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Verification of Reactive systems

Executions of a reactive system can be seen as sequences of
Actions (the input) and Reactions (the output). In the case of
reactive systems, we get intertwined sequences:

a1r1a2r2 . . . anrn

→ Can be seen as a word over Actions×Reactions and use
automata methods.

→ What about non reactive systems, i.e. systems without
sequential link between input and output (relations
R ⊆ Σ∗ × Γ∗)?
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Reactive Systems Specification
Automata A (Mealy Machine) Logic formulas ϕ (MSO,LTL)

p q
(a, ·)

(a, b) (b, c)
(a, c) ∃x (a, ·)(x) ∧ ∀y (·, c)(y)→ x < y
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Aim of the talk

Define a logic for transformation of finite words (i.e.
R ⊆ Σ∗ × Γ∗) that

Can express specific or generic relations
Express functions: reversing the input:
{(u1 . . . un, un . . . u1) | u ∈ A∗},
Nondeterminism: Every input letter appears in the
output exactly once (shuffle):
{(u1 . . . un, uπ(1) . . . uπ(n) | π a permutation}

Has good decidable verification properties:
Model-checking:
Does a deterministic 2-way transducer T satisfies a
formula ϕ ?
Synthesis:
Construct a deterministic 2-way transducer T that
satisfies ϕ.
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Non reactive systems

: Origin semantics [Bojanczyk14]

Input : a a b b

Output : a b b a

o :

Origin graphs: A total function o from Output positions to Input
positions, as well as <i and <o order relations.

Input/Output relation in the case of reactive systems.
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Origin graphs: A total function o from Output positions to Input
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Logics with origin
Links to data words

Non reactive systems: Origin semantics [Bojanczyk14]

Input : a a b b

Output : a b b a

o :

Origin graphs: A total function o from Output positions to Input
positions, as well as <i and <o order relations.

The origin of an output position is the input position from
which it originates.
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Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓ ↓ ↓ ↓ ↓ ↓
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Origin semantics of a transducer

Input : a a b b

Output : a b b a

o :

Origin graphs as models for traces of executions.
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The logic MSO[<i, <o, o]

MSO[<i, <o, o]

Examples:
Order-preserving: φop =
∀xy x <o y ↔ o(x) ≤i o(y)

a a b b

a b b a

Injection: φinj = ∀x 6=o y o(x) 6=i o(y)

Surjection: φsurj = ∀x x ≤i x→ (∃y o(y) =i x)

Reactive systems executions are modelled by the bijective
and order-preserving origin graphs.
Shuffle: φshu =
φinj ∧ φsurj ∧ (∀xy x =i o(y)→

∧
a∈A

a(x)↔ a(y))

7 / 19
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Decidability of origin logics

Problem:
Satisfiability of MSO[<i, <o, o] is undecidable.

→ In fact, even FO2[<i, <o, So, o] is undecidable.

Logic FO2

First-Order logic with two reusable variables:

∃x a(x) ∧ ∃y
(
b(y) ∧ x < y ∧ ∃x(c(x) ∧ y < x)

)
describes the language Σ∗aΣ∗bΣ∗cΣ∗.
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Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)
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v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

u1(x): the production of x belongs to Σ∗aΣ∗bΣ∗

∃y o(y) = x ∧ a(y) ∧ ∃x
(
o(x) = o(y) ∧ y <o x ∧ b(x)

)
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Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

∧φop ∧ φop
∧∀outx

∧
a∈Σ a(x)→ ∃y(So(x, y) ∧ a(y))

(the output word belongs to
(⋃

a∈Σ aa
)∗)
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The logic LT
Let MSObin[<i] be the set of formulas ϕ(x, y) with
ϕ ∈MSO[<i].

Example:
for ϕ(x, y) = x < y,

φop = ∀xy x <o y ↔ ϕ(o(x), o(y))

We set LT = FO2[<o, o,MSObin[<i]].

