When is containment decidable for probabilistic automata?

Laure Daviaud
University of Warwick

Joint work with Marcin Jurdziński, Ranko Lazić, Filip Mazowiecki, Guillermo A.Pérez and James Worrell.

Delta, Paris, 27-03-2018
The containment problem

$[A] \subseteq [B]$
The containment problem

Boolean automata over Σ^*

$[A] \subseteq [B]$
The containment problem

Languages over \(\Sigma^* \)

Boolean automata over \(\Sigma^* \)

\([A] \subseteq [B]\)
The containment problem

Boolean automata over Σ^*

Languages over Σ^*

Check whether:

$[B] \cap [A]^c = \emptyset$
The containment problem

Boolean automata over Σ^*

$\mathcal{A} \subseteq \mathcal{B}$

Functions: $\Sigma^* \rightarrow \mathbb{R}$

Check whether:
$[\mathcal{B}] \cap [\mathcal{A}]^c = \emptyset$
The containment problem

\[[A] \subseteq [B] \]

\(\Sigma^* \rightarrow \mathbb{R} \)

Weighted automata over \(\Sigma^* \)

Check whether:

\[[B] \cap [A]^c = \emptyset \]
The containment problem

Weighted automata over Σ^*

Functions: $\Sigma^* \rightarrow \mathbb{R}$

Check whether:

$\mathbf{[B]} \cap \mathbf{[A]}^c = \emptyset$
The containment problem

Functions: $\Sigma^* \rightarrow \mathbb{R}$

Weighted automata over Σ^*

Check whether:

$[B] - [A] \geq 0$
What is the probability that after 8 hours I have done some sport or work?
Initial states and transitions are weighted with probability:

\[
\begin{bmatrix}
\frac{1}{2} & \rightarrow & \\
\frac{1}{6} & \rightarrow & \\
\frac{1}{3} & \rightarrow &
\end{bmatrix}
\]

\[w \mapsto \text{probability to read } w \text{ from an initial to a final state.}\]
A few results
A few results

Probabilistic automata

Max-plus automata
A few results

Probabilistic automata
- Undecidable in general
 Post correspondence problem - Paz, Bertoni...

Max-plus automata
- Undecidable in general
 Diophantine equations - Krob
Notion of ambiguity

How many accepting runs are labelled by a given word?
Notion of ambiguity

How many accepting runs are labelled by a given word?
How many accepting runs are labelled by a given word?

Unambiguous: for all words, at most 1
Finitely ambiguous: for all words, at most k
Linearly ambiguous: for all words w, at most $k|w|
Quadratic: for all words w, at most $k|w|^2$
Polynomially ambiguous, exponentially ambiguous...
Notion of ambiguity

How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
Notion of ambiguity

How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
- **Finitely ambiguous**: for all words, at most k

Notion of ambiguity
Notion of ambiguity

How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
- **Finitely ambiguous**: for all words, at most \(k \)
- **Linearly ambiguous**: for all words \(w \), at most \(k|w| \)
Notion of ambiguity

How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
- **Finitely ambiguous**: for all words, at most k
- **Linearly ambiguous**: for all words w, at most $k|w|$
- **Quadratic**: for all words w, at most $k|w|^2$
Notion of ambiguity

How many accepting runs are labelled by a given word?

- **Unambiguous**: for all words, at most 1
- **Finitely ambiguous**: for all words, at most \(k \)
- **Linearly ambiguous**: for all words \(w \), at most \(k|w| \)
- **Quadratic**: for all words \(w \), at most \(k|w|^2 \)
- **Polynomially ambiguous**, exponentially ambiguous...
A few results

Probabilistic automata

- Undecidable in general
 - Post correspondence problem - Paz, Bertoni...

Max-plus automata

- Undecidable in general
 - Diophantine equations - Krob
A few results

Probabilistic automata

- Undecidable in general
 Post correspondence problem - Paz, Bertoni...

