Logics for Word Transductions with Synthesis DELTA meeting, IRIF

Luc Dartois

Université Libre de Bruxelles

March 26, 2018

Joint work with Emmanuel Filiot (ULB) and Nathan Lhote (ULB/LABRI)

Verification setting

$\begin{array}{c} \mathbf{System} \\ \mathrm{Machine} \\ \mathcal{M} \end{array}$

 $\begin{array}{c} \mathbf{Specification} \\ \mathrm{Logic \ formulas} \\ \varphi \end{array}$

Model-Checking: $\forall w \text{ accepted by } M, \text{ does } w \models \varphi ?$

Verification setting

Model-Checking: $\forall w \text{ accepted by } M, \text{ does } w \models \varphi ?$ **Synthesis**: Construct M such that M models $\varphi ?$

Verification setting

SystemSpecificationAutomata \Leftrightarrow MSO[<] \mathcal{A} (Büchi60) φ

Model-Checking: $\forall w \text{ accepted by } M, \text{ does } w \models \varphi ?$ **Synthesis**: Construct M such that M models $\varphi ?$

Verification of Reactive systems

Executions of a **reactive system** can be seen as sequences of Actions (the input) and Reactions (the output). In the case of **reactive** systems, we get intertwined sequences:

 $a_1r_1a_2r_2\ldots a_nr_n$

 \rightarrow Can be seen as a word over $Actions \times Reactions$ and use automata methods.

Verification of Reactive systems

Reactive Systems Automata \mathcal{A} (Mealy Machine) (a, c)(a, b) (b, c) (a, \cdot)

Specification

Logic formulas φ (*MSO*, *LTL*) $\exists x \ (a, \cdot)(x) \land \forall y \ (\cdot, c)(y) \rightarrow x < y$

 $(\neg(\cdot, \mathbf{c}))U(\mathbf{a}, \cdot)$

Verification of Reactive systems

Reactive Systems Automata \mathcal{A} (Mealy Machine) $a \mid b \qquad b \mid c$ $(p) \qquad a \mid \cdot \qquad (q)$

Specification

Logic formulas φ (*MSO*, *LTL*) $\exists x \ (a, \cdot)(x) \land \forall y \ (\cdot, c)(y) \rightarrow x < y$

 $(\neg(\cdot, \mathbf{c}))U(\mathbf{a}, \cdot)$

Verification of Reactive systems

 \rightarrow What about non reactive systems, i.e. systems without sequential link between input and output (relations $R \subseteq \Sigma^* \times \Gamma^*$)?

Aim of the talk

Define a logic for transformation of finite words (i.e. $R \subseteq \Sigma^* \times \Gamma^*$) that

- Can express specific or generic relations
 - Express functions: reversing the input: $\{(u_1 \dots u_n, u_n \dots u_1) \mid u \in A^*\},\$
 - Nondeterminism: Every input letter appears in the output exactly once (*shuffle*): {(u₁...u_n, u_{π(1)}...u_{π(n)} | π a permutation}

Aim of the talk

Define a logic for transformation of finite words (i.e. $R \subseteq \Sigma^* \times \Gamma^*$) that

- Can express specific or generic relations
 - Express functions: reversing the input: $\{(u_1 \dots u_n, u_n \dots u_1) \mid u \in A^*\},\$
 - Nondeterminism: Every input letter appears in the output exactly once (*shuffle*): {(u₁...u_n, u_{π(1)}...u_{π(n)} | π a permutation}
- Has good decidable verification properties:
 - Model-checking: Does a deterministic 2-way transducer T satisfies a formula φ ?
 - Synthesis: Construct a deterministic 2-way transducer T that satisfies φ .

Non reactive systems

Input/Output relation in the case of reactive systems.

Non reactive systems

\rightarrow How to relate input with output ?

Non reactive systems: Origin semantics [Bojanczyk14]

Origin graphs: A total function o from Output positions to Input positions, as well as $<_i$ and $<_o$ order relations.

The origin of an output position is the input position from which it originates.

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Input:

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Input :

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Input:

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Input:

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Input:

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Origin semantics of a transducer

A transducer realising the reverse function $w \rightarrow rev(w)$.

Input:

Output :

Origin semantics of a transducer

A transducer realising the reverse function $w \to rev(w)$.

Input:

Origin semantics of a transducer

A transducer realising the reverse function $w \to rev(w)$.

