Resynchronizing Classes of Word Relations

María Emilia Descotte
LaBRI ¹

DELTA Meeting in Paris
March 26th 2018

¹Joint work with D. Figueira and G. Puppis
Synchronized pairs of words (over a fixed alphabet \(A \))

Synchronizing pairs of words

A synchronization of \((w_1, w_2)\) is a word over \(2 \times A\) so that the projection on \(A\) of positions labeled \(i\) is exactly \(w_i\) for \(i = 1, 2\).
Synchronized pairs of words (over a fixed alphabet \(A\))

A **synchronization** of \((w_1, w_2)\) is a word over \(2 \times A\) so that the projection on \(A\) of positions labeled \(i\) is exactly \(w_i\) for \(i = 1, 2\).

Example

\((1, a)(1, b)(2, a)\) and \((1, a)(2, a)(1, b)\) synchronize \((ab, a)\).
Synchronized pairs of words (over a fixed alphabet \mathbb{A})

Synchronizing pairs of words

A **synchronization** of (w_1, w_2) is a word over $2 \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_i for $i = 1, 2$.

Example

$(1, a)(1, b)(2, a)$ and $(1, a)(2, a)(1, b)$ synchronize (ab, a).

Every word $w \in (2 \times \mathbb{A})^*$ is a synchronization of a unique pair (w_1, w_2) that we denote $[[w]]$.

$$[[1, a)(1, b)(2, a)]] = [[[1, a)(2, a)(1, b)]]] = (ab, a).$$
Synchronized relations

We lift this notion to languages $L \subseteq (\mathbb{2} \times \mathbb{A})^*$

$$[L] = \{[[w]] \mid w \in L\}$$

Example

$\mathbb{A} = \{a, b\}$, $L = ((1, a)(2, a) \cup (1, a)(2, b) \cup (1, b)(2, a) \cup (1, b)(2, b))^*$,

$$[L] = \{(w_1, w_2) \mid |w_1| = |w_2|\}.$$
C-controlled relations

Restrictions on the shape of the projection over 2

\Downarrow

Infinitely many different classes of relations.
C-controlled relations

Restrictions on the shape of the projection over \(2 \)

\[\downarrow \]

Infinitely many different classes of relations.

C-controlled words and languages

C \(\subseteq \) **2***- regular

- \(w \in (2 \times A)^* \) is **C-controlled** if its projection over \(2 \) belongs to **C**.
- \(L \subseteq (2 \times A)^* \) is **C-controlled** if all its words are.
C-controlled relations

Restrictions on the shape of the projection over $\mathbb{2}$

\[\Rightarrow \]

Infinitely many different classes of relations.

C-controlled words and languages

- $C \subseteq \mathbb{2}^*$ regular
 - $w \in (\mathbb{2} \times A)^*$ is **C-controlled** if its projection over $\mathbb{2}$ belongs to C.
 - $L \subseteq (\mathbb{2} \times A)^*$ is **C-controlled** if all its words are.

Examples

- Every $w \in (\mathbb{2} \times A)^*$ is $\mathbb{2}^*$-controlled,
- $(1, a)(1, b)(2, a)$ is 1^*2^*-controlled,
- $(1, a)(2, a)(1, b)$ isn’t 1^*2^*-controlled,
- L (previous slide) is $(12)^*$-controlled.
C-controlled relations

Restrictions on the shape of the projection over \(2\)

\[\Downarrow\]

Infinitely many different classes of relations.

C-controlled words and languages

- \(C \subseteq 2^*\) regular
 - \(w \in (2 \times A)^*\) is **C-controlled** if its projection over \(2\) belongs to \(C\).
 - \(L \subseteq (2 \times A)^*\) is **C-controlled** if all its words are.

Examples

- Every \(w \in (2 \times A)^*\) is \(2^*\)-controlled,
- \((1, a)(1, b)(2, a)\) is \(1^*2^*\)-controlled,
- \((1, a)(2, a)(1, b)\) isn’t \(1^*2^*\)-controlled,
- \(L\) (previous slide) is \((12)^*\)-controlled.

