
Using “Hilbert Methods” to decide Equivalence
for Transducers

Adrien Boiret
joint work with Miko laj Bojańczyk, Janusz Schmude, Rados law

Piórkowski

March 27th 2018

1/34 March 27th, Delta

Table of contents

1 Polynomial Register Automata
Zeroness Problem
Polynomial Reduction

2 Positive and Negative Results
Unranked Unordered Forests are well-behaved
Polynomials with composition are not well-behaved

2/34 March 27th, Delta

Plan

1 Polynomial Register Automata
Zeroness Problem
Polynomial Reduction

2 Positive and Negative Results
Unranked Unordered Forests are well-behaved
Polynomials with composition are not well-behaved

3/34 March 27th, Delta

Polynomial Operations

Algebra A, operations φ : Ak → A

Polynomial operations: p : An → A (or p : An → Am by product)
Combination of operations φ

Examples

(Q,+,×), p : (x , y) 7→ (x2 + xy , y)

(Q[X],+,×,−(−)), p : P 7→ P(P)

(Σ∗, .), p : (u, v) 7→ u.v .u

4/34 March 27th, Delta

Polynomial Operations

Algebra A, operations φ : Ak → A

Polynomial operations: p : An → A (or p : An → Am by product)
Combination of operations φ

Examples

(Q,+,×), p : (x , y) 7→ (x2 + xy , y)

(Q[X],+,×,−(−)), p : P 7→ P(P)

(Σ∗, .), p : (u, v) 7→ u.v .u

4/34 March 27th, Delta

Register Automata

Bottom-up Tree Automata with Registers over A (A-RA)
Finite ranked alphabet Σ, States Q, vector of n registers r

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

Final output: q(r)→ p(r)

Examples

Tree to String transducers are register automata on finite words
with concatenation.

Macro Tree Transducers are register automata on trees with leaf
substitution.

5/34 March 27th, Delta

Register Automata

Bottom-up Tree Automata with Registers over A (A-RA)
Finite ranked alphabet Σ, States Q, vector of n registers r

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

Final output: q(r)→ p(r)

Examples

Tree to String transducers are register automata on finite words
with concatenation.

Macro Tree Transducers are register automata on trees with leaf
substitution.

5/34 March 27th, Delta

Register Automata

Bottom-up Tree Automata with Registers over A (A-RA)
Finite ranked alphabet Σ, States Q, vector of n registers r

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

Final output: q(r)→ p(r)

Examples

Tree to String transducers are register automata on finite words
with concatenation.

Macro Tree Transducers are register automata on trees with leaf
substitution.

5/34 March 27th, Delta

Some Register Automata

On (Σ∗, .)

Example: Visibly Pushdown

One state q of dimension 1, output q(r)→ r
a()→ q(< a >< /a >)
g(q(r1), q(r2))→ q(< g > r1 · r2 < /g >)

Example: Exponential Blowup

One state q of dimension 1, output q(r)→ r
a()→ (A), g(q(r))→ q(r .r)

6/34 March 27th, Delta

Some Register Automata

On (Σ∗, .)

Example: Visibly Pushdown

One state q of dimension 1, output q(r)→ r
a()→ q(< a >< /a >)
g(q(r1), q(r2))→ q(< g > r1 · r2 < /g >)

Example: Exponential Blowup

One state q of dimension 1, output q(r)→ r
a()→ (A), g(q(r))→ q(r .r)

6/34 March 27th, Delta

Plan

1 Polynomial Register Automata
Zeroness Problem
Polynomial Reduction

2 Positive and Negative Results
Unranked Unordered Forests are well-behaved
Polynomials with composition are not well-behaved

7/34 March 27th, Delta

Zeroness Problem

Input:
M register automata of dimension n over a ring R

Output:
Does M compute a constant 0 function?

Theorem

If zeroness is decidable for R-RA :

Functionality is decidable for R-RA

Equivalence is decidable for functional R-RA

Theorem

The zeroness problem is decidable for (Q,+,×) and (Q[X],+,×)

8/34 March 27th, Delta

Zeroness Problem

Input:
M register automata of dimension n over a ring R

Output:
Does M compute a constant 0 function?

Theorem

If zeroness is decidable for R-RA :

Functionality is decidable for R-RA

Equivalence is decidable for functional R-RA

Theorem

The zeroness problem is decidable for (Q,+,×) and (Q[X],+,×)

8/34 March 27th, Delta

Zeroness Problem

Input:
M register automata of dimension n over a ring R

Output:
Does M compute a constant 0 function?

