 2 \log n \operatorname{new} \operatorname{colors} \Rightarrow \log \log n + 1 \operatorname{bits}$

After $\log^* n$ iterations, O(1) bits. After O(1) greedy recoloring steps, 3-coloring.

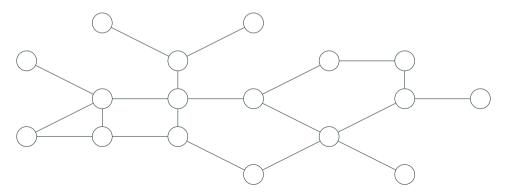
Linial (1992) $O(\Delta^2)$ -coloring can be computed in $O(\log^* n)$ rounds in the LOCAL model.

Corollary $(\Delta + 1)$ -coloring can be computed in $O(\log^* n + \Delta^2)$ rounds in the LOCAL model.

The **SLEEPING** Model

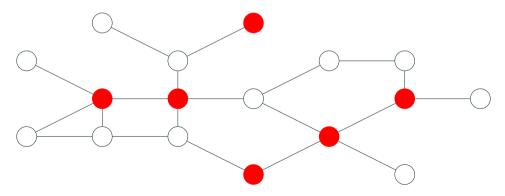
Distributed Sleeping Model

- LOCAL model
- At each round, a node decides if it is active or not
- A node communicates only with its active neighbors
- Complexity : maximal number of awaken rounds for a single node



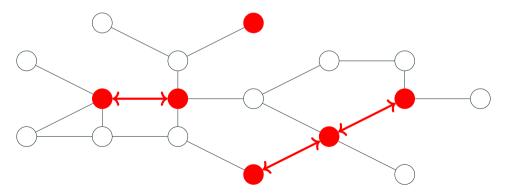
Distributed Sleeping Model

- LOCAL model
- At each round, a node decides if it is active or not
- A node communicates only with its active neighbors
- Complexity : maximal number of awaken rounds for a single node

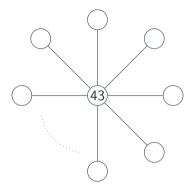


Distributed Sleeping Model

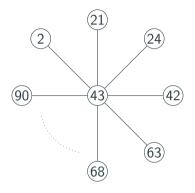
- LOCAL model
- At each round, a node decides if it is active or not
- A node communicates only with its active neighbors
- Complexity : maximal number of awaken rounds for a single node



$\Delta+1\text{-}\textbf{Coloring}$ in $\mathit{O}(\Delta)$ awaken rounds

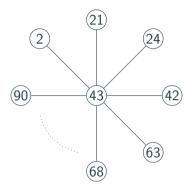


$\Delta + 1$ -Coloring in $O(\Delta)$ awaken rounds



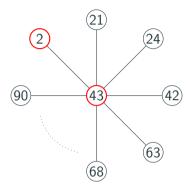
• Round 0 : Learn the identifiers of my neighbors

$\Delta + 1$ -Coloring in $O(\Delta)$ awaken rounds

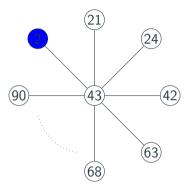


- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up

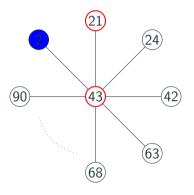
$\Delta + 1$ -Coloring in $O(\Delta)$ awaken rounds



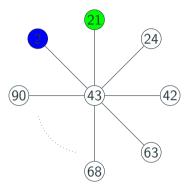
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 2 : Node 2 chooses its color



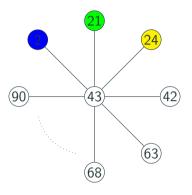
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 2 : Node 2 chooses its color



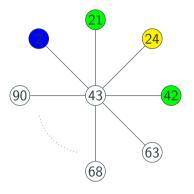
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 21 : Node 21 chooses its color



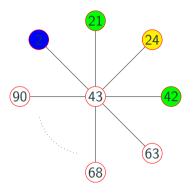
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 21 : Node 21 chooses its color



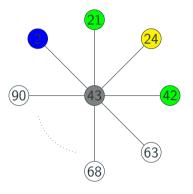
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 24 : Node 24 chooses its color



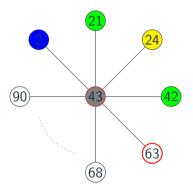
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 42 : Node 42 chooses its color



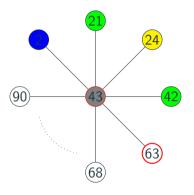
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 43 : u learns colors of nodes 2, 21, 24, 42 and chooses its color



- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 43 : u learns colors of nodes 2, 21, 24, 42 and chooses its color



- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 63 : Node 63 learns color of *u* and chooses its color

