On Resynchronizers for Two-way
Transducers

Sougata Bose
LaBRI, Université de Bordeaux

DELTA Paris 2018
Joint work with Anca Muscholl, Gabriele Puppis and Vincent Penelle

On Resynchronizers for Two-way Transducers - 1/14



Equivalence Problem for Transducers

Given two transducers T; and T,, check if they compute the
same relation.

On Resynchronizers for Two-way Transducers - 2/14



Equivalence Problem for Transducers

The problem

Given two transducers T; and T,, check if they compute the
same relation.

Classes with known decidable equivalence problem

» Functional 2-way transducers
[Culik, Karhumaiki, '87](PSPACE-Complete)

» 1-way transducers with origin [Filiot et al, '16]
(PSPACE-Complete)

» Streaming string transducers with origin [Bojanczyk et al,
'17]

On Resynchronizers for Two-way Transducers - 2/14



Equivalence for 2-way with Origin is Decidable

On Resynchronizers for Two-way Transducers - 3/14



Equivalence for 2-way with Origin is Decidable

Decidability in two steps

» When there are only productive transitions.

» When there are some non-productive transitions.

On Resynchronizers for Two-way Transducers - 3/14



When there are only productive transitions

Only runs of same shape can be origin-equivalent

On Resynchronizers for Two-way Transducers - 4/14



When there are only productive transitions

» Define a 2NFA A with Q = @ x 2@

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

» Define a 2NFA A with Q = @ x 2@

» Track all runs of the same shape with same output for T,

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

» Define a 2NFA A with Q = @ x 2@

» Track all runs of the same shape with same output for T,
> ((p,R),a,(p',R'),d) € A

» (p,a,w,p’,d)in Ty

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

» Define a 2NFA A with Q = @ x 2@

» Track all runs of the same shape with same output for T,
> ((p,R),a,(p',R'),d) € A

» (p,a,w,p’,d)in Ty

» r € Rwith (r,a,w,r',d) in Ty, implies r' € R'.

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

» Define a 2NFA A with Q = @ x 2@

» Track all runs of the same shape with same output for T,
> ((p,R),a,(p',R'),d) € A

» (p,a,w,p’,d)in Ty

» r € Rwith (r,a,w,r',d) in Ty, implies r' € R'.

» F=F, x20\F

On Resynchronizers for Two-way Transducers - 5/14



When there are only productive transitions

» Define a 2NFA A with Q = @ x 2@

» Track all runs of the same shape with same output for T,
> ((p,R),a,(p',R'),d) € A

» (p,a,w,p’,d)in Ty

» r € Rwith (r,a,w,r',d) in Ty, implies r' € R'.

» F=F, x20\F

Theorem
L(A): Oiff T, C, To

On Resynchronizers for Two-way Transducers - 5/14



With non-productive transitions

» Put a special symbol $ as output when there is a
non-productive transition.

» Equal number of $ means same origin.

Need to eliminate non-productive loops

On Resynchronizers for Two-way Transducers - 6/14



Eliminating non-productive loops

» Annotate the word with information about non-productive
loops

» Use this information to get canonical runs

» Check if the annotations are correct

On Resynchronizers for Two-way Transducers - 7/14



Eliminating non-productive loops

» Annotate the word with information about non-productive
loops

» Use this information to get canonical runs

» Check if the annotations are correct

Now we use the previous algorithm

On Resynchronizers for Two-way Transducers - 7/14



One-way Resynchronizers(Filiot et al '16)

» Transform synchronization language.
» Map input-output pair (u, v) to same pair.
» Change the synchronization.

elb €|b

T : T5 :

On Resynchronizers for Two-way Transducers - 8/14



One-way Resynchronizers(Filiot et al '16)

» Transform synchronization language.
» Map input-output pair (u, v) to same pair.
» Change the synchronization.

elb €|b

T : T5 :

L, = ab* L, = b*a

On Resynchronizers for Two-way Transducers - 8/14



One-way Resynchronizers(Filiot et al '16)

» Transform synchronization language.
» Map input-output pair (u, v) to same pair.
» Change the synchronization.