C-controlled relations

Given a regular language \(C \subseteq 2^*\)

\[\text{Rel}(C) = \{[L] \mid L \text{ is reg. and } C\text{-controlled}\}\]
C-controlled relations

Restrictions on the shape of the projection over 2

Infinitely many different classes of relations.

C-controlled words and languages

$C \subseteq 2^*$ regular

- $w \in (2 \times A)^*$ is C-controlled if its projection over 2 belongs to C.
- $L \subseteq (2 \times A)^*$ is C-controlled if all its words are.

Examples

Every $w \in (2 \times A)^*$ is 2^*-controlled, $(1, a)(1, b)(2, a)$ is 1^*2^*-controlled, $(1, a)(2, a)(1, b)$ isn't 1^*2^*-controlled, L (previous slide) is $(12)^*$-controlled.

C-controlled relations

Given a regular language $C \subseteq 2^*$

$\text{Rel}(C) = \{[L] \mid L \text{ is reg. and C-controlled}\}$

Examples

$\text{Rel}(1^*2^*) = \text{REC}$, $\text{Rel}((12)^*(1^* \cup 2^*)) = \text{REG}$, $\text{Rel}(2^*) = \text{RAT}$.
Class Containment Problem

| Input: Two regular languages $C, D \subseteq 2^*$ |
| Output: Is $\text{Rel}(C) \subseteq \text{Rel}(D)$? |

Examples

- If $C \subseteq D$, then $\text{Rel}(C) \subseteq \text{Rel}(D)$,
- $\text{Rel}(1^*2^*) \subseteq \text{Rel}((12)^*(1^* \cup 2^*))$,
- $\text{Rel}((12)^*(1^* \cup 2^*)) \not\subseteq \text{Rel}(1^*2^*)$,
- $\text{Rel}(1^*2^*) = \text{Rel}(2^*1^*)$,
- $\text{Rel}((12)^*) = \text{Rel}((21)^*)$.

Synchronized relations

Class Containment Problem

The proof

Conclusions
Previous work

Decidability and complexity
The problem is decidable for $\text{REL}(D) = \text{REC}, \text{REG}$ or RAT.

Resynchronization
The proof is constructive in terms of the automaton:

$\text{Given a NFA for a } C\text{-controlled language } L\text{, one can effectively construct a NFA for a } D\text{-controlled language } L'\text{ such that } [L] = [L'].$

Our contribution

We prove that the Class Containment Problem is decidable for arbitrary C and D and, in case of positive answer, we give an effective method for resynchronizing relations.

Proof idea

Step 1: Rewrite C and D as finite unions of *simple languages*.

Step 2: Characterization for simple languages.

Step 3: Induction on the amount of disjuncts in the unions.
Step 1: Decomposition into simple languages

Concat-star languages

\[C_1^* u_1 \cdots C_n^* u_n \]

with \(C_1, \ldots, C_n \) regular languages, \(u_1, \ldots, u_n \) words.

A component \(C_i^* \) is **homogeneous** if it is contained in \(1^* \) or \(2^* \). Otherwise is **heterogeneous**.

- **heterogeneous** if it contains at least one heterogeneous component, otherwise it is **homogeneous**;
- **smooth** if every homogeneous component is \(1^{k*} \) or \(2^{k*} \), for some \(k > 0 \), and there are no consecutive homogeneous components;
- **simple** if it has star-height 1 and it is either homogeneous or smooth heterogeneous.

Examples

- **homogeneous**
 - s.-h. > 1: \((1*1)^*2^*\)
 - s.-h. = 1: \((1*11)^*2^*\)

- **smooth heterogeneous**
 - s.-h. > 1: \(1^*(1^*2)^*2^*\)
 - s.-h. = 1: \(1^*(1^*2)^*2^*\)

- **non-smooth heterogeneous**
 - s.-h. > 1: \(1^*2^*(1^*2)^*\)
 - s.-h. = 1: \(1^*2^*(12)^*\)

- **non concat-star**
 - \((1^*2)* \cup (12)^*\)
 - \((12)^*1^* \cup (12)^*2^*\)
Step 1: Decomposition into simple languages

Every regular language is a finite union of concat-star languages.
Step 1: Decomposition into simple languages

Every regular language is a finite union of **concat-star** languages.

