
Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Logics for Word Transductions with Synthesis
DELTA meeting, IRIF

Luc Dartois

Université Libre de Bruxelles

March 26, 2018

Joint work with Emmanuel Filiot (ULB) and Nathan Lhote (ULB/LABRI)

1 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Verification setting

System Specification
Machine

⇔

Logic formulas
M

(Büchi60)

ϕ

Model-Checking: ∀w accepted by M , does w |= ϕ ?

2 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Verification setting

System Specification
Machine

⇔

Logic formulas
M

(Büchi60)

ϕ

Model-Checking: ∀w accepted by M , does w |= ϕ ?
Synthesis: Construct M such that M models ϕ ?

2 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Verification setting

System Specification
Automata ⇔ MSO[<]
A (Büchi60) ϕ

Model-Checking: ∀w accepted by M , does w |= ϕ ?
Synthesis: Construct M such that M models ϕ ?

2 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Verification of Reactive systems

Executions of a reactive system can be seen as sequences of
Actions (the input) and Reactions (the output). In the case of
reactive systems, we get intertwined sequences:

a1r1a2r2 . . . anrn

→ Can be seen as a word over Actions×Reactions and use
automata methods.

→ What about non reactive systems, i.e. systems without
sequential link between input and output (relations
R ⊆ Σ∗ × Γ∗)?

3 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Verification of Reactive systems

Reactive Systems Specification
Automata A (Mealy Machine) Logic formulas ϕ (MSO,LTL)

p q
(a, ·)

(a, b) (b, c)
(a, c) ∃x (a, ·)(x) ∧ ∀y (·, c)(y)→ x < y

|=

??

(¬(·, c))U(a, ·)

→ What about non reactive systems, i.e. systems without
sequential link between input and output (relations
R ⊆ Σ∗ × Γ∗)?

3 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Verification of Reactive systems

Reactive Systems Specification
Automata A (Mealy Machine) Logic formulas ϕ (MSO,LTL)

p q
a | ·

a | b b | c
a | c ∃x (a, ·)(x) ∧ ∀y (·, c)(y)→ x < y

|=

??

(¬(·, c))U(a, ·)

→ What about non reactive systems, i.e. systems without
sequential link between input and output (relations
R ⊆ Σ∗ × Γ∗)?

3 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Verification of Reactive systems

Reactive Systems Specification
Automata A (Mealy Machine) Logic formulas ϕ

(MSO,LTL)

p q
a | ·,→

a | b,→ b | c,←
a | c,←

|= ??

→ What about non reactive systems, i.e. systems without
sequential link between input and output (relations
R ⊆ Σ∗ × Γ∗)?

3 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Aim of the talk

Define a logic for transformation of finite words (i.e.
R ⊆ Σ∗ × Γ∗) that

Can express specific or generic relations
Express functions: reversing the input:
{(u1 . . . un, un . . . u1) | u ∈ A∗},
Nondeterminism: Every input letter appears in the
output exactly once (shuffle):
{(u1 . . . un, uπ(1) . . . uπ(n) | π a permutation}

Has good decidable verification properties:
Model-checking:
Does a deterministic 2-way transducer T satisfies a
formula ϕ ?
Synthesis:
Construct a deterministic 2-way transducer T that
satisfies ϕ.

4 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Aim of the talk

Define a logic for transformation of finite words (i.e.
R ⊆ Σ∗ × Γ∗) that

Can express specific or generic relations
Express functions: reversing the input:
{(u1 . . . un, un . . . u1) | u ∈ A∗},
Nondeterminism: Every input letter appears in the
output exactly once (shuffle):
{(u1 . . . un, uπ(1) . . . uπ(n) | π a permutation}

Has good decidable verification properties:
Model-checking:
Does a deterministic 2-way transducer T satisfies a
formula ϕ ?
Synthesis:
Construct a deterministic 2-way transducer T that
satisfies ϕ.

4 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Non reactive systems

: Origin semantics [Bojanczyk14]

Input : a a b b

Output : a b b a

o :

Origin graphs: A total function o from Output positions to Input
positions, as well as <i and <o order relations.

Input/Output relation in the case of reactive systems.