Expressivity
The logic LT can express:

Highly non deterministic relations such as the shuffle
relation,
Any function definable by a 2-way transducer.
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Decidability of LT

LT = FO2[<o, o,MSObin[<i]]

Theorem:
The satisfiability problem is decidable for the logic LT .

Corollary
Model-checking of a 2-way transducer T against a formula ϕ of
LT is decidable.

Proof: Transform T into a formula φT and check satisfiability of
φT ∧ ¬ϕ ∈ LT

[Bojanczyk et al.17]: Model-checking against MSO[<i, <o, o] is
decidable
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A note on complexity

Non elementary Complexity
Due to the MSObin[<i] formulas, satisfiability is non
elementary.

ExpSpace-c complexity
If the MSObin[<] formulas are given as query automata, then
satisfiability becomes ExpSpace-complete.

→ Query automata A: accepts words w with letters marked by
x and y that satisfy ϕ(x, y).
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Synthesis of LT

Regular Synthesis problem:
Given a formula ϕ of LT , construct a deterministic 2-way
transducer T such that:

dom(ϕ) = dom(T ),
for all u ∈ dom(T ), (u, T (u)) |= ϕ.

Theorem
From any formula ϕ of LT , we can construct a deterministic
2-way transducer that realises it.

→ Functional LT characterises the class of regular functions.
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Data words

Definition
Here, Data words are words over an infinite alphabet (ex: N or
Γ× N.)
ex: (b, 2)(c, 3)(c, 4)(a, 1).

→ used to model words over unbounded sets such as processus
identifiers.
→ Structure on the infinite alphabet can be added (ex: order <
on N).
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Casting Origin graphs to words

An origin graph can be equivalently seen as a word over
alphabet Γ× {1, . . . , n} × Σ where n = |Input|.

a a b b

1 2 3 4

b c c a

is represented by the word

(b, 2, a)(c, 3, b)(c, 4, b)(a, 1, a)

But (a, 1, a)(a, 1, b) represents no origin graph !

15 / 19



Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Casting Origin graphs to words

An origin graph can be equivalently seen as a word over
alphabet Γ× {1, . . . , n} × Σ where n = |Input|.

a a b b

1 2 3 4

b c c a

is represented by the word

(b, 2, a)(c, 3, b)(c, 4, b)(a, 1, a)

But (a, 1, a)(a, 1, b) represents no origin graph !

15 / 19



Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Typed data words

A typed data word is a pair (w, τ) where w ∈ (Γ× N)∗ and
τ : N→ Σ.

a a b b

1 2 3 4

b c c a

w : (b, 2)(c, 3)(c, 4)(a, 1)
τ : 1 → a 2 → a

3 → b 4 → b

MSO[<i, <o, o] is equivalent to MSO[4, <, d].
The order-preserving formula is equivalent to having data
appear in increasing order:

∀xy x <o y ↔ o(x) ≤i o(y) ⇔ ∀xy x < y ↔ d(x) 4 d(y)
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New results on data words

The logic LT can be seen as a logic LD = FO2[<,MSO[4]]
on data words
→ Quantifications in MSO[4] on data values.

Results on LT apply to LD.
Satisfiability of LD extends known results of Satisfiability
of FO2[<,<, S] [Schwentick,Zeume13].

17 / 19



Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Wrapping up

In the end, the logic LT has good properties:
Expressive,
Decidable model-checking and synthesis,
Results robusts under extensions
∃X1 . . . XnLT ,
To capture all rational relations.
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Future works

Extensions to higher models (ongoing work: graph to word
relations),
Synthesis to other target implementations

Church synthesis,
Highly expressive automata model with non decidable
emptiness but good evaluation complexity,

Application to other problems. Ex: Algorithm synthesis.

3 7 5 4

3 4 5 7

Expressing an array sorting algorithm using FO2 on data and origin.

Thanks !
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