Tli

On Resynchronizers for Two-way Transducers - 8/14



Resynchronizations

Want to compare transducers which generate similar origin
graphs

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Want to compare transducers which generate similar origin
graphs

» Transform origin graphs of T

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

» Transform origin graphs of T

Gy



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

» Transform origin graphs of T

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations

Objective

Want to compare transducers which generate similar origin
graphs

» Transform origin graphs of T

On Resynchronizers for Two-way Transducers - 9/14



Resynchronizations
Objective

Want to compare transducers which generate similar origin
graphs

» Transform origin graphs of T

Gy Co? R(G1)

Want R such that R(G;) is generated by a transducer.

On Resynchronizers for Two-way Transducers - 9/14



Extending to two-way: Logical Resynchronizers

» A logical way to define transformation origin graphs

On Resynchronizers for Two-way Transducers - 10/14



Extending to two-way: Logical Resynchronizers

» A logical way to define transformation origin graphs

» MSO-transduction on origin graphs is too powerful

On Resynchronizers for Two-way Transducers - 10/14



Extending to two-way: Logical Resynchronizers

» A logical way to define transformation origin graphs

» MSO-transduction on origin graphs is too powerful

Our idea
Use MSO formula on the input word

On Resynchronizers for Two-way Transducers - 10/14



MSO Formula restricted to input

» An MSO formula ¢(x, y) over the input word.

» Two free variables x and y.

On Resynchronizers for Two-way Transducers - 11/14



MSO Formula restricted to input

» An MSO formula ¢(x, y) over the input word.
» Two free variables x and y.

» R, changes origin x to origin y.

On Resynchronizers for Two-way Transducers - 11/14



MSO Formula restricted to input

v

An MSO formula ¢(x,y) over the input word.

Two free variables x and y.

v

v

Ry changes origin x to origin y.

v

y need not be a function of x

On Resynchronizers for Two-way Transducers - 11/14



Restriction on the formula

> ox,y) =y =1)

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

> olxy)=(y=1)
» Apply Ry to graphs generated when a transducer copies
the input word by copying every letter.

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

> olxy)=(y=1)
» Apply Ry to graphs generated when a transducer copies
the input word by copying every letter.

» The set of transformed graphs are not generated by any
transducer.

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

> olxy)=(y=1)
» Apply Ry to graphs generated when a transducer copies
the input word by copying every letter.

» The set of transformed graphs are not generated by any
transducer.

The Restriction

» For a given y, the size of the set {x | ¢(x,y) is true}
should be bounded.

On Resynchronizers for Two-way Transducers - 12/14



Restriction on the formula

> olxy)=(y=1)
» Apply Ry to graphs generated when a transducer copies
the input word by copying every letter.

» The set of transformed graphs are not generated by any
transducer.

The Restriction

» For a given y, the size of the set {x | ¢(x,y) is true}
should be bounded.

This ensures we can build a transducer generating Ry(G;)
from T;.

On Resynchronizers for Two-way Transducers - 12/14



Construction of the transducer

» Consider the run of T; which generates the origin graph

On Resynchronizers for Two-way Transducers - 13/14



Construction of the transducer

» Consider the run of T; which generates the origin graph
» We modify this run to obtain the transformed graph

» If output is done at position x in Ty, we remember the
output to be done, go to y such that ¢(x, y) is true and
then do the output at y.

On Resynchronizers for Two-way Transducers - 13/14



Construction of the transducer

» Consider the run of T; which generates the origin graph
» We modify this run to obtain the transformed graph

» If output is done at position x in Ty, we remember the
output to be done, go to y such that ¢(x, y) is true and
then do the output at y.

» Now, we return to the x we came from. This is possible
remembering how many x's satisfying ¢(x, y) are situated
to the left of y.

On Resynchronizers for Two-way Transducers - 13/14



Thank Youl
Questions?

On Resynchronizers for Two-way Transducers - 14/14