5 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Non reactive systems

: Origin semantics [Bojanczyk14]

Input : a a b b

Output : a b b a

o :

Origin graphs: A total function o from Output positions to Input
positions, as well as <i and <o order relations.

→ How to relate input with output ?

5 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Non reactive systems: Origin semantics [Bojanczyk14]

Input : a a b b

Output : a b b a

o :

Origin graphs: A total function o from Output positions to Input
positions, as well as <i and <o order relations.

The origin of an output position is the input position from
which it originates.

5 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓ ↓ ↓ ↓ ↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓

↓ ↓ ↓ ↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓

↓

↓ ↓ ↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓ ↓

↓

↓ ↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓ ↓ ↓

↓

↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓ ↓ ↓ ↓

↓

↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output :

b b a a

↓ ↓ ↓ ↓ ↓

↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output : b

b a a

↓ ↓ ↓ ↓

↓

↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output : b b

a a

↓ ↓ ↓

↓

↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output : b b a

a

↓ ↓

↓

↓ ↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output : b b a a

↓

↓

↓ ↓ ↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

A transducer realis-
ing the reverse func-
tion w → rev(w).

1 2 3

b | ε,→
a | ε,→
`| ε,→

a| ε,←

b | b,←
a | a,←

`| ε,→

a a b b` aInput :

Output : b b a a

↓

↓ ↓ ↓ ↓ ↓

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Origin semantics of a transducer

Input : a a b b

Output : a b b a

o :

Origin graphs as models for traces of executions.

6 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

The logic MSO[<i, <o, o]

MSO[<i, <o, o]

Examples:
Order-preserving: φop =
∀xy x <o y ↔ o(x) ≤i o(y)

a a b b

a b b a

Injection: φinj = ∀x 6=o y o(x) 6=i o(y)

Surjection: φsurj = ∀x x ≤i x→ (∃y o(y) =i x)

Reactive systems executions are modelled by the bijective
and order-preserving origin graphs.
Shuffle: φshu =
φinj ∧ φsurj ∧ (∀xy x =i o(y)→

∧
a∈A

a(x)↔ a(y))

7 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Decidability of origin logics

Problem:
Satisfiability of MSO[<i, <o, o] is undecidable.

→ In fact, even FO2[<i, <o, So, o] is undecidable.

Logic FO2

First-Order logic with two reusable variables:

∃x a(x) ∧ ∃y
(
b(y) ∧ x < y ∧ ∃x(c(x) ∧ y < x)

)
describes the language Σ∗aΣ∗bΣ∗cΣ∗.

8 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Decidability of origin logics

Problem:
Satisfiability of MSO[<i, <o, o] is undecidable.

→ In fact, even FO2[<i, <o, So, o] is undecidable.

Logic FO2

First-Order logic with two reusable variables:

∃x a(x) ∧ ∃y
(
b(y) ∧ x < y ∧ ∃x(c(x) ∧ y < x)

)
describes the language Σ∗aΣ∗bΣ∗cΣ∗.

8 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Decidability of origin logics

Problem:
Satisfiability of MSO[<i, <o, o] is undecidable.

→ In fact, even FO2[<i, <o, So, o] is undecidable.

Logic FO2

First-Order logic with two reusable variables:

∃x a(x) ∧ ∃y
(
b(y) ∧ x < y ∧ ∃x(c(x) ∧ y < x)

)
describes the language Σ∗aΣ∗bΣ∗cΣ∗.

8 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

u1(x): the production of x belongs to Σ∗aΣ∗bΣ∗

∃y o(y) = x ∧ a(y) ∧ ∃x
(
o(x) = o(y) ∧ y <o x ∧ b(x)

)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

u1(x): the production of x belongs to Σ∗aΣ∗bΣ∗ ∩Σ≤2

¬(∃y o(y) = x∧∃x
(
o(x) = o(y)∧y <o x∧∃y(o(y) = o(x)∧y < x)

)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

∧φop ∧ φop

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Undecidability of Satisfiability

Proving undecidability of FO2[<i, <o, So, o]:
Encoding PCP instances: given (ui, vi)i≤n, does there exists
i1 . . . ik such that ui1 . . . uik = vi1 . . . vik .
u1 = ab
v1 = ε
u2 = b
v2 = abb

1 2

baa b b b

PCP instance (ui, vi)i≤n encoded as
∀inx

∧
i i(x)→ ui(x) ∧ vi(x)

∧φop ∧ φop
∧∀outx

∧
a∈Σ a(x)→ ∃y(So(x, y) ∧ a(y))

(the output word belongs to
(⋃

a∈Σ aa
)∗)

9 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

The logic LT
Let MSObin[<i] be the set of formulas ϕ(x, y) with
ϕ ∈MSO[<i].

