Logics for Word Transductions with Synthesis
DELTA meeting, IRIF

Luc Dartois

Université Libre de Bruxelles

March 26, 2018

Joint work with Emmanuel Filiot (ULB) and Nathan Lhote (ULB/LABRI)

Model-Checking and Synthesis

Verification setting

System Specification
Machine Logic formulas
M 12

Model-Checking: VYw accepted by M, does w = ¢ ?

2/19

Model-Checking and Synthesis

Verification setting

System Specification
Machine Logic formulas
M 12

Model-Checking: VYw accepted by M, does w = ¢ ?
Synthesis: Construct M such that M models ¢ ?

2/19

Verification setting

System Specification
Automata & MSO[<]
A (Biichi60) ¥

Model-Checking: VYw accepted by M, does w = ¢ ?
Synthesis: Construct M such that M models ¢ ?

Model-Checking and Synthesis

Verification of Reactive systems

Executions of a reactive system can be seen as sequences of
Actions (the input) and Reactions (the output). In the case of
reactive systems, we get intertwined sequences:

airiasry ... apTy

— Can be seen as a word over Actions x Reactions and use
automata methods.

3/19

Model-Checking and Synthesis

Verification of Reactive systems

Reactive Systems Specification
Automata A (Mealy Machine) Logic formulas ¢ (M SO, LTL)
(a,0) 32 (a,)(z) AVy (0)(y) = 2 <y
(a,b) (b, ¢) =

N0 N
)2 (@) (= e)Ua)

Verification of Reactive systems

Reactive Systems Specification
Automata A (Mealy Machine) Logic formulas ¢ (M SO, LTL)
alc 32 (a,)(z) AVy (0)(y) = 2 <y
alb b|c =

v

& al- =(c a,
*@_\, (=()U(a, ")

Model-Checking and Synthesis

Verification of Reactive systems

Reactive Systems Specification
Automata A (Mealy Machine) Logic formulas ¢
al e+
alb,— b|e <+ = 729

m a | .7_) ﬂ
-O——@

— What about non reactive systems, i.e. systems without
sequential link between input and output (relations
RCY* xI'™)?

3/19

Model-Checking and Synthesis

Aim of the talk

Define a logic for transformation of finite words (i.e.
R C ¥* x I'™) that
o Can express specific or generic relations
o Express functions: reversing the input:
{(ug .. Up,tup . ..uy) | u € A},
o Nondeterminism: Every input letter appears in the
output exactly once (shuffle):
{(u1 . Un, gy Un(y) | ™ a permutation}

1/19

Model-Checking and Synthesis

Aim of the talk

Define a logic for transformation of finite words (i.e.
R C ¥* x I'™) that
o Can express specific or generic relations
o Express functions: reversing the input:
{(ug .. Up,tup . ..uy) | u € A},
o Nondeterminism: Every input letter appears in the
output exactly once (shuffle):
{(u1 . Un, gy Un(y) | ™ a permutation}
o Has good decidable verification properties:
o Model-checking:
Does a deterministic 2-way transducer T satisfies a
formula ¢ ?
@ Synthesis:
Construct a deterministic 2-way transducer 1" that

satisfies .
1/19

Modelling non reactive systems: Origin information

Non reactive systems

Input/Output relation in the case of reactive systems.

5/19

Modelling non reactive igin information

Non reactive systems

— How to relate input with output ?

5/19

Modelling non reactive systems: Origin information

Non reactive systems: Origin semantics [Bojanczyk14|

Output : @ @ @ @

Origin graphs: A total function o from Output positions to Input
positions, as well as <; and <, order relations.

The origin of an output position is the input position from
which it originates.