Input:

Origin semantics of a transducer

A transducer realising the reverse function $w \to rev(w)$.

Input:

Origin semantics of a transducer

A transducer realising the reverse function $w \to rev(w)$.

Origin semantics of a transducer

Origin graphs as models for traces of executions.

The logic $MSO[<_i, <_o, o]$

 $MSO[<_i, <_o, \circ]$

Examples:

• Order-preserving: $\phi_{op} = \forall xy \ x <_o y \leftrightarrow \mathsf{o}(x) \leq_i \mathsf{o}(y)$

- Surjection: $\phi_{surj} = \forall x \ x \leq_i x \to (\exists y \ \mathsf{o}(y) =_i x)$
- Reactive systems executions are modelled by the bijective and order-preserving origin graphs.
- Shuffle: $\phi_{shu} = \phi_{inj} \wedge \phi_{surj} \wedge (\forall xy \ x =_i \mathbf{o}(y) \to \bigwedge_{a \in A} a(x) \leftrightarrow a(y))$

Decidability of origin logics

Problem:

Satisfiability of $MSO[<_i, <_o, o]$ is undecidable.

Decidability of origin logics

Problem:

Satisfiability of $MSO[<_i, <_o, o]$ is undecidable.

 \rightarrow In fact, even $FO^2[<_i,<_o,S_o,\mathsf{o}]$ is undecidable.

Decidability of origin logics

Problem:

Satisfiability of $MSO[<_i, <_o, o]$ is undecidable.

 \rightarrow In fact, even $FO^2[<_i,<_o,S_o,\mathsf{o}]$ is undecidable.

Logic FO^2

First-Order logic with two reusable variables:

$$\exists x \ a(x) \land \exists y \big(b(y) \land x < y \land \exists x (c(x) \land y < x) \big)$$

describes the language $\Sigma^* a \Sigma^* b \Sigma^* c \Sigma^*$.

Undecidability of Satisfiability

Proving undecidability of $FO^2[\langle i, \langle o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i \leq n}$, does there exists $i_1 \dots i_k$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$

Undecidability of Satisfiability

Proving undecidability of $FO^2[\langle i, \langle o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i \leq n}$, does there exists $i_1 \dots i_k$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$

Undecidability of Satisfiability

Proving undecidability of $FO^2[\langle i, \langle o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i \leq n}$, does there exists $i_1 \dots i_k$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$ aabbbbb

Undecidability of Satisfiability

Proving undecidability of $FO^2[<_i, <_o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i \le n}$, does there exists $i_1 \dots i_k$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$ aabbbbbb

Undecidability of Satisfiability

Proving undecidability of $FO^2[\langle i, \langle o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i \leq n}$, does there exists $i_1 \dots i_k$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$ PCP instance $(u_i, v_i)_{i \leq n}$ encoded as $\forall^{in}x \bigwedge_i i(x) \rightarrow u_i(x) \land v_i(x)$

Undecidability of Satisfiability

Proving undecidability of $FO^2[<_i, <_o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i < n}$, does there exists $i_1 \ldots i_k$ such that $u_{i_1} \ldots u_{i_k} = v_{i_1} \ldots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$ a PCP instance $(u_i, v_i)_{i < n}$ encoded as $\forall^{in} x \bigwedge_i i(x) \to u_i(x) \land v_i(x)$ $u_1(x)$: the production of x belongs to $\Sigma^* a \Sigma^* b \Sigma^*$

$$\exists y \ o(y) = x \land a(y) \land \exists x \big(o(x) = o(y) \land y <_o x \land b(x) \big)$$

Undecidability of Satisfiability

Proving undecidability of $FO^2[<_i, <_o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i < n}$, does there exists $i_1 \ldots i_k$ such that $u_{i_1} \ldots u_{i_k} = v_{i_1} \ldots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$ a PCP instance $(u_i, v_i)_{i < n}$ encoded as $\forall^{in} x \bigwedge_i i(x) \to u_i(x) \land v_i(x)$ $u_1(x)$: the production of x belongs to $\Sigma^* a \Sigma^* b \Sigma^* \cap \Sigma^{\leq 2}$

$$\neg (\exists y \ o(y) = x \land \exists x \ \left(o(x) = o(y) \land y <_o x \land \exists y (o(y) = o(x) \land y < x) \right)$$