Example:
for ϕ(x, y) = x < y,

φop = ∀xy x <o y ↔ ϕ(o(x), o(y))

We set LT = FO2[<o, o,MSObin[<i]].

Expressivity
The logic LT can express:

Highly non deterministic relations such as the shuffle
relation,
Any function definable by a 2-way transducer.

10 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

The logic LT
Let MSObin[<i] be the set of formulas ϕ(x, y) with
ϕ ∈MSO[<i].

Example:
for ϕ(x, y) = x < y,

φop = ∀xy x <o y ↔ ϕ(o(x), o(y))

We set LT = FO2[<o, o,MSObin[<i]].

Expressivity
The logic LT can express:

Highly non deterministic relations such as the shuffle
relation,
Any function definable by a 2-way transducer.

10 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

The logic LT
Let MSObin[<i] be the set of formulas ϕ(x, y) with
ϕ ∈MSO[<i].

Example:
for ϕ(x, y) = x < y,

φop = ∀xy x <o y ↔ ϕ(o(x), o(y))

We set LT = FO2[<o, o,MSObin[<i]].

Expressivity
The logic LT can express:

Highly non deterministic relations such as the shuffle
relation,
Any function definable by a 2-way transducer.

10 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Decidability of LT

LT = FO2[<o, o,MSObin[<i]]

Theorem:
The satisfiability problem is decidable for the logic LT .

Corollary
Model-checking of a 2-way transducer T against a formula ϕ of
LT is decidable.

Proof: Transform T into a formula φT and check satisfiability of
φT ∧ ¬ϕ ∈ LT

[Bojanczyk et al.17]: Model-checking against MSO[<i, <o, o] is
decidable

11 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Decidability of LT

LT = FO2[<o, o,MSObin[<i]]

Theorem:
The satisfiability problem is decidable for the logic LT .

Corollary
Model-checking of a 2-way transducer T against a formula ϕ of
LT is decidable.

Proof: Transform T into a formula φT and check satisfiability of
φT ∧ ¬ϕ ∈ LT

[Bojanczyk et al.17]: Model-checking against MSO[<i, <o, o] is
decidable

11 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Decidability of LT

LT = FO2[<o, o,MSObin[<i]]

Theorem:
The satisfiability problem is decidable for the logic LT .

Corollary
Model-checking of a 2-way transducer T against a formula ϕ of
LT is decidable.

Proof: Transform T into a formula φT and check satisfiability of
φT ∧ ¬ϕ ∈ LT
[Bojanczyk et al.17]: Model-checking against MSO[<i, <o, o] is
decidable

11 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

A note on complexity

Non elementary Complexity
Due to the MSObin[<i] formulas, satisfiability is non
elementary.

ExpSpace-c complexity
If the MSObin[<] formulas are given as query automata, then
satisfiability becomes ExpSpace-complete.

→ Query automata A: accepts words w with letters marked by
x and y that satisfy ϕ(x, y).

12 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

A note on complexity

Non elementary Complexity
Due to the MSObin[<i] formulas, satisfiability is non
elementary.

ExpSpace-c complexity
If the MSObin[<] formulas are given as query automata, then
satisfiability becomes ExpSpace-complete.

→ Query automata A: accepts words w with letters marked by
x and y that satisfy ϕ(x, y).

12 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Synthesis of LT

Regular Synthesis problem:
Given a formula ϕ of LT , construct a deterministic 2-way
transducer T such that:

dom(ϕ) = dom(T),
for all u ∈ dom(T), (u, T (u)) |= ϕ.

Theorem
From any formula ϕ of LT , we can construct a deterministic
2-way transducer that realises it.