Theorem

If zeroness is decidable for R-RA :

Functionality is decidable for R-RA

Equivalence is decidable for functional R-RA

Theorem

The zeroness problem is decidable for (Q,+,×) and (Q[X],+,×)

8/34 March 27th, Delta

Polynomial Closure

For S ⊆ Qn

pol(S) = {p | ∀s ∈ S , p(s) = 0} Ideal of Q[X1, . . . ,Xn]

Closure of S : S = {(x1, . . . , xn) | ∀p ∈ pol(S)} ⊆ Qn

Proposition

For p polynomial, p(S1) ⊆ S2 =⇒ p(S1) ⊆ S2

X1 × · · · × Xn ⊆ X1 × · · · × Xn

Corollary

If a set of equations {S ⊇ p(S1, . . . ,Sn) . . . } has a solution
S1, . . . ,Sn, then S1, . . . ,Sn is a solution.

9/34 March 27th, Delta

Polynomial Closure

For S ⊆ Qn

pol(S) = {p | ∀s ∈ S , p(s) = 0} Ideal of Q[X1, . . . ,Xn]

Closure of S : S = {(x1, . . . , xn) | ∀p ∈ pol(S)} ⊆ Qn

Proposition

For p polynomial, p(S1) ⊆ S2 =⇒ p(S1) ⊆ S2

X1 × · · · × Xn ⊆ X1 × · · · × Xn

Corollary

If a set of equations {S ⊇ p(S1, . . . ,Sn) . . . } has a solution
S1, . . . ,Sn, then S1, . . . ,Sn is a solution.

9/34 March 27th, Delta

Polynomial Closure

For S ⊆ Qn

pol(S) = {p | ∀s ∈ S , p(s) = 0} Ideal of Q[X1, . . . ,Xn]

Closure of S : S = {(x1, . . . , xn) | ∀p ∈ pol(S)} ⊆ Qn

Proposition

For p polynomial, p(S1) ⊆ S2 =⇒ p(S1) ⊆ S2

X1 × · · · × Xn ⊆ X1 × · · · × Xn

Corollary

If a set of equations {S ⊇ p(S1, . . . ,Sn) . . . } has a solution
S1, . . . ,Sn, then S1, . . . ,Sn is a solution.

9/34 March 27th, Delta

Decide Zeroness

Two semi-decidabilities:

M does not compute a constant 0 function

Try runs until we find a counterexample

M computes a constant 0 function

Find a closed set η(q) of Qn
for each state q of M

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

10/34 March 27th, Delta

Decide Zeroness

Two semi-decidabilities:

M does not compute a constant 0 function

Try runs until we find a counterexample

M computes a constant 0 function

Find a closed set η(q) of Qn
for each state q of M

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

10/34 March 27th, Delta

Decide Zeroness

Two semi-decidabilities:

M does not compute a constant 0 function

Try runs until we find a counterexample

M computes a constant 0 function

Find a closed set η(q) of Qn
for each state q of M

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

10/34 March 27th, Delta

Decide Zeroness

Two semi-decidabilities:

M does not compute a constant 0 function

Try runs until we find a counterexample

M computes a constant 0 function

Find a closed set η(q) of Qn
for each state q of M

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

10/34 March 27th, Delta

Decide Zeroness

Two semi-decidabilities:

M does not compute a constant 0 function

Try runs until we find a counterexample

M computes a constant 0 function

Find a closed set η(q) of Qn
for each state q of M

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

10/34 March 27th, Delta

Semi-Decide Zeroness

M computes a constant 0 function

Find a closed set η(q) of Qn
for each state q of M

Ideals enumerable thanks to Hilbert’s Theorem

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Inclusion testable thanks to Groebner Bases

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

Inclusion testable thanks to Groebner Bases

11/34 March 27th, Delta

Semi-Decide Zeroness

M computes a constant 0 function

Find an ideal η(q) =< P1, . . . ,Pm > for each state q of M
Ideals enumerable thanks to Hilbert’s Theorem

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Inclusion testable thanks to Groebner Bases

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

Inclusion testable thanks to Groebner Bases

11/34 March 27th, Delta

Semi-Decide Zeroness

M computes a constant 0 function

Find an ideal η(q) =< P1, . . . ,Pm > for each state q of M
Ideals enumerable thanks to Hilbert’s Theorem

If a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

η(q) ⊇ p(η(q1), . . . , η(qk))

Inclusion testable thanks to Groebner Bases

Final output q(r)→ p(r)

{0} ⊇ p(η(q))

Inclusion testable thanks to Groebner Bases

11/34 March 27th, Delta

Plan

1 Polynomial Register Automata
Zeroness Problem
Polynomial Reduction

2 Positive and Negative Results
Unranked Unordered Forests are well-behaved
Polynomials with composition are not well-behaved