19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
. ale— ala,+
A transducer realis- ’ ’
; b|e — b|b,«+
ing the reverse func- m

. @)
tion w — rev(w). ¢ c
N

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®

Output :

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

. ale— ala,+
A transducer realis- ’ ’
; b|e — b|b,«+
ing the reverse func- m

tion w — rev(w). e, H e, —

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®

Output :

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
. ala,+
A transducer realis- ble, - b| b,
ing the reverse func- m

tion w — rev(w). e, H e, —

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®

Output :

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
. ala,+
A transducer realis- ble, - b| b,
ing the reverse func- m

tion w — rev(w). e, H e, —

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®

Output :

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
. ale— ala,+
A transducer realis- ’ ’
. b|b,«+
ing the reverse func- m

tion w — rev(w). e, H e, —

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®

Output :

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
. ale— ala,+
A transducer realis- ’ ’
. b|b,«+
ing the reverse func- m

tion w — rev(w). e, H e, —

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®

Output :

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
. ale— ala,+
A transducer realis- ble — b b,
ing the reverse func- ﬂ ﬂ

tion w — rev(w). @ Hl e, —

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®

Output :

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
ale— ala,+

A transducer realis-
b|e —

ing the reverse func- ﬂ

tion w — rev(w). »@ | €, @ H e, — @
Input: O—=@O—(O-O=b—-D
Output : @

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
ale— ala,+

A transducer realis-
b|e —

ing the reverse func- ﬂ

tion w — rev(w). »@ | €, @ H e, — @
Input: O—=@O—(@O-B=b—-D
Output : @H@

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
ale—

A transducer realis- ble — b b,

ing the reverse func- ﬂ

tion w — rev(w). »@ | €, @ H e, — @
Input: OO~ B=b—D
Output : @H@H@

6 /19

Modelling non reactive systems: Origin information

Origin semantics of a transducer

Hle —
ale—

A transducer realis- ble, - b| b,

ing the reverse func- ﬂ

tion w — rev(w). »@ | €, @ H e, — @
Input: O—@O=@Q-O=0—-D
Output : @H@H@H@

6 /19

Modelling non reactive igin information

Origin semantics of a transducer

Hle —
. ale— ala,+
A transducer realis- ’ ’
; b|e — b|b,«+
ing the reverse func- m

tion w — rev(w). @ | e,
)

Input : ®ﬁ@ﬁ@ﬁ@ﬁ@ﬁ®
Output : @H@H@H@

6 /19

Modelling non reactive systems: Origin information

Origin semantics of a transducer

Input : @ @ @ @

o

Output : @ @ @ @

Origin graphs as models for traces of executions.

6 /19

Logics with origin

The logic MSO[<;, <,, 0]

MSO[<;, <,,0] @ @ ® ®
Examples: M

o Order-preserving: ¢,, =

Vry z <oy < o(z) <; o(y)

Injection: ¢in; = Va #, y o(x) #; o(y)
Surjection: ¢eurj = Vo & <; . — (Jy o(y) =; x)

(]

Reactive systems executions are modelled by the bijective
and order-preserving origin graphs.

Shuffle: ¢gp =

Ginj N Gsurj N (Vry = =; o(y) — /\Aa(:n) < a(y))
ac

Logics with origin

Decidability of origin logics

Problem:
Satisfiability of M SO[<;, <,,0] is undecidable.

8/19

Logics with origin

Decidability of origin logics

Problem:
Satisfiability of M SO[<;, <,,0] is undecidable.

— In fact, even FO?[<;, <,, S,, 0] is undecidable.

8/19

Logics with origin

Decidability of origin logics

Problem:
Satisfiability of MSO[<;, <,,0] is undecidable.

— In fact, even FO?[<;, <,, S,, 0] is undecidable.

First-Order logic with two reusable variables:

3z a(z) Ay (b(y) Az <y AJz(c(z) Ay < z))

describes the language X*aX*bX*cX*.

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<pn, does there exists

i1 ...14% such that w;, ... u; = v, ... v,
uy = ab
U1 €
u9 - b

vo = abb

9/19

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<pn, does there exists

i1 ...14% such that w;, ... u; = v, ... v,
up = ab 1 2
U1 €
u2 = b

vo = abb

9/19

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<pn, does there exists

i1 ...14% such that w;, ... u; = v, ... v,
up = ab 1 2
U1 €
u2 = b

vy — abb a a b b b b

9/19

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<pn, does there exists
i1 ...% such that w;, ... u;

p = Uiy -+ - Vg,

up = ab 1 2

o — I\
u9 = b
vy — abb a a b b b b

9/19

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<pn, does there exists

i1 ...14% such that w;, ... u; = v, ... v,
up = ab 1 2
U1 €
u = b //(A/v I\\
vy = abb a a b b b b