→ Functional LT characterises the class of regular functions.

13 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Synthesis of LT

Regular Synthesis problem:
Given a formula ϕ of LT , construct a deterministic 2-way
transducer T such that:

dom(ϕ) = dom(T),
for all u ∈ dom(T), (u, T (u)) |= ϕ.

Theorem
From any formula ϕ of LT , we can construct a deterministic
2-way transducer that realises it.

→ Functional LT characterises the class of regular functions.

13 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Data words

Definition
Here, Data words are words over an infinite alphabet (ex: N or
Γ× N.)
ex: (b, 2)(c, 3)(c, 4)(a, 1).

→ used to model words over unbounded sets such as processus
identifiers.
→ Structure on the infinite alphabet can be added (ex: order <
on N).

14 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Casting Origin graphs to words

An origin graph can be equivalently seen as a word over
alphabet Γ× {1, . . . , n} × Σ where n = |Input|.

a a b b

1 2 3 4

b c c a

is represented by the word

(b, 2, a)(c, 3, b)(c, 4, b)(a, 1, a)

But (a, 1, a)(a, 1, b) represents no origin graph !

15 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Casting Origin graphs to words

An origin graph can be equivalently seen as a word over
alphabet Γ× {1, . . . , n} × Σ where n = |Input|.

a a b b

1 2 3 4

b c c a

is represented by the word

(b, 2, a)(c, 3, b)(c, 4, b)(a, 1, a)

But (a, 1, a)(a, 1, b) represents no origin graph !

15 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Typed data words

A typed data word is a pair (w, τ) where w ∈ (Γ× N)∗ and
τ : N→ Σ.

a a b b

1 2 3 4

b c c a

w : (b, 2)(c, 3)(c, 4)(a, 1)
τ : 1 → a 2 → a

3 → b 4 → b

MSO[<i, <o, o] is equivalent to MSO[4, <, d].
The order-preserving formula is equivalent to having data
appear in increasing order:

∀xy x <o y ↔ o(x) ≤i o(y) ⇔ ∀xy x < y ↔ d(x) 4 d(y)

16 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Typed data words

A typed data word is a pair (w, τ) where w ∈ (Γ× N)∗ and
τ : N→ Σ.

a a b b

1 2 3 4

b c c a

w : (b, 2)(c, 3)(c, 4)(a, 1)
τ : 1 → a 2 → a

3 → b 4 → b

MSO[<i, <o, o] is equivalent to MSO[4, <, d].
The order-preserving formula is equivalent to having data
appear in increasing order:

∀xy x <o y ↔ o(x) ≤i o(y) ⇔ ∀xy x < y ↔ d(x) 4 d(y)

16 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

New results on data words

The logic LT can be seen as a logic LD = FO2[<,MSO[4]]
on data words
→ Quantifications in MSO[4] on data values.

Results on LT apply to LD.
Satisfiability of LD extends known results of Satisfiability
of FO2[<,<, S] [Schwentick,Zeume13].

17 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Wrapping up

In the end, the logic LT has good properties:
Expressive,
Decidable model-checking and synthesis,
Results robusts under extensions
∃X1 . . . XnLT ,
To capture all rational relations.

18 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Future works

Extensions to higher models (ongoing work: graph to word
relations),
Synthesis to other target implementations

Church synthesis,
Highly expressive automata model with non decidable
emptiness but good evaluation complexity,

Application to other problems. Ex: Algorithm synthesis.

3 7 5 4

3 4 5 7

Expressing an array sorting algorithm using FO2 on data and origin.

Thanks !

19 / 19

Model-Checking and Synthesis
Modelling non reactive systems: Origin information

Logics with origin
Links to data words

Future works

Extensions to higher models (ongoing work: graph to word
relations),
Synthesis to other target implementations

Church synthesis,
Highly expressive automata model with non decidable
emptiness but good evaluation complexity,

Application to other problems. Ex: Algorithm synthesis.

3 7 5 4

3 4 5 7

Expressing an array sorting algorithm using FO2 on data and origin.

Thanks !
19 / 19

	Model-Checking and Synthesis
	Modelling non reactive systems: Origin information
	Logics with origin
	Links to data words