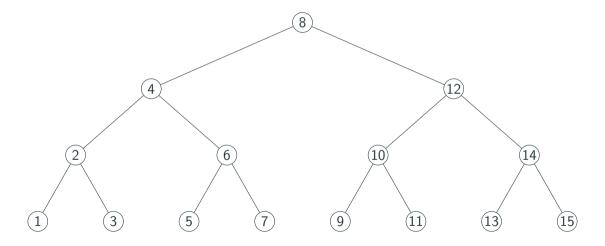


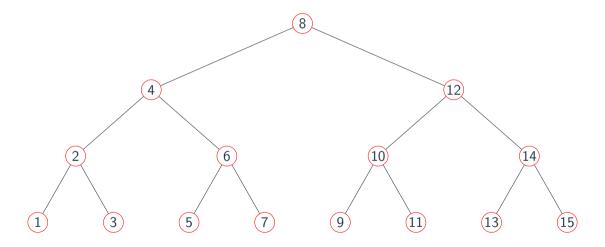
- Round 0 : Learn the identifiers of my neighbors
- For each $i \in N(u)_{\leq 1}$, round i: Wake up
- Round 63 : Node 63 learns color of *u* and chooses its color

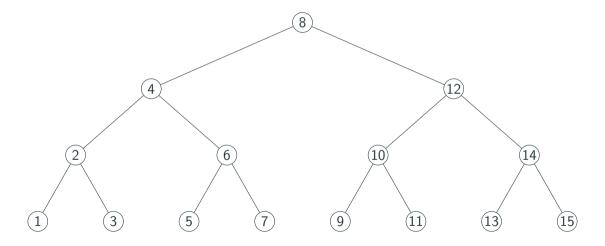
Drawback : The round complexity is O(M), M being the maximal identifier.

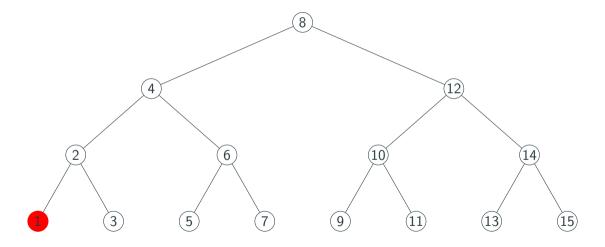
Barenboim and Maimon (2021)

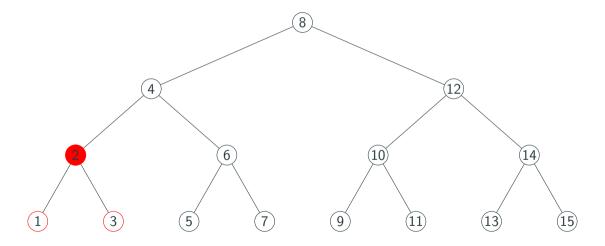
Given a *K*-coloring of the graph, we can compute a $(\Delta + 1)$ -coloring in $O(\log K)$ awaken rounds and O(K) rounds in the Sleeping LOCAL model.

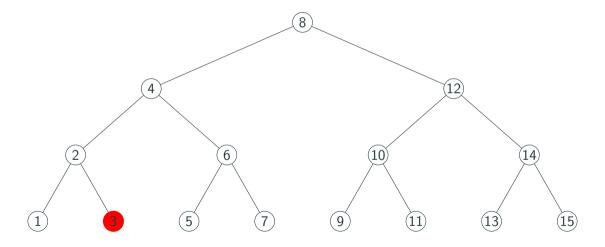


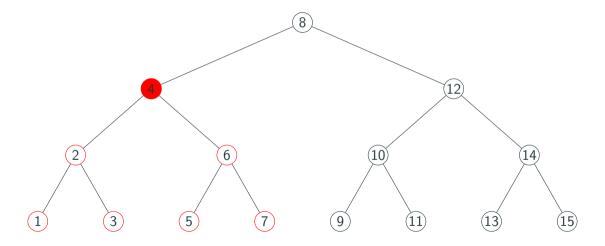












Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring of paths :

Awaken rounds	Rounds

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring of paths :

Awaken rounds	Rounds
3	O(M)

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring of paths :

Awaken rounds	Rounds
3	O(M)
$O(\log^* n)$	$O(\log^* n)$

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring of paths :

Awaken rounds	Rounds
3	O(M)
$O(\log^* n)$	$O(\log^* n)$
3+k	$O(\log^k M)$

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta+1)\text{-coloring}:$

Awaken rounds	Rounds	
$O(\Delta)$	O(M)	
$O(\log M)$	<i>O</i> (<i>M</i>)	
$O(\log^* n + \log \Delta)$	$O(\log^* n + \operatorname{poly} \Delta)$	

Find the possible trade-off between awaken and usual rounds to resolve a problem. $(\Delta + 1)$ -coloring :

Awaken rounds	Rounds	
$O(\Delta)$	<i>O</i> (<i>M</i>)	
$O(\log M)$	<i>O</i> (<i>M</i>)	
$O(\log^* n + \log \Delta)$	$O(\log^* n + \operatorname{poly} \Delta)$	

Balliu, Fraigniaud, Olivetti, R.