12/34 March 27th, Delta

Polynomial Reduction

Algebras (A, φ1, . . . , φk), and (B, ψ1, . . . , ψm),

Polynomial reduction: f : A → Bn injective function such that
every φi in A is represented by a polynomial pi in B

∀φi∃pi polynomial in B | f (φi (a1, . . . , an)) = pi (f (a1), . . . , f (an))

A �π B: A reduces to B
�π is a transitive relation

13/34 March 27th, Delta

Polynomial Reduction

Algebras (A, φ1, . . . , φk), and (B, ψ1, . . . , ψm),

Polynomial reduction: f : A → Bn injective function such that
every φi in A is represented by a polynomial pi in B

∀φi∃pi polynomial in B | f (φi (a1, . . . , an)) = pi (f (a1), . . . , f (an))

A �π B: A reduces to B
�π is a transitive relation

13/34 March 27th, Delta

Polynomial Reduction

Algebras (A, φ1, . . . , φk), and (B, ψ1, . . . , ψm),

Polynomial reduction: f : A → Bn injective function such that
every φi in A is represented by a polynomial pi in B

∀φi∃pi polynomial in B | f (φi (a1, . . . , an)) = pi (f (a1), . . . , f (an))

A �π B: A reduces to B
�π is a transitive relation

13/34 March 27th, Delta

From Words to Integers

We reduce words on alphabet Σ = {0, 1} into pairs of integers:

(Σ∗, .) (Z,+,−,×)

u ([u]2, 2
|u|)

u.v ([u]2 × 2|v | + [v]2, 2
|u+v |)

01011.011 = 01011000 + 011

Any Word-RA can be reduced to a Z-RA

14/34 March 27th, Delta

From Words to Integers

We reduce words on alphabet Σ = {0, 1} into pairs of integers:

(Σ∗, .) (Z,+,−,×)

u ([u]2, 2
|u|)

u.v ([u]2 × 2|v | + [v]2, 2
|u+v |)

01011.011 = 01011000 + 011

Any Word-RA can be reduced to a Z-RA

14/34 March 27th, Delta

From Words to Integers

We reduce words on alphabet Σ = {0, 1} into pairs of integers:

(Σ∗, .) (Z,+,−,×)

u ([u]2, 2
|u|)

u.v ([u]2 × 2|v | + [v]2, 2
|u+v |)

01011.011 = 01011000 + 011

Any Word-RA can be reduced to a Z-RA

14/34 March 27th, Delta

Reduction of Register Automata

A with operation φ1, . . . , φl , B such that A �π B,
Polynomial reduction: f : A → Bn

A-RA M into B-RA States Q, m A registers: m × n B registers

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

∃p′ polynomial in B | f (p) = p′(f , . . . , f)

Final output: q(r)→ p(r)

∃p′ polynomial in B | f (p) = p′(f , . . . , f)

15/34 March 27th, Delta

Reduction of Register Automata

A with operation φ1, . . . , φl , B such that A �π B,
Polynomial reduction: f : A → Bn

A-RA M into B-RA States Q, m A registers: m × n B registers

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

∃p′ polynomial in B | f (p) = p′(f , . . . , f)

Final output: q(r)→ p(r)

∃p′ polynomial in B | f (p) = p′(f , . . . , f)

15/34 March 27th, Delta

Reduction of Register Automata

A with operation φ1, . . . , φl , B such that A �π B,
Polynomial reduction: f : A → Bn

A-RA M into B-RA States Q, m A registers: m × n B registers

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))
∃p′ polynomial in B | f (p) = p′(f , . . . , f)

Final output: q(r)→ p(r)
∃p′ polynomial in B | f (p) = p′(f , . . . , f)

15/34 March 27th, Delta

Decide Equivalence with “Hilbert Methods”

Theorem - Reduction

If A �π B and functionality (equivalence) is decidable for register
automata on B, then functionality (equivalence) is decidable for
register automata on A.

Theorem - “Hilbert Methods”

Functionality is decidable for (Q[X],+,×)-RA

Equivalence is decidable for functional (Q[X],+,×)-RA

Corollary (SMK 2015)

Equivalence is decidable for Tree to String transducers.

16/34 March 27th, Delta

Decide Equivalence with “Hilbert Methods”

Theorem - Reduction

If A �π B and functionality (equivalence) is decidable for register
automata on B, then functionality (equivalence) is decidable for
register automata on A.

Theorem - “Hilbert Methods”

Functionality is decidable for (Q[X],+,×)-RA

Equivalence is decidable for functional (Q[X],+,×)-RA

Corollary (SMK 2015)

Equivalence is decidable for Tree to String transducers.

