
On Resynchronizers for Two-way

Transducers

Sougata Bose

LaBRI, Université de Bordeaux

DELTA Paris 2018
Joint work with Anca Muscholl, Gabriele Puppis and Vincent Penelle

On Resynchronizers for Two-way Transducers - 1/14



Equivalence Problem for Transducers

The problem

Given two transducers T1 and T2, check if they compute the
same relation.

Classes with known decidable equivalence problem

I Functional 2-way transducers
[Culik, Karhumäki, ’87](PSPACE-Complete)

I 1-way transducers with origin [Filiot et al, ’16]
(PSPACE-Complete)

I Streaming string transducers with origin [Bojańczyk et al,
’17]

On Resynchronizers for Two-way Transducers - 2/14



Equivalence Problem for Transducers

The problem

Given two transducers T1 and T2, check if they compute the
same relation.

Classes with known decidable equivalence problem

I Functional 2-way transducers
[Culik, Karhumäki, ’87](PSPACE-Complete)

I 1-way transducers with origin [Filiot et al, ’16]
(PSPACE-Complete)

I Streaming string transducers with origin [Bojańczyk et al,
’17]

On Resynchronizers for Two-way Transducers - 2/14



Equivalence for 2-way with Origin is Decidable

Decidability in two steps

I When there are only productive transitions.

I When there are some non-productive transitions.

On Resynchronizers for Two-way Transducers - 3/14



Equivalence for 2-way with Origin is Decidable

Decidability in two steps

I When there are only productive transitions.

I When there are some non-productive transitions.

On Resynchronizers for Two-way Transducers - 3/14



When there are only productive transitions

Only runs of same shape can be origin-equivalent

On Resynchronizers for Two-way Transducers - 4/14



When there are only productive transitions

I Define a 2NFA A with Q = Q1 × 2Q2

I Track all runs of the same shape with same output for T2

I ((p,R), a, (p′,R ′), d) ∈ ∆

I (p, a,w , p′, d) in T1

I r ∈ R with (r , a,w , r ′, d) in T2, implies r ′ ∈ R ′.

I F = F1 × 2Q\F2

Theorem

L(A)= ∅ iff T1 ⊆o T2

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

I Define a 2NFA A with Q = Q1 × 2Q2

I Track all runs of the same shape with same output for T2

I ((p,R), a, (p′,R ′), d) ∈ ∆

I (p, a,w , p′, d) in T1

I r ∈ R with (r , a,w , r ′, d) in T2, implies r ′ ∈ R ′.

I F = F1 × 2Q\F2

Theorem

L(A)= ∅ iff T1 ⊆o T2

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

I Define a 2NFA A with Q = Q1 × 2Q2

I Track all runs of the same shape with same output for T2

I ((p,R), a, (p′,R ′), d) ∈ ∆

I (p, a,w , p′, d) in T1

I r ∈ R with (r , a,w , r ′, d) in T2, implies r ′ ∈ R ′.

I F = F1 × 2Q\F2

Theorem

L(A)= ∅ iff T1 ⊆o T2

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

I Define a 2NFA A with Q = Q1 × 2Q2

I Track all runs of the same shape with same output for T2

I ((p,R), a, (p′,R ′), d) ∈ ∆

I (p, a,w , p′, d) in T1

I r ∈ R with (r , a,w , r ′, d) in T2, implies r ′ ∈ R ′.

I F = F1 × 2Q\F2

Theorem

L(A)= ∅ iff T1 ⊆o T2

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

I Define a 2NFA A with Q = Q1 × 2Q2

I Track all runs of the same shape with same output for T2

I ((p,R), a, (p′,R ′), d) ∈ ∆

I (p, a,w , p′, d) in T1

I r ∈ R with (r , a,w , r ′, d) in T2, implies r ′ ∈ R ′.

I F = F1 × 2Q\F2

Theorem

L(A)= ∅ iff T1 ⊆o T2

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

I Define a 2NFA A with Q = Q1 × 2Q2

I Track all runs of the same shape with same output for T2

I ((p,R), a, (p′,R ′), d) ∈ ∆

I (p, a,w , p′, d) in T1

I r ∈ R with (r , a,w , r ′, d) in T2, implies r ′ ∈ R ′.

I F = F1 × 2Q\F2

Theorem

L(A)= ∅ iff T1 ⊆o T2

On Resynchronizers for Two-way Transducers - 5/14



With non-productive transitions

I Put a special symbol $ as output when there is a
non-productive transition.

I Equal number of $ means same origin.

Need to eliminate non-productive loops

On Resynchronizers for Two-way Transducers - 6/14



Eliminating non-productive loops

I Annotate the word with information about non-productive
loops

I Use this information to get canonical runs

I Check if the annotations are correct

Now we use the previous algorithm

On Resynchronizers for Two-way Transducers - 7/14



Eliminating non-productive loops

I Annotate the word with information about non-productive
loops

I Use this information to get canonical runs

I Check if the annotations are correct

Now we use the previous algorithm

On Resynchronizers for Two-way Transducers - 7/14



One-way Resynchronizers(Filiot et al ’16)
I Transform synchronization language.
I Map input-output pair (u, v) to same pair.
I Change the synchronization.

L1 = ab∗ L2 = b∗a

On Resynchronizers for Two-way Transducers - 8/14



One-way Resynchronizers(Filiot et al ’16)
I Transform synchronization language.
I Map input-output pair (u, v) to same pair.
I Change the synchronization.

L1 = ab∗ L2 = b∗a

On Resynchronizers for Two-way Transducers - 8/14



One-way Resynchronizers(Filiot et al ’16)
I Transform synchronization language.
I Map input-output pair (u, v) to same pair.
I Change the synchronization.