There exists an algorithm that solves $(\Delta + 1)$ -coloring with $O(\sqrt{\log n} \cdot \log^* n)$ awake-complexity and round-complexity poly(M).

Dufoulon, Moses, Pandurangan (2023) Maximal Independent Set :

	Sleeping-Rand-MIS-1	Sleeping-Rand-MIS-2
Node-averaged awake complexity	O(1)	O(1)
Worst-case awake complexity	$O(\log \log n)$	$O((\log \log n) \log^* n)$
Total round complexity	O(poly n)	$O((\log^3 n)(\log\log n) \log^* n)$

The log *n* Complexity

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.

This algorithm takes O(poly M) rounds.

Barenboim and Maimon (2021)

Any graph problem can be solved in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.

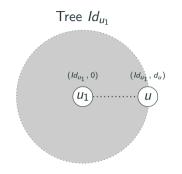
This algorithm takes O(poly M) rounds.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

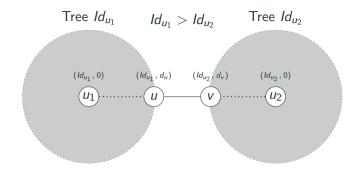
- Each vertex has a label
- The label of a vertex is bigger than its parent's
- Each vertex knows the label of its neighbours in the tree

Constant Coordination Broadcast and Convergecast can be done in O(1) rounds in a DLT.

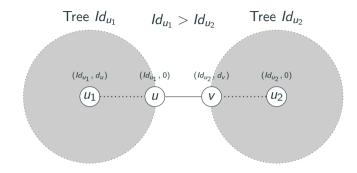
Barenboim and Maimon (2021) A DLT can be built in $O(\log n)$ awaken rounds in the Sleeping LOCAL model.



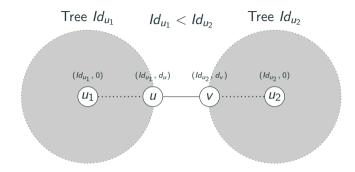
- Labels are of the form (a, b), ordered lexicographically.
- At the beginning, all nodes have label (Id(u), 0).
- At the beginning of each expand step, all nodes of a subtree T are of the form (L(T), b).



- Repeat log *n* times :
- 1. Select a neighbour Tree T' with smaller label $(Id_{u_1} > Id_{u_2})$.

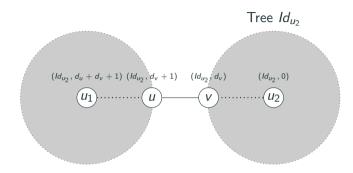


- Repeat log *n* times :
- 2. Merge T and T', using an edge (u, v).



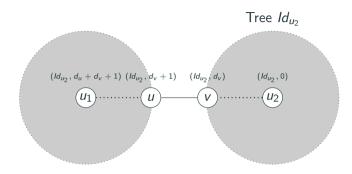
- Repeat log *n* times :
- 3. If T could not choose a neighbour and was not selected

T chooses a tree T' to join using an edge (u, v). This forms a star of trees around $T' \Rightarrow O(1)$ merge rounds.



- Repeat log *n* times :
- 3. If T could not choose a neighbour and was not selected

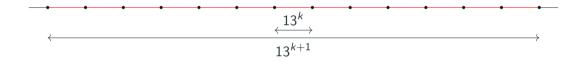
T chooses a tree T' to join using an edge (u, v). This forms a star of trees around $T' \Rightarrow O(1)$ merge rounds.



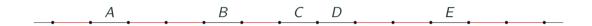
- Repeat log *n* times :
- 4. All nodes learn their new neighbours in the tree.
- 5. Convergecast to gather the new structure of the component C to the root r.
- 6. Broadcast a new labelling (L(r), dist(r)).

Augustine *et. al* (2022) Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires $\Omega(\log n)$ awake time. Augustine *et. al* (2022) Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires $\Omega(\log n)$ awake time.

- After k rounds, a node knows about some segment that includes itself
- No node v on the left of u in the path can know more than u on its right



By induction : For any k, for any segment I of 13^k nodes, there exists, with probability $\mathcal{P} > 1/2$, a node $u \in I$ who knows less than I after k rounds.



By induction : For any k, for any segment I of 13^k nodes, there exists, with probability $\mathcal{P} > 1/2$, a node $u \in I$ who knows less than I after k rounds.

- Probability that it is true on 5 of the 13 subsegments is at least 5/6
- Probability that B, C or D wakes up before A and E is at least 1/2

- How to adapt known algorithm and what can be new techniques?
- What are the new complexity classes?
- How to introduce energy efficiency in other (asynchronous) models?

- How to adapt known algorithm and what can be new techniques?
- What are the new complexity classes?
- How to introduce energy efficiency in other (asynchronous) models?

Thank You!