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The LOCAL Model



LOCAL Problems on Paths

1 28 37 52 8 32 48 47 73 5 3

Cole, Vishkin (1986)
There exists an algorithm to 3-color a path in O(log∗ n) rounds in the LOCAL model.
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From n colors to log n colors

42 102 36

n colors ⇒ log n bits ⇒ 2 log n new colors ⇒ log log n + 1 bits

After log∗ n iterations, O(1) bits.
After O(1) greedy recoloring steps, 3-coloring.
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(∆ + 1)-coloring in the LOCAL model

Linial (1992)
O(∆2)-coloring can be computed in O(log∗ n) rounds in the LOCAL model.

Corollary
(∆ + 1)-coloring can be computed in O(log∗ n + ∆2) rounds in the LOCAL model.
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The SLEEPING Model



Distributed Sleeping Model

• LOCAL model
• At each round, a node decides if it is active or not
• A node communicates only with its active neighbors
• Complexity : maximal number of awaken rounds for a single node
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∆ + 1-Coloring in O(∆) awaken rounds

43

• Round 0 : Learn the identifiers of my neighbors
• For each i ∈ N(u)≤1, round i : Wake up
• Round 2 : Node 2 chooses its color

Drawback : The round complexity is O(M), M being the maximal identifier.
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Reduce K colors in log K awake rounds

Barenboim and Maimon (2021)
Given a K -coloring of the graph, we can compute a (∆ + 1)-coloring in O(log K ) awaken
rounds and O(K ) rounds in the Sleeping LOCAL model.
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Trade-Off

Find the possible trade-off between awaken and usual rounds to resolve a problem.

(∆ + 1)-coloring of paths :

Awaken rounds Rounds

3 O(M)
O(log∗ n) O(log∗ n)

3 + k O(logk M)

Balliu, Fraigniaud, Olivetti, R.
There exists an algorithm that solves (∆ + 1)-coloring with O(

√
log n · log∗ n)

awake-complexity and round-complexity poly(M).
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Maximal Independent Sets

Dufoulon, Moses, Pandurangan (2023)
Maximal Independent Set :

Sleeping-Rand-MIS-1 Sleeping-Rand-MIS-2
Node-averaged awake complexity O(1) O(1)

Worst-case awake complexity O(log log n) O((log log n) log∗ n)
Total round complexity O(poly n) O((log3 n)(log log n) log∗ n)
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The log n Complexity



Full Knowledge of the Graph

Barenboim and Maimon (2021)
Any graph problem can be solved in O(log n) awaken rounds in the Sleeping LOCAL model.

This algorithm takes O(poly M) rounds.

Distributed Layered Tree (DLT) - Oriented Spanning Tree such as :

• Each vertex has a label
• The label of a vertex is bigger than its parent’s
• Each vertex knows the label of its neighbours in the tree

Constant Coordination
Broadcast and Convergecast can be done in O(1) rounds in a DLT.
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Building a DLT

Barenboim and Maimon (2021)
A DLT can be built in O(log n) awaken rounds in the Sleeping LOCAL model.
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Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

• Labels are of the form (a, b), ordered lexicographically.
• At the beginning, all nodes have label (Id(u), 0).
• At the beginning of each expand step, all nodes of a subtree T are of the form (L(T ), b).
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Building a DLT

Tree Idu1

u1

(Idu1 , 0)

u
(Idu1 , du)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

Idu1 > Idu2

• Repeat log n times :

1. Select a neighbour Tree T ′ with smaller label (Idu1 > Idu2).
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Building a DLT

u1
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v
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Building a DLT

u1

(Idu2 , du + dv + 1)

u
(Idu2 , dv + 1)

Tree Idu2

u2

(Idu2 , 0)

v
(Idu2 , dv )

• Repeat log n times :

4. All nodes learn their new neighbours in the tree.
5. Convergecast to gather the new structure of the component C to the root r .
6. Broadcast a new labelling (L(r), dist(r)).
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Sleeping Lower Bound

Augustine et. al (2022)
Any algorithm to solve 2-coloring with probability exceeding 1/8 on a ring network requires
Ω(log n) awake time.

v u

• After k rounds, a node knows about some segment that includes itself
• No node v on the left of u in the path can know more than u on its right
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Sleeping Lower Bound

13k

13k+1

By induction : For any k, for any segment I of 13k nodes, there exists, with probability
P > 1/2, a node u ∈ I who knows less than I after k rounds.

• Probability that it is true on 5 of the 13 subsegments is at least 5/6
• Probability that B, C or D wakes up before A and E is at least 1/2
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Some Questions

• How to adapt known algorithm and what can be new techniques ?

• What are the new complexity classes ?

• How to introduce energy efficiency in other (asynchronous) models ?

Thank You !
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