On Resynchronizers for Two-way Transducers

Sougata Bose

LaBRI, Université de Bordeaux

DELTA Paris 2018 Joint work with Anca Muscholl, Gabriele Puppis and Vincent Penelle

On Resynchronizers for Two-way Transducers - 1/14

Equivalence Problem for Transducers

The problem

Given two transducers T_1 and T_2 , check if they compute the same relation.

Equivalence Problem for Transducers

The problem

Given two transducers T_1 and T_2 , check if they compute the same relation.

Classes with known decidable equivalence problem

- Functional 2-way transducers
 [Culik, Karhumäki, '87](PSPACE-Complete)
- 1-way transducers with origin [Filiot et al, '16] (PSPACE-Complete)
- Streaming string transducers with origin [Bojańczyk et al, '17]

Equivalence for 2-way with Origin is Decidable

Equivalence for 2-way with Origin is Decidable

Decidability in two steps

- When there are only productive transitions.
- ▶ When there are some non-productive transitions.

Only runs of same shape can be origin-equivalent

On Resynchronizers for Two-way Transducers - 4/14

• Define a 2NFA A with $Q = Q_1 \times 2^{Q_2}$

- Define a 2NFA A with $Q = Q_1 \times 2^{Q_2}$
- Track all runs of the same shape with same output for T_2

- Define a 2NFA A with $Q = Q_1 imes 2^{Q_2}$
- Track all runs of the same shape with same output for T_2
- $((p, R), a, (p', R'), d) \in \Delta$
- (p, a, w, p', d) in T_1

- Define a 2NFA A with $Q = Q_1 imes 2^{Q_2}$
- Track all runs of the same shape with same output for T_2
- $((p, R), a, (p', R'), d) \in \Delta$
- (p, a, w, p', d) in T_1
- ▶ $r \in R$ with (r, a, w, r', d) in T_2 , implies $r' \in R'$.

- Define a 2NFA A with $Q = Q_1 \times 2^{Q_2}$
- Track all runs of the same shape with same output for T_2
- $((p, R), a, (p', R'), d) \in \Delta$
- (p, a, w, p', d) in T_1
- ▶ $r \in R$ with (r, a, w, r', d) in T_2 , implies $r' \in R'$.
- $F = F_1 \times 2^{Q \setminus F_2}$

- Define a 2NFA A with $Q = Q_1 \times 2^{Q_2}$
- Track all runs of the same shape with same output for T_2
- $((p, R), a, (p', R'), d) \in \Delta$
- (p, a, w, p', d) in T_1
- ▶ $r \in R$ with (r, a, w, r', d) in T_2 , implies $r' \in R'$.
- $F = F_1 \times 2^{Q \setminus F_2}$

Theorem

 $\mathsf{L}(\mathsf{A}) = \emptyset \text{ iff } T_1 \subseteq_o T_2$

On Resynchronizers for Two-way Transducers - 5/14

With non-productive transitions

- Put a special symbol \$ as output when there is a non-productive transition.
- Equal number of \$ means same origin.

Need to eliminate non-productive loops

On Resynchronizers for Two-way Transducers - 6/14

Eliminating non-productive loops

- Annotate the word with information about non-productive loops
- Use this information to get canonical runs
- Check if the annotations are correct

Eliminating non-productive loops

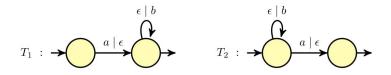
- Annotate the word with information about non-productive loops
- Use this information to get canonical runs
- Check if the annotations are correct

Now we use the previous algorithm

On Resynchronizers for Two-way Transducers - 7/14

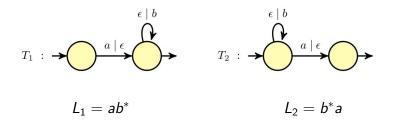
One-way Resynchronizers(Filiot et al '16)

- Transform synchronization language.
- Map input-output pair (u, v) to same pair.
- Change the synchronization.