PCP instance (u;, v;)i<pn encoded as
Vg A\ i(z) = wi(x) Av(z)

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<pn, does there exists
i1 ...%% such that w;, ... u; = v, ... v

L
up = ab 1 2

U1 € //(‘/'

(05 abb a a b b b b

PCP instance (u;, v;)i<pn encoded as
Vg A i(z) = wi(x) Av(z)
ui(x): the production of = belongs to X*aX*b3*

Jy o(y) =z Aaly) AJz(o(x) = o(y) Ay <o x Ab(z))

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<pn, does there exists
i1 ...%% such that w;, ... u; = v, ... v

L
up = ab 1 2

U1 € //(‘/'

(05 abb a a b b b b

PCP instance (u;, v;)i<pn encoded as
Vg A i(z) = wi(x) Av(z)
up(z): the production of = belongs to L*aX*bx* NL<2

—(3y o(y) = A3z (o(z) = o(y) Ay <o 2ATy(o(y) = o(x)Ay < x))

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<n, does there exists
i1 ...1x such that u;, .. Uy, = Vg . -Uik-

Uy ab 92

U1 €

S ///]\\
Vo abb a b b

PCP instance (u;, v;)i<pn encoded as
V' N, i(x) = wi(z) Avi(z)

A¢op A Qop

9/19

Logics with origin

Undecidability of Satisfiability

Proving undecidability of FO?[<;, <,,S,,0]:
Encoding PCP instances: given (u;, v;)i<n, does there exists
i1...1% such that u;, ... u; =v;, .. .'Uik.

up = ab 92

V] = €

uy = b // I \
V9 abb a b b

PCP instance (u;, v;)i<pn encoded as
Vit Agi(x) = wix) Avi(z)

A@op N Dop

AT A e al2) = Fy(Sola,y) A ()
(the output word belongs to (U e aa)’)

Logics with origin

The logic Lp

Let M SOpin[<;i] be the set of formulas p(z,y) with
e MSO[<2]

for p(z,y) =z <y,

¢op = V-Ty T <oy (p(O(IL‘), O(y))

10 /19

Logics with origin

The logic Lp

Let M SOpin[<;i] be the set of formulas p(z,y) with
e MSO[<2]

for p(z,y) =z <y,

¢op = V-'By T <oy (p(O(IL‘), O(y))

We set Lt = FO?[<,,0, MSOpin[<i]].

10 /19

Logics with origin

The logic Lp

Let M SOpin[<;i] be the set of formulas p(z,y) with
e MSO[<1]

for p(z,y) =z <y,

¢op = ny T <oy QO(O(IE% O(y))

We set Lt = FO?[<,,0, MSOpin[<i]].

The logic Lt can express:

o Highly non deterministic relations such as the shuffle
relation,

o Any function definable by a 2-way transducer.

10 /19

Logics with origin

Decidability of Ly

L = F02[<0, o, MSObm[<z]]

Theorem:

The satisfiability problem is decidable for the logic Lp.

11/19

Logics with origin

Decidability of Ly

L = F02[<0, o, MSObm[<z]]

Theorem:

The satisfiability problem is decidable for the logic Lp.

Model-checking of a 2-way transducer T against a formula ¢ of
L1 is decidable.

Proof: Transform T into a formula ¢ and check satisfiability of
¢r N—p € L

11/19

Logics with origin

Decidability of Ly

L = F02[<0, o, MSObm[<z]]

Theorem:

The satisfiability problem is decidable for the logic Lp.

Model-checking of a 2-way transducer T against a formula ¢ of
L1 is decidable.

Proof: Transform T into a formula ¢ and check satisfiability of
¢ N—p € Lt

[Bojanczyk et al.17]: Model-checking against M SO[<;, <,, 0] is
decidable

11/19

Logics with origin

A note on complexity

Non elementary Complexity

Due to the M SOy, [<;] formulas, satisfiability is non
elementary.

12 /19

Logics with origin

A note on complexity

Non elementary Complexity

Due to the M SOy, [<;] formulas, satisfiability is non
elementary.