16/34 March 27th, Delta

Decide Equivalence with “Hilbert Methods”

Theorem - Reduction

If A �π B and functionality (equivalence) is decidable for register
automata on B, then functionality (equivalence) is decidable for
register automata on A.

Theorem - “Hilbert Methods”

Functionality is decidable for (Q[X],+,×)-RA

Equivalence is decidable for functional (Q[X],+,×)-RA

Corollary (SMK 2015)

Equivalence is decidable for Tree to String transducers.

16/34 March 27th, Delta

Plan

1 Polynomial Register Automata
Zeroness Problem
Polynomial Reduction

2 Positive and Negative Results
Unranked Unordered Forests are well-behaved
Polynomials with composition are not well-behaved

17/34 March 27th, Delta

Plan

1 Polynomial Register Automata
Zeroness Problem
Polynomial Reduction

2 Positive and Negative Results
Unranked Unordered Forests are well-behaved
Polynomials with composition are not well-behaved

18/34 March 27th, Delta

Unranked Unordered Forests

Finite alphabet Σ, Algebra of forests HΣ.

Operations: Binary concatenation · (associative and commutative),
for each a ∈ Σ, place a forest under a root of label a: unary roota.

Can be modeled with alphabet with one symbol.

rootai (h)→ rooti (root{} · root(h))

19/34 March 27th, Delta

Unranked Unordered Forests

Finite alphabet Σ, Algebra of forests HΣ.

Operations: Binary concatenation · (associative and commutative),
for each a ∈ Σ, place a forest under a root of label a: unary roota.

Can be modeled with alphabet with one symbol.

rootai (h)→ rooti (root{} · root(h))

19/34 March 27th, Delta

Reduction from Forests to Polynomials

HΣ (Q[X],+,×)

h.h′ f (h)× f (h′)

root(h) 2 + X × f (h)

Eisenberg Criterion

For P(X) = a0 + · · ·+ akX
k ∈ Q[X], if ∃n prime such that

∀0 6 i < k , n|ai , n 6 |ak , n2 6 |a0

then P(X) is irreducible in Q[X]

20/34 March 27th, Delta

Reduction from Forests to Polynomials

HΣ (Q[X],+,×)

h.h′ f (h)× f (h′)

root(h) 2 + X × f (h)

Eisenberg Criterion

For P(X) = a0 + · · ·+ akX
k ∈ Q[X], if ∃n prime such that

∀0 6 i < k , n|ai , n 6 |ak , n2 6 |a0

then P(X) is irreducible in Q[X]

20/34 March 27th, Delta

Reduction from Forests to Polynomials

HΣ (Q[X],+,×)

h.h′ f (h)× f (h′)

root(h) 2 + X × f (h)

Eisenberg Criterion

For P(X) = a0 + · · ·+ akX
k ∈ Q[X], if ∃n prime such that

∀0 6 i < k , n|ai , n 6 |ak , n2 6 |a0

then P(X) is irreducible in Q[X]

20/34 March 27th, Delta

0-1 Contexts

Unary alphabet, one variable y
Algebra: Forests contexts with one or no y
Operations: Concatenation, root, substitution h[y ← h′]

Encoded as pairs of polynomials (PΣ,Py)

PΣ is the encoding of the tree without y

Py is an encoding of “where” y is

Can be extended to 0− n with the same methods

21/34 March 27th, Delta

0-1 Contexts

Unary alphabet, one variable y
Algebra: Forests contexts with one or no y
Operations: Concatenation, root, substitution h[y ← h′]

Encoded as pairs of polynomials (PΣ,Py)

PΣ is the encoding of the tree without y

Py is an encoding of “where” y is

Can be extended to 0− n with the same methods

21/34 March 27th, Delta

0-1 Contexts

Unary alphabet, one variable y
Algebra: Forests contexts with one or no y
Operations: Concatenation, root, substitution h[y ← h′]

Encoded as pairs of polynomials (PΣ,Py)

PΣ is the encoding of the tree without y

Py is an encoding of “where” y is

Can be extended to 0− n with the same methods

21/34 March 27th, Delta

Typed Algebra-RA

Typed algebra A = A1 t · · · t An

Operations φ : Ai1 × · · · × Aik → Aj

A-RA with n registers: each state q has typed registers r
Type Ai1 × · · · × Ain

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

Final output: q(r)→ p(r)

Polynomial reduction: f : A → Bn
If a, a′ same type in A then f (a), f (a′) same type in B

22/34 March 27th, Delta

Typed Algebra-RA

Typed algebra A = A1 t · · · t An

Operations φ : Ai1 × · · · × Aik → Aj

A-RA with n registers: each state q has typed registers r
Type Ai1 × · · · × Ain

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

Final output: q(r)→ p(r)