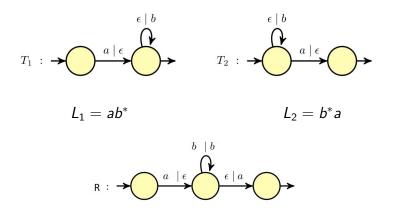
One-way Resynchronizers(Filiot et al '16)

- Transform synchronization language.
- Map input-output pair (u, v) to same pair.
- Change the synchronization.



One-way Resynchronizers(Filiot et al '16)

- Transform synchronization language.
- Map input-output pair (u, v) to same pair.
- Change the synchronization.



Objective

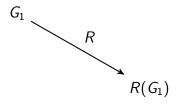
Want to compare transducers which generate similar origin graphs

Objective

Want to compare transducers which generate similar origin graphs

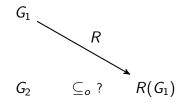
Objective

Want to compare transducers which generate similar origin graphs



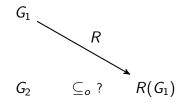
Objective

Want to compare transducers which generate similar origin graphs



Objective

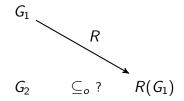
Want to compare transducers which generate similar origin graphs



Objective

Want to compare transducers which generate similar origin graphs

• Transform origin graphs of T_1



Want **R** such that $\mathbf{R}(G_1)$ is generated by a transducer.

Extending to two-way: Logical Resynchronizers

A logical way to define transformation origin graphs

Extending to two-way: Logical Resynchronizers

- A logical way to define transformation origin graphs
- MSO-transduction on origin graphs is too powerful

Extending to two-way: Logical Resynchronizers

- A logical way to define transformation origin graphs
- MSO-transduction on origin graphs is too powerful

Our idea

Use MSO formula on the input word

MSO Formula restricted to input

- An MSO formula $\phi(x, y)$ over the input word.
- Two free variables x and y.

MSO Formula restricted to input

- An MSO formula $\phi(x, y)$ over the input word.
- Two free variables x and y.
- R_{ϕ} changes origin x to origin y.

MSO Formula restricted to input

- An MSO formula $\phi(x, y)$ over the input word.
- Two free variables x and y.
- R_{ϕ} changes origin x to origin y.
- y need not be a function of x

•
$$\phi(x, y) = (y = 1)$$

•
$$\phi(x, y) = (y = 1)$$

► Apply R_φ to graphs generated when a transducer copies the input word by copying every letter.

$$\bullet \ \phi(x,y) = (y=1)$$

- ► Apply R_φ to graphs generated when a transducer copies the input word by copying every letter.
- The set of transformed graphs are not generated by any transducer.

$$\bullet \ \phi(x,y) = (y=1)$$

- Apply R_{\u03c0} to graphs generated when a transducer copies the input word by copying every letter.
- The set of transformed graphs are not generated by any transducer.

The Restriction

For a given y, the size of the set {x | φ(x, y) is true} should be bounded.

$$\bullet \ \phi(\mathbf{x}, \mathbf{y}) = (\mathbf{y} = 1)$$

- Apply R_{\u03c0} to graphs generated when a transducer copies the input word by copying every letter.
- The set of transformed graphs are not generated by any transducer.

The Restriction

For a given y, the size of the set {x | φ(x, y) is true} should be bounded.

This ensures we can build a transducer generating $R_{\phi}(G_1)$ from T_1 .

Construction of the transducer

• Consider the run of T_1 which generates the origin graph

Construction of the transducer

- Consider the run of T_1 which generates the origin graph
- We modify this run to obtain the transformed graph
- If output is done at position x in T₁, we remember the output to be done, go to y such that φ(x, y) is true and then do the output at y.

Construction of the transducer

- Consider the run of T_1 which generates the origin graph
- We modify this run to obtain the transformed graph
- If output is done at position x in T₁, we remember the output to be done, go to y such that φ(x, y) is true and then do the output at y.
- Now, we return to the x we came from. This is possible remembering how many x's satisfying φ(x, y) are situated to the left of y.

Thank You! Questions?