EzpSpace-c complexity

If the M SOp;,[<] formulas are given as query automata, then
satisfiability becomes ExpSpace-complete.

— Query automata A: accepts words w with letters marked by
x and y that satisfy ¢(x,y).

12 /19

Logics with origin

Synthesis of Ly

Regular Synthesis problem:

Given a formula ¢ of Lp, construct a deterministic 2-way
transducer 7" such that:

e dom(yp) = dom(T),
o for all u € dom(T), (u,T(u)) = ¢.

Theorem

| A

From any formula ¢ of L7, we can construct a deterministic
2-way transducer that realises it.

13 /19

Logics with origin

Synthesis of Ly

Regular Synthesis problem:

Given a formula ¢ of Lp, construct a deterministic 2-way
transducer 7" such that:

e dom(yp) = dom(T),
o for all u € dom(T), (u,T(u)) = ¢.

Theorem

| A

From any formula ¢ of L7, we can construct a deterministic
2-way transducer that realises it.

— Functional Lt characterises the class of regular functions.

13 /19

Links to data words

Data words

Definition

Here, Data words are words over an infinite alphabet (ex: N or
I'xN.)
ex: (b,2)(c,3)(c 4)(a,1).

— used to model words over unbounded sets such as processus
identifiers.

— Structure on the infinite alphabet can be added (ex: order <
on N).

14 /19

Links to data words

Casting Origin graphs to words

An origin graph can be equivalently seen as a word over
alphabet I' x {1,....,n} x ¥ where n = [Input|.

1 2 3 4

@ @ ® ®
W is represented by the word

@ © © @ (b,2,a)(c,3,b)(c,4,b)(a, 1, a)

15/19

Links to data words

Casting Origin graphs to words

An origin graph can be equivalently seen as a word over
alphabet I' x {1,....,n} x ¥ where n = [Input|.

1 2 3 4

@ @ ® ®
W is represented by the word

@ © © @ (b,2,a)(c,3,b)(c,4,b)(a, 1, a)

But (a, 1,a)(a, 1,b) represents no origin graph !

15/19

Links to data words

Typed data words

A typed data word is a pair (w,7) where w € (I" x N)* and
7:N—= .

16 /19

Links to data words

Typed data words

A typed data word is a pair (w,7) where w € (I" x N)* and
7:N—= .

1 2 3 1

@ @ ® ® w: (b,2)(e,3)(c,4)(a, 1)

4)(a,
T7: 1 — a 2 = a
3 — b 4 — b

® © © O]

MSOI<;, <,,0] is equivalent to MSO|[x, <, d].
The order-preserving formula is equivalent to having data
appear in increasing order:

Vay x <oy < o(x) <so(y) & Vayz <y d(z) < dy)

Links to data words

New results on data words

o The logic L7 can be seen as a logic Lp = FO?*[<, MSO[<]]
on data words
— Quantifications in M SO[<] on data values.

@ Results on Lt apply to Lp.

o Satisfiability of Lp extends known results of Satisfiability
of FO?[<, <, S] [Schwentick,Zeumel3].

17/19

Links to data words

Wrapping up

In the end, the logic L has good properties:
o Expressive,
@ Decidable model-checking and synthesis,

@ Results robusts under extensions

o 3X1 e XnLT,
@ To capture all rational relations.

18 /19

Links to data words

Future works

e Extensions to higher models (ongoing work: graph to word
relations),
@ Synthesis to other target implementations
@ Church synthesis,
o Highly expressive automata model with non decidable
emptiness but good evaluation complexity,
o Application to other problems. Ex: Algorithm synthesis.

® O] ® ®

I

® @ ® ©

Expressing an array sorting algorithm using FO? on data and origin.

19 /19

Links to data words

Future works

e Extensions to higher models (ongoing work: graph to word
relations),
@ Synthesis to other target implementations
@ Church synthesis,
o Highly expressive automata model with non decidable
emptiness but good evaluation complexity,
o Application to other problems. Ex: Algorithm synthesis.

® O] ® ®

I

® @ ® ©

Expressing an array sorting algorithm using FO? on data and origin.

Thanks !

19 /19

	Model-Checking and Synthesis
	Modelling non reactive systems: Origin information
	Logics with origin
	Links to data words