Undecidability of Satisfiability

Proving undecidability of $FO^2[<_i, <_o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i \leq n}$, does there exists $i_1 \ldots i_k$ such that $u_{i_1} \ldots u_{i_k} = v_{i_1} \ldots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ $v_2 = abb$ PCP instance $(u_i, v_i)_{i < n}$ encoded as $\forall^{in} x \bigwedge_i i(x) \to u_i(x) \land v_i(x)$ $\wedge \phi_{op} \wedge \phi_{op}$

Undecidability of Satisfiability

Proving undecidability of $FO^2[<_i, <_o, S_o, o]$: Encoding PCP instances: given $(u_i, v_i)_{i \le n}$, does there exists $i_1 \ldots i_k$ such that $u_{i_1} \ldots u_{i_k} = v_{i_1} \ldots v_{i_k}$. $u_1 = ab$ $v_1 = \epsilon$ $u_2 = b$ a $v_2 = abb$ PCP instance $(u_i, v_i)_{i < n}$ encoded as $\forall^{in} x \wedge_i i(x) \rightarrow u_i(x) \wedge v_i(x)$ $\wedge \phi_{on} \wedge \phi_{on}$ $\wedge \forall^{out} x \ \bigwedge_{a \in \Sigma} a(x) \to \exists y (S_o(x, y) \land a(y))$ (the output word belongs to $(\bigcup_{a \in \Sigma} aa)^*$)

The logic L_T

Let $MSO_{bin}[<_i]$ be the set of formulas $\varphi(x, y)$ with $\varphi \in MSO[<_i]$.

Example:

for
$$\varphi(x, y) = x < y$$
,

$$\phi_{op} = \forall xy \ x <_o y \leftrightarrow \varphi(\mathbf{o}(x), \mathbf{o}(y))$$

The logic L_T

Let $MSO_{bin}[<_i]$ be the set of formulas $\varphi(x, y)$ with $\varphi \in MSO[<_i]$.

Example:

for
$$\varphi(x, y) = x < y$$
,

$$\phi_{op} = \forall xy \ x <_o y \leftrightarrow \varphi(\mathbf{o}(x), \mathbf{o}(y))$$

We set $L_T = FO^2[<_o, o, MSO_{bin}[<_i]].$

The logic L_T

Let $MSO_{bin}[<_i]$ be the set of formulas $\varphi(x, y)$ with $\varphi \in MSO[<_i]$.

Example:

for
$$\varphi(x, y) = x < y$$
,

$$\phi_{op} = \forall xy \ x <_o y \leftrightarrow \varphi(\mathbf{o}(x), \mathbf{o}(y))$$

We set $L_T = FO^2[<_o, o, MSO_{bin}[<_i]].$

Expressivity

The logic L_T can express:

- Highly non deterministic relations such as the *shuffle* relation,
- Any function definable by a 2-way transducer.

Decidability of L_T

$$L_T = FO^2[<_o, \mathsf{o}, MSO_{bin}[<_i]]$$

Theorem:

The satisfiability problem is decidable for the logic L_T .

Decidability of L_T

$$L_T = FO^2[<_o, \mathsf{o}, MSO_{bin}[<_i]]$$

Theorem:

The satisfiability problem is decidable for the logic L_T .

Corollary

Model-checking of a 2-way transducer T against a formula φ of L_T is decidable.

Proof: Transform T into a formula ϕ_T and check satisfiability of $\phi_T \land \neg \varphi \in L_T$

Decidability of L_T

$$L_T = FO^2[<_o, \mathsf{o}, MSO_{bin}[<_i]]$$

Theorem:

The satisfiability problem is decidable for the logic L_T .

Corollary

Model-checking of a 2-way transducer T against a formula φ of L_T is decidable.

Proof: Transform T into a formula ϕ_T and check satisfiability of $\phi_T \wedge \neg \varphi \in L_T$ [Bojanczyk et al.17]: Model-checking against $MSO[<_i, <_o, o]$ is decidable

A note on complexity

Non elementary Complexity

Due to the $MSO_{bin}[<_i]$ formulas, satisfiability is non elementary.

A note on complexity

Non elementary Complexity

Due to the $MSO_{bin}[<_i]$ formulas, satisfiability is non elementary.

ExpSpace-c complexity

If the $MSO_{bin}[<]$ formulas are given as query automata, then satisfiability becomes ExpSpace-complete.

 \rightarrow Query automata A: accepts words w with letters marked by x and y that satisfy $\varphi(x, y)$.