Polynomial reduction: f : A → Bn
If a, a′ same type in A then f (a), f (a′) same type in B

22/34 March 27th, Delta

Typed Algebra-RA

Typed algebra A = A1 t · · · t An

Operations φ : Ai1 × · · · × Aik → Aj

A-RA with n registers: each state q has typed registers r
Type Ai1 × · · · × Ain

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

Final output: q(r)→ p(r)

Polynomial reduction: f : A → Bn
If a, a′ same type in A then f (a), f (a′) same type in B

22/34 March 27th, Delta

Typed Algebra-RA

Typed algebra A = A1 t · · · t An

Operations φ : Ai1 × · · · × Aik → Aj

A-RA with n registers: each state q has typed registers r
Type Ai1 × · · · × Ain

Transition a(q1(r1), . . . , qk(rk))→ q(p(r1, . . . , rk))

Final output: q(r)→ p(r)

Polynomial reduction: f : A → Bn
If a, a′ same type in A then f (a), f (a′) same type in B

22/34 March 27th, Delta

Reduction from Contexts to Polynomials

Extend reduction to Q[X ,Y] with Y ← P:

(Contexts, ·, root, y ← h) Q[X ,Y],+,×,Y ← P

y Y

h.h′ f (h)× f (h′)

root(h) 2 + X × f (h)

h[y ← h′] f (h)[Y ← f (h′)]

23/34 March 27th, Delta

Reduction from Contexts to Polynomials

Extend reduction to Q[X ,Y] with Y ← P:

(Contexts, ·, root, y ← h) Q[X ,Y],+,×,Y ← P

y Y

h.h′ f (h)× f (h′)

root(h) 2 + X × f (h)

h[y ← h′] f (h)[Y ← f (h′)]

23/34 March 27th, Delta

Finite Degree Composition as +,×

Polynomial of Q[X ,Y] for a 0-1 context
y appears at most once: P(X) + Y .P ′(X)

Replace Y of P(X) + Y .P ′(X) by Q(X) + Y .Q ′(X)

(P + P ′.Q)(X) + Y .(P ′.Q ′)(X)

Can encode P(X) + Y .P ′(X) as (P,P ′) in (Q[X],+,×)

P(X ,Y ,Z) = P0(X)+ Y .P1(X)+ Y 2.P2(X)

+ Z .P3(X)+ Z 2.P4(X)

+ Y .Z .P5(X)

24/34 March 27th, Delta

Finite Degree Composition as +,×

Polynomial of Q[X ,Y] for a 0-1 context
y appears at most once: P(X) + Y .P ′(X)

Replace Y of P(X) + Y .P ′(X) by Q(X) + Y .Q ′(X)

(P + P ′.Q)(X) + Y .(P ′.Q ′)(X)

Can encode P(X) + Y .P ′(X) as (P,P ′) in (Q[X],+,×)

P(X ,Y ,Z) = P0(X)+ Y .P1(X)+ Y 2.P2(X)

+ Z .P3(X)+ Z 2.P4(X)

+ Y .Z .P5(X)

24/34 March 27th, Delta

Finite Degree Composition as +,×

Polynomial of Q[X ,Y] for a 0-1 context
y appears at most once: P(X) + Y .P ′(X)

Replace Y of P(X) + Y .P ′(X) by Q(X) + Y .Q ′(X)

(P + P ′.Q)(X) + Y .(P ′.Q ′)(X)

Can encode P(X) + Y .P ′(X) as (P,P ′) in (Q[X],+,×)

P(X ,Y ,Z) = P0(X)+ Y .P1(X)+ Y 2.P2(X)

+ Z .P3(X)+ Z 2.P4(X)

+ Y .Z .P5(X)

24/34 March 27th, Delta

Finite Degree Composition as +,×

Polynomial of Q[X ,Y] for a 0-1 context
y appears at most once: P(X) + Y .P ′(X)

Replace Y of P(X) + Y .P ′(X) by Q(X) + Y .Q ′(X)

(P + P ′.Q)(X) + Y .(P ′.Q ′)(X)

Can encode P(X) + Y .P ′(X) as (P,P ′) in (Q[X],+,×)

P(X ,Y ,Z) = P0(X)+ Y .P1(X)+ Y 2.P2(X)

+ Z .P3(X)+ Z 2.P4(X)

+ Y .Z .P5(X)

24/34 March 27th, Delta

Forests Register Automata

Theorem - Forests Register Automata

Functionality and equivalence are decidable for register automata
on Unranked Unordered 0-n Contexts.