L1 = ab∗ L2 = b∗a

On Resynchronizers for Two-way Transducers - 8/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

I Transform origin graphs of T1

G1

G2

R(G1)

R

⊆o ?

Want R such that R(G1) is generated by a transducer.

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

I Transform origin graphs of T1

G1

G2

R(G1)

R

⊆o ?

Want R such that R(G1) is generated by a transducer.

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

I Transform origin graphs of T1

G1

G2

R(G1)

R

⊆o ?

Want R such that R(G1) is generated by a transducer.

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

I Transform origin graphs of T1

G1

G2 R(G1)

R

⊆o ?

Want R such that R(G1) is generated by a transducer.

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

I Transform origin graphs of T1

G1

G2 R(G1)

R

⊆o ?

Want R such that R(G1) is generated by a transducer.

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

I Transform origin graphs of T1

G1

G2 R(G1)

R

⊆o ?

Want R such that R(G1) is generated by a transducer.

On Resynchronizers for Two-way Transducers - 9/14



Extending to two-way: Logical Resynchronizers

I A logical way to define transformation origin graphs

I MSO-transduction on origin graphs is too powerful

Our idea

Use MSO formula on the input word

On Resynchronizers for Two-way Transducers - 10/14



Extending to two-way: Logical Resynchronizers

I A logical way to define transformation origin graphs

I MSO-transduction on origin graphs is too powerful

Our idea

Use MSO formula on the input word

On Resynchronizers for Two-way Transducers - 10/14



Extending to two-way: Logical Resynchronizers

I A logical way to define transformation origin graphs

I MSO-transduction on origin graphs is too powerful

Our idea

Use MSO formula on the input word

On Resynchronizers for Two-way Transducers - 10/14



MSO Formula restricted to input

I An MSO formula φ(x , y) over the input word.

I Two free variables x and y .

I Rφ changes origin x to origin y .

I y need not be a function of x

On Resynchronizers for Two-way Transducers - 11/14



MSO Formula restricted to input

I An MSO formula φ(x , y) over the input word.

I Two free variables x and y .

I Rφ changes origin x to origin y .

I y need not be a function of x

On Resynchronizers for Two-way Transducers - 11/14



MSO Formula restricted to input

I An MSO formula φ(x , y) over the input word.

I Two free variables x and y .

I Rφ changes origin x to origin y .

I y need not be a function of x

On Resynchronizers for Two-way Transducers - 11/14



Restriction on the formula

I φ(x , y) = (y = 1)

I Apply Rφ to graphs generated when a transducer copies
the input word by copying every letter.

I The set of transformed graphs are not generated by any
transducer.

The Restriction

I For a given y , the size of the set {x | φ(x , y) is true}
should be bounded.

This ensures we can build a transducer generating Rφ(G1)
from T1.

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

I φ(x , y) = (y = 1)

I Apply Rφ to graphs generated when a transducer copies
the input word by copying every letter.

I The set of transformed graphs are not generated by any
transducer.

The Restriction

I For a given y , the size of the set {x | φ(x , y) is true}
should be bounded.

This ensures we can build a transducer generating Rφ(G1)
from T1.

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

I φ(x , y) = (y = 1)

I Apply Rφ to graphs generated when a transducer copies
the input word by copying every letter.

I The set of transformed graphs are not generated by any
transducer.

The Restriction

I For a given y , the size of the set {x | φ(x , y) is true}
should be bounded.

This ensures we can build a transducer generating Rφ(G1)
from T1.

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

I φ(x , y) = (y = 1)

I Apply Rφ to graphs generated when a transducer copies
the input word by copying every letter.

I The set of transformed graphs are not generated by any
transducer.

The Restriction

I For a given y , the size of the set {x | φ(x , y) is true}
should be bounded.

This ensures we can build a transducer generating Rφ(G1)
from T1.

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

I φ(x , y) = (y = 1)

I Apply Rφ to graphs generated when a transducer copies
the input word by copying every letter.

I The set of transformed graphs are not generated by any
transducer.

The Restriction

I For a given y , the size of the set {x | φ(x , y) is true}
should be bounded.

This ensures we can build a transducer generating Rφ(G1)
from T1.

On Resynchronizers for Two-way Transducers - 12/14



Construction of the transducer

I Consider the run of T1 which generates the origin graph

I We modify this run to obtain the transformed graph

I If output is done at position x in T1, we remember the
output to be done, go to y such that φ(x , y) is true and
then do the output at y .

I Now, we return to the x we came from. This is possible
remembering how many x’s satisfying φ(x , y) are situated
to the left of y.

On Resynchronizers for Two-way Transducers - 13/14



Construction of the transducer

I Consider the run of T1 which generates the origin graph

I We modify this run to obtain the transformed graph

I If output is done at position x in T1, we remember the
output to be done, go to y such that φ(x , y) is true and
then do the output at y .

I Now, we return to the x we came from. This is possible
remembering how many x’s satisfying φ(x , y) are situated
to the left of y.

On Resynchronizers for Two-way Transducers - 13/14



Construction of the transducer

I Consider the run of T1 which generates the origin graph

I We modify this run to obtain the transformed graph

I If output is done at position x in T1, we remember the
output to be done, go to y such that φ(x , y) is true and
then do the output at y .

I Now, we return to the x we came from. This is possible
remembering how many x’s satisfying φ(x , y) are situated
to the left of y.

On Resynchronizers for Two-way Transducers - 13/14



Thank You!
Questions?

On Resynchronizers for Two-way Transducers - 14/14