Synthesis of L_T

Regular Synthesis problem:

Given a formula φ of L_T , construct a deterministic 2-way transducer T such that:

•
$$dom(\varphi) = dom(T),$$

• for all $u \in dom(T)$, $(u, T(u)) \models \varphi$.

Theorem

From any formula φ of L_T , we can construct a deterministic 2-way transducer that realises it.

Synthesis of L_T

Regular Synthesis problem:

Given a formula φ of L_T , construct a deterministic 2-way transducer T such that:

•
$$dom(\varphi) = dom(T),$$

• for all $u \in dom(T)$, $(u, T(u)) \models \varphi$.

Theorem

From any formula φ of L_T , we can construct a deterministic 2-way transducer that realises it.

 \rightarrow Functional L_T characterises the class of regular functions.

Data words

Definition

Here, *Data words* are words over an infinite alphabet (ex: \mathbb{N} or $\Gamma \times \mathbb{N}$.) ex: (b,2)(c,3)(c,4)(a,1).

 \rightarrow used to model words over unbounded sets such as process us identifiers.

 \rightarrow Structure on the infinite alphabet can be added (ex: order < on $\mathbb{N}).$

Casting Origin graphs to words

An origin graph can be equivalently seen as a word over alphabet $\Gamma \times \{1, \ldots, n\} \times \Sigma$ where n = |Input|.

is represented by the word

(b, 2, a)(c, 3, b)(c, 4, b)(a, 1, a)

Casting Origin graphs to words

An origin graph can be equivalently seen as a word over alphabet $\Gamma \times \{1, \ldots, n\} \times \Sigma$ where n = |Input|.

is represented by the word

(b, 2, a)(c, 3, b)(c, 4, b)(a, 1, a)

But (a, 1, a)(a, 1, b) represents no origin graph !

Typed data words

A typed data word is a pair (w, τ) where $w \in (\Gamma \times \mathbb{N})^*$ and $\tau : \mathbb{N} \to \Sigma$.

$$w: \quad (\mathbf{b}, 2)(\mathbf{c}, 3)(\mathbf{c}, 4)(\mathbf{a}, 1)$$

$$\tau: \quad 1 \quad \rightarrow \quad \mathbf{a} \quad 2 \quad \rightarrow \quad \mathbf{a}$$

$$3 \quad \rightarrow \quad \mathbf{b} \quad 4 \quad \rightarrow \quad \mathbf{b}$$

Typed data words

A typed data word is a pair (w, τ) where $w \in (\Gamma \times \mathbb{N})^*$ and $\tau : \mathbb{N} \to \Sigma$.

 $MSO[<_i, <_o, \circ]$ is equivalent to $MSO[\preccurlyeq, <, d]$. The order-preserving formula is equivalent to having data appear in increasing order:

$$\forall xy \ x <_o y \leftrightarrow \mathsf{o}(x) \leq_i \mathsf{o}(y) \quad \Leftrightarrow \quad \forall xy \ x < y \leftrightarrow d(x) \preccurlyeq d(y)$$

New results on data words

• The logic L_T can be seen as a logic $L_D = FO^2[\langle, MSO[\preccurlyeq]]$ on data words

 \rightarrow Quantifications in $MSO[\preccurlyeq]$ on data values.

- Results on L_T apply to L_D .
- Satisfiability of L_D extends known results of Satisfiability of $FO^2[\langle,\langle,S]$ [Schwentick,Zeume13].

Wrapping up

In the end, the logic L_T has good properties:

- Expressive,
- Decidable model-checking and synthesis,
- Results robusts under extensions
 - $\exists X_1 \dots X_n L_T$,
 - To capture all rational relations.

Future works

- Extensions to higher models (ongoing work: graph to word relations),
- Synthesis to other target implementations
 - Church synthesis,
 - Highly expressive automata model with non decidable emptiness but good evaluation complexity,
- Application to other problems. Ex: Algorithm synthesis.

Expressing an array sorting algorithm using FO^2 on data and origin.

Future works

- Extensions to higher models (ongoing work: graph to word relations),
- Synthesis to other target implementations
 - Church synthesis,
 - Highly expressive automata model with non decidable emptiness but good evaluation complexity,
- Application to other problems. Ex: Algorithm synthesis.

Expressing an array sorting algorithm using FO^2 on data and origin.

Thanks !