Example: “FCNS”

One state q of dimension 1, output q(r)→ r
a()→ q(α()), g(q(r1), q(r2))→ q(γ(r1) · r2)

Example: Vertical Exponential Blowup

One state q of dimension 1, output q(r)→ r [y ← α()]
a()→ (β(y)), g(q(r))→ q(r [y ← r])

25/34 March 27th, Delta

Forests Register Automata

Theorem - Forests Register Automata

Functionality and equivalence are decidable for register automata
on Unranked Unordered 0-n Contexts.

Example: “FCNS”

One state q of dimension 1, output q(r)→ r
a()→ q(α()), g(q(r1), q(r2))→ q(γ(r1) · r2)

Example: Vertical Exponential Blowup

One state q of dimension 1, output q(r)→ r [y ← α()]
a()→ (β(y)), g(q(r))→ q(r [y ← r])

25/34 March 27th, Delta

Forests Register Automata

Theorem - Forests Register Automata

Functionality and equivalence are decidable for register automata
on Unranked Unordered 0-n Contexts.

Example: “FCNS”

One state q of dimension 1, output q(r)→ r
a()→ q(α()), g(q(r1), q(r2))→ q(γ(r1) · r2)

Example: Vertical Exponential Blowup

One state q of dimension 1, output q(r)→ r [y ← α()]
a()→ (β(y)), g(q(r))→ q(r [y ← r])

25/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO on Unranked Unordered Forests: MSO + Child(x , y)
(+Sibling(x , y))

MSO Forest Transformation

One copy of the input → n copies of the output
x → x1, . . . , xn

Childi ,j(x , y) := φ(x , y)
φ MSO-formula in the input

Siblingi ,j(x , y) := ψ(x , y)
ψ MSO-formula in the input

Claim

Forests Register Automata can express all MSO Unranked
Unordered Forests Transformations

26/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO on Unranked Unordered Forests: MSO + Child(x , y)
(+Sibling(x , y))

MSO Forest Transformation

One copy of the input → n copies of the output
x → x1, . . . , xn

Childi ,j(x , y) := φ(x , y)
φ MSO-formula in the input

Siblingi ,j(x , y) := ψ(x , y)
ψ MSO-formula in the input

Claim

Forests Register Automata can express all MSO Unranked
Unordered Forests Transformations

26/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO on Unranked Unordered Forests: MSO + Child(x , y)
(+Sibling(x , y))

MSO Forest Transformation

One copy of the input → n copies of the output
x → x1, . . . , xn

Childi ,j(x , y) := φ(x , y)
φ MSO-formula in the input

Siblingi ,j(x , y) := ψ(x , y)
ψ MSO-formula in the input

Claim

Forests Register Automata can express all MSO Unranked
Unordered Forests Transformations

26/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO on Unranked Unordered Forests: MSO + Child(x , y)
(+Sibling(x , y))

MSO Forest Transformation

One copy of the input → n copies of the output
x → x1, . . . , xn

Childi ,j(x , y) := φ(x , y)
φ MSO-formula in the input

Siblingi ,j(x , y) := ψ(x , y)
ψ MSO-formula in the input

Claim

Forests Register Automata can express all MSO Unranked
Unordered Forests Transformations

26/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO on Unranked Unordered Forests: MSO + Child(x , y)
(+Sibling(x , y))

MSO Forest Transformation

One copy of the input → n copies of the output
x → x1, . . . , xn

Childi ,j(x , y) := φ(x , y)
φ MSO-formula in the input

Siblingi ,j(x , y) := ψ(x , y)
ψ MSO-formula in the input

Claim

Forests Register Automata can express all MSO Unranked
Unordered Forests Transformations

26/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO Transformation
Unordered to Unordered

MSO Transformation
Binary to Unordered

MSO Transformation
Binary to Ordered

Streaming Transducers
Binary to Ordered

Register Automata
Binary to Ordered

Register Automata
Binary to Unordered

27/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO Transformation
Unordered to Unordered

MSO Transformation
Binary to Unordered

MSO Transformation
Binary to Ordered

Streaming Transducers
Binary to Ordered

Register Automata
Binary to Ordered

Register Automata
Binary to Unordered

27/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO Transformation
Unordered to Unordered

MSO Transformation
Binary to Unordered

MSO Transformation
Binary to Ordered

Streaming Transducers
Binary to Ordered

Register Automata
Binary to Ordered

Register Automata
Binary to Unordered

27/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO Transformation
Unordered to Unordered

MSO Transformation
Binary to Unordered

MSO Transformation
Binary to Ordered

Streaming Transducers
Binary to Ordered

Register Automata
Binary to Ordered

Register Automata
Binary to Unordered

27/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO Transformation
Unordered to Unordered