- Undecidable for quadratic ambiguous
 Post correspondence problem - Fijalkow-Riveros-Worrell

Max-plus automata

- Undecidable in general
 Diophantine equations - Krob

- Undecidable for linearly ambiguous
 Halting problem of two-counter machines - Colcombet, Amalgor-Boker-Kupferman
A few results

Probabilistic automata

- Undecidable in general
 Post correspondence problem - Paz, Bertoni...

- Undecidable for quadratic ambiguous
 Post correspondence problem - Fijalkow-Riveros-Worrell

- Emptiness problem decidable for 2-ambiguous
 Fijalkow-Riveros-Worrell

Max-plus automata

- Undecidable in general
 Diophantine equations - Krob

- Undecidable for linearly ambiguous
 Halting problem of two-counter machines - Colcombet, Amalgor-Boker-Kupferman

- Decidable for finitely ambiguous
 Filiot-Gentilini-Raskin
When is containment decidable?

\[
[A] \leq [B]
\]

Undecidable

When either \(A\) or \(B\) is at least linearly ambiguous.

Decidable

When \(A\) and \(B\) are finitely ambiguous and one is unambiguous.

Open

When \(A\) and \(B\) are finitely ambiguous.
Are there positive integers x and y such that:

$$p \cdot \left(\frac{1}{12}\right)^x \cdot \left(\frac{1}{18}\right)^y + \left(1 - p\right) \cdot \left(\frac{1}{3}\right)^x \cdot \left(\frac{1}{18}\right)^y < \left(\frac{1}{6}\right)^x \cdot \left(\frac{1}{6}\right)^y$$

Equivalently:

$$e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1 - p) + x \log(2) - y \log(3)} < \frac{19}{15}$$

Decidability: one example
Are there positive integers x and y such that:

$$p \cdot \left(\frac{1}{12} \right)^x \cdot \left(\frac{1}{2} \right)^y + (1 - p) \cdot \left(\frac{1}{3} \right)^x \cdot \left(\frac{1}{18} \right)^y < \left(\frac{1}{6} \right)^x \cdot \left(\frac{1}{6} \right)^y$$
Are there positive integers x and y such that:

$$p \cdot \left(\frac{1}{12} \right)^x \cdot \left(\frac{1}{2} \right)^y + (1 - p) \cdot \left(\frac{1}{3} \right)^x \cdot \left(\frac{1}{18} \right)^y < \left(\frac{1}{6} \right)^x \cdot \left(\frac{1}{6} \right)^y$$

Equivalently:

$$e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1$$
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]

Is there positive integers \(x, y \) s.t:

- \(e^u + e^v < 1 \) where:
 - \(u = \log(p) - x \log(2) + y \log(3) \)
 - \(v = \log(1-p) + x \log(2) - y \log(3) \)
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]

Is there positive integers \(x, y \) s.t:

- \(e^u + e^v < 1 \) where:
 - \(u = \log(p) - x \log(2) + y \log(3) \)
 - \(v = \log(1 - p) + x \log(2) - y \log(3) \)
Decidability: one example

\[e^{\log(p) - x \log(2) + y \log(3)} + e^{\log(1-p) + x \log(2) - y \log(3)} < 1 \]

Is there positive integers \(x, y\) s.t:

- \(e^u + e^v < 1\) where:
 - \(u = \log(p) - x \log(2) + y \log(3)\)
 - \(v = \log(1-p) + x \log(2) - y \log(3)\)

\[\rightarrow \text{YES if and only if } p = \frac{1}{2}. \]
Decidability: translating the problem

Is there a word w such that $[A](w) > [B](w)$?
Decidability: translating the problem

Is there a word \(w \) such that \([A](w) > [B](w)\)?
Decidability: translating the problem

Is there a word w such that $\llbracket A \rrbracket(w) > \llbracket B \rrbracket(w)$?