MSO Transformation
Binary to Unordered

MSO Transformation
Binary to Ordered

Streaming Transducers
Binary to Ordered

Register Automata
Binary to Ordered

Register Automata
Binary to Unordered

27/34 March 27th, Delta

MSO Unranked Unordered Forests Transformations

MSO Transformation
Unordered to Unordered

MSO Transformation
Binary to Unordered

MSO Transformation
Binary to Ordered

Streaming Transducers
Binary to Ordered

Register Automata
Binary to Ordered

Register Automata
Binary to Unordered

27/34 March 27th, Delta

Plan

1 Polynomial Register Automata
Zeroness Problem
Polynomial Reduction

2 Positive and Negative Results
Unranked Unordered Forests are well-behaved
Polynomials with composition are not well-behaved

28/34 March 27th, Delta

Polynomials with Composition

Algebra: (Q[X],+,×,X → P)
Register automata equivalence on this algebra is undecidable.

Reduction to accessibility in 2-counter machines

2-counter machines (2CM)
Q = {q0, . . . , qn}, configuration (q, c1, c2), c1, c2 ∈ N
δ : (q, b1, b2)→ (q′,−1/0/+ 1,−1/0/+ 1), bi : ci = 0?
Initial: (q0, 0, 0), Question: can we reach qn?

This problem is undecidable.

29/34 March 27th, Delta

Polynomials with Composition

Algebra: (Q[X],+,×,X → P)
Register automata equivalence on this algebra is undecidable.

Reduction to accessibility in 2-counter machines

2-counter machines (2CM)
Q = {q0, . . . , qn}, configuration (q, c1, c2), c1, c2 ∈ N
δ : (q, b1, b2)→ (q′,−1/0/+ 1,−1/0/+ 1), bi : ci = 0?
Initial: (q0, 0, 0), Question: can we reach qn?

This problem is undecidable.

29/34 March 27th, Delta

Polynomials with Composition

Algebra: (Q[X],+,×,X → P)
Register automata equivalence on this algebra is undecidable.

Reduction to accessibility in 2-counter machines

2-counter machines (2CM)
Q = {q0, . . . , qn}, configuration (q, c1, c2), c1, c2 ∈ N
δ : (q, b1, b2)→ (q′,−1/0/+ 1,−1/0/+ 1), bi : ci = 0?
Initial: (q0, 0, 0), Question: can we reach qn?

This problem is undecidable.

29/34 March 27th, Delta

Registers for 2-Counter Machine Simulation

Register word automata with alphabet δ
Reading (q, b1, b2)→ (q′, d1, d2): make the step in the 2CM
1-state Register Automaton:

Registers to encode a 2CM configuration

rq: if the current state is qi , then rq = i

r1, r2: if ci is at value j , then ri = j

Update after reading (i , b1, b2)→ (j , d1, d2)

rq ← j

r1 ← r1 + d1, r2 ← r2 + d2

Were we allowed to read (i , b1, b2)→ (j , d1, d2)?

30/34 March 27th, Delta

Registers for 2-Counter Machine Simulation

Register word automata with alphabet δ
Reading (q, b1, b2)→ (q′, d1, d2): make the step in the 2CM
1-state Register Automaton:

Registers to encode a 2CM configuration

rq: if the current state is qi , then rq = i

r1, r2: if ci is at value j , then ri = j

Update after reading (i , b1, b2)→ (j , d1, d2)

rq ← j

r1 ← r1 + d1, r2 ← r2 + d2

Were we allowed to read (i , b1, b2)→ (j , d1, d2)?

30/34 March 27th, Delta

Registers for 2-Counter Machine Simulation

Register word automata with alphabet δ
Reading (q, b1, b2)→ (q′, d1, d2): make the step in the 2CM
1-state Register Automaton:

Registers to encode a 2CM configuration

rq: if the current state is qi , then rq = i

r1, r2: if ci is at value j , then ri = j

Update after reading (i , b1, b2)→ (j , d1, d2)

rq ← j

r1 ← r1 + d1, r2 ← r2 + d2

Were we allowed to read (i , b1, b2)→ (j , d1, d2)?

30/34 March 27th, Delta

Registers for 2-Counter Machine Simulation

Register word automata with alphabet δ
Reading (q, b1, b2)→ (q′, d1, d2): make the step in the 2CM
1-state Register Automaton:

Registers to encode a 2CM configuration

rq: if the current state is qi , then rq = i

r1, r2: if ci is at value j , then ri = j

Update after reading (i , b1, b2)→ (j , d1, d2)

rq ← j

r1 ← r1 + d1, r2 ← r2 + d2

Were we allowed to read (i , b1, b2)→ (j , d1, d2)?

30/34 March 27th, Delta

Witness Register

rw witness: rw = 0 iff mistake.

Update after reading (i , b1, b2)→ (j , d1, d2)
rw ← rw .Ti (rq).T1.T2

Test for states: Ti =
∏i 6=j

06j6n X − j :

{
6= 0 if X = i

= 0 if X 6= i

Test that ci 6= 0: Ti = ri

Test that ci = 0: Ti =
∏

16j6k X − j :

{
6= 0 if X = 0

= 0 if X 6= 0

Test that ci = 0 must be stored and updated into its own register

31/34 March 27th, Delta

Witness Register

rw witness: rw = 0 iff mistake.

Update after reading (i , b1, b2)→ (j , d1, d2)
rw ← rw .Ti (rq).T1.T2

Test for states: Ti =
∏i 6=j

06j6n X − j :

{
6= 0 if X = i

= 0 if X 6= i

Test that ci 6= 0: Ti = ri

Test that ci = 0: Ti =
∏

16j6k X − j :

{
6= 0 if X = 0

= 0 if X 6= 0

Test that ci = 0 must be stored and updated into its own register

31/34 March 27th, Delta

Witness Register

rw witness: rw = 0 iff mistake.

Update after reading (i , b1, b2)→ (j , d1, d2)
rw ← rw .Ti (rq).T1.T2

Test for states: Ti =
∏i 6=j

06j6n X − j :

{
6= 0 if X = i

= 0 if X 6= i

Test that ci 6= 0: Ti = ri

Test that ci = 0: Ti =
∏

16j6k X − j :

{
6= 0 if X = 0

= 0 if X 6= 0

Test that ci = 0 must be stored and updated into its own register

31/34 March 27th, Delta

Witness Register

rw witness: rw = 0 iff mistake.

Update after reading (i , b1, b2)→ (j , d1, d2)
rw ← rw .Ti (rq).T1.T2

Test for states: Ti =
∏i 6=j

06j6n X − j :

{
6= 0 if X = i

= 0 if X 6= i

Test that ci 6= 0: Ti = ri

Test that ci = 0: Ti =
∏

16j6k X − j :

{
6= 0 if X = 0

= 0 if X 6= 0

Test that ci = 0 must be stored and updated into its own register

31/34 March 27th, Delta

Witness Register

rw witness: rw = 0 iff mistake.

Update after reading (i , b1, b2)→ (j , d1, d2)
rw ← rw .Ti (rq).T1.T2

Test for states: Ti =
∏i 6=j

06j6n X − j :

{
6= 0 if X = i

= 0 if X 6= i

Test that ci 6= 0: Ti = ri

Test that ci = 0: Ti =
∏

16j6k X − j :

{
6= 0 if X = 0

= 0 if X 6= 0

Test that ci = 0 must be stored and updated into its own register

31/34 March 27th, Delta

Polynomials with Composition are not well-behaved

Output: Pn(rq).rw

This register automaton produces anything other than 0 ⇐⇒ qn
accessible.

Theorem

The equivalence problem for register automata over
(Q[X],+,×,X → P) is undecidable.

32/34 March 27th, Delta

Polynomials with Composition are not well-behaved

Output: Pn(rq).rw

This register automaton produces anything other than 0 ⇐⇒ qn
accessible.

Theorem

The equivalence problem for register automata over
(Q[X],+,×,X → P) is undecidable.

32/34 March 27th, Delta

Some Parting Words

What we’ve done:

Abstraction of “Hilbert Methods” to decide some Transducer
Equivalence

Positive Result: Unranked Unordered Forests

Negative Result: Q[X] with composition

What’s to come:

New reductions? (DAG, Graphs with bounded tree width...)

New targets for Zeroness results?

“Stratified” registers with a dangerous operation
Order on states, increased when using dangerous operation

33/34 March 27th, Delta

Some Parting Words

What we’ve done:

Abstraction of “Hilbert Methods” to decide some Transducer
Equivalence

Positive Result: Unranked Unordered Forests

Negative Result: Q[X] with composition

What’s to come:

New reductions? (DAG, Graphs with bounded tree width...)

New targets for Zeroness results?

“Stratified” registers with a dangerous operation
Order on states, increased when using dangerous operation

33/34 March 27th, Delta

That’s it!

Thank you for your attention!

34/34 March 27th, Delta

	Polynomial Register Automata
	Zeroness Problem
	Polynomial Reduction

	Positive and Negative Results
	Unranked Unordered Forests are well-behaved
	Polynomials with composition are not well-behaved

	Conclusion