Given A (k-ambiguous) and B (ℓ-ambiguous), one can compute:
- a positive integer n,
- a finite set of tuples (p, q, r, s) with
 - p in $\mathbb{Q}^k_{>0}$, r in $\mathbb{Q}^\ell_{>0}$, q in $\mathbb{Q}^{k \times n}_{>0}$, s in $\mathbb{Q}^{\ell \times n}_{>0}$,

such that for one of those tuples, there exist $x \in \mathbb{N}^n$ such that:

$$\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} > \sum_{i=1}^{\ell} r_i s_{i,1}^{x_1} \cdots s_{i,n}^{x_n}$$

if and only if there exist a word w such that $\llbracket A \rrbracket(w) > \llbracket B \rrbracket(w)$.
Decidability: first case

\([A] \leq [B]\) when \(B\) is unambiguous.
Decidability: first case

\([A] \leq [B]\) when \(B\) is unambiguous.

Is there \(x \in \mathbb{N}^n\) such that:

\[
\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} > r s_{1}^{x_1} \cdots s_{n}^{x_n}
\]
Decidability: first case

\([A] \leq [B]\) when \(B\) is unambiguous.

Is there \(x \in \mathbb{N}^n\) such that:

\[
\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} > r s_{1}^{x_1} \cdots s_{n}^{x_n}
\]

- First case: there is \(i, j\) such that \(q_{i,j} > s_j\)
- Second case: for all \(i, j\), \(q_{i,j} \leq s_j\)
Decidability: second case

Much more difficult!

Theorem

Determining whether $[A] \leq [B]$ is decidable when A is un-ambiguous and B is finitely ambiguous, assuming Schanuel’s conjecture is true.
Decidability: second case

Much more difficult!

Theorem

Determining whether $\llbracket A \rrbracket \leq \llbracket B \rrbracket$ is decidable when A is unambiguous and B is finitely ambiguous, assuming Schanuel’s conjecture is true.

Is there $x \in \mathbb{N}^n$ such that:

$$\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} < 1$$
Decidability: second case

Much more difficult!

Theorem

Determining whether $[A] \leq [B]$ is decidable when A is unambiguous and B is finitely ambiguous, assuming Schanuel’s conjecture is true.

Is there $x \in \mathbb{N}^n$ such that:

$$\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \ldots q_{i,n}^{x_n} < 1$$

- semi-decidable to find such x
Decidability: second case

Much more difficult!

Theorem

Determining whether $[A] \leq [B]$ is decidable when A is unambiguous and B is finitely ambiguous, assuming Schanuel’s conjecture is true.

Is there $x \in \mathbb{N}^n$ such that:

$$\sum_{i=1}^{k} p_i q_{i,1}^{x_1} \cdots q_{i,n}^{x_n} < 1$$

- semi-decidable to find such x
- if there is no such x, there is a non-zero vector $d \in \mathbb{Z}^n$ and $a, b \in \mathbb{Z}$ such that $\{d^\top y \mid y \text{ is a real solution}\} \subseteq [a, b]$
 \rightarrow decrease the dimension by 1
Proposition

Given a two-counter machine, one can construct two linearly ambiguous probabilistic automata A and B, such that the machine halts if and only if there exists a word w such that $\|A\|(w) \leq \|B\|(w)$.
Undecidability

Proposition

Given a two-counter machine, one can construct two linearly ambiguous probabilistic automata A and B, such that the machine halts if and only if there exists a word w such that $[A](w) \leq [B](w)$.

→ Simulate an execution with a word: $a^n b^m t_1 a^{n+1} b^m t_2 a^{n+1} b^{m'}$
Given a two-counter machine, one can construct two linearly ambiguous probabilistic automata \mathcal{A} and \mathcal{B}, such that the machine halts if and only if there exists a word w such that $\mathcal{A}(w) \leq \mathcal{B}(w)$.

Proposition

Simulate an execution with a word: $a^n b^m t_1 a^{n+1} b^m t_2 a^{n+1} b^{m'}$

Undecidability
Conclusion

Containment problem for finitely ambiguous probabilistic automata?