Every **concat-star** language is *Rel-equivalent* to a finite union of **concat-star** languages of star-height 1.
Step 1: Decomposition into simple languages

Every regular language is a finite union of **concat-star** languages.

Every **concat-star** language is *Rel-equivalent* to a finite union of **concat-star** languages of star-height 1.

Every **concat-star** language of star-height 1 is *Rel-equivalent* to a finite union of simple languages.
Step 1: Decomposition into simple languages

Every regular language is a finite union of \textit{concat-star} languages.

Every \textit{concat-star} language is \textit{Rel-equivalent} to a finite union of \textit{concat-star} languages of star-height 1.

Every \textit{concat-star} language of star-height 1 is \textit{Rel-equivalent} to a finite union of simple languages.

Example

\[\text{REL}((12)^*1^*2^*) = \text{REL}((12)^*1^* \cup (12)^*2^*). \]
Step 2: Characterization for simple languages

Parikh ratio

\[w \in \mathbb{2}^* \setminus \{\varepsilon\}, \quad \rho(w) = \frac{|w|_1}{|w|}. \]

\[C \subseteq \mathbb{2}^*, \quad \rho(C) = \{\rho(w) \mid w \in C \setminus \{\varepsilon\}\} \subseteq [0, 1]_\mathbb{Q}. \]
Step 2: Characterization for simple languages

Parikh ratio

\[w \in 2^* \setminus \{\varepsilon\}, \quad \rho(w) = \frac{|w|_1}{|w|}. \]
\[C \subseteq 2^*, \quad \rho(C) = \{\rho(w) \mid w \in C \setminus \{\varepsilon\}\} \subseteq [0, 1]_\mathbb{Q}. \]

Synchronizing morphisms

\[C = C_1^* u_1 \cdots C_n^* u_n, \quad D = D_1^* v_1 \cdots D_m^* v_m. \quad C \xrightarrow{s.m.} D \text{ is} \]
\[f : [1, \ldots, n] \to [1, \ldots, m] \text{ s.t.} \]

i) \quad \(f \) is monotonic and

ii) \quad \(\rho(C_i^*) \subseteq \rho(D_{f(i)}^*) \) for all \(i = 1, \ldots, n. \)

If \(C \) is homogeneous, we have a s.m. to any \(D \) by convention.
Step 2: Characterization for simple languages

Parikh ratio

\[w \in \mathcal{2}^* \setminus \{\varepsilon\}, \quad \rho(w) = \frac{|w|_1}{|w|}. \]
\[C \subseteq \mathcal{2}^*, \quad \rho(C) = \{\rho(w) \mid w \in C \setminus \{\varepsilon\}\} \subseteq [0, 1]_\mathbb{Q}. \]

Synchronizing morphisms

\[C = C_1^* u_1 \cdots C_n^* u_n, \quad D = D_1^* v_1 \cdots D_m^* v_m. \]
\[C \xrightarrow{s.m.} D \] is
\[f : [1, \ldots, n] \to [1, \ldots, m] \text{ s.t.} \]

i) \quad \text{\(f\) is monotonic and}

ii) \quad \rho(C_i^*) \subseteq \rho(D_f^*(i)) \text{ for all } i = 1, \ldots, n.

If \(C\) is homogeneous, we have a s.m. to any \(D\) by convention.
Step 2: Characterization for simple languages

Proposition

For all simple languages $C, D \subseteq 2^*$, $\text{Rel}(C') \subseteq \text{Rel}(D)$ iff $\pi(C') \subseteq \pi(D)$ and $C \xrightarrow{s.m.} D$.

Examples

- $\text{Rel}((12)^* (112)^*) \subseteq \text{Rel}((12 \cup 11122)^* (121)^* 1^* 2^*)$.
- $\text{Rel}((112)^* (12)^*) \not\subseteq \text{Rel}((12 \cup 11122)^* (121)^* 1^* 2^*)$.

Conclusions
Proposition

For all simple languages $C, D \subseteq 2^*$, $\text{Rel}(C) \subseteq \text{Rel}(D)$ iff $\pi(C) \subseteq \pi(D)$ and $C \xrightarrow{s.m.} D$.

Examples

$\text{Rel}((12)^*(112)^*) \subseteq \text{Rel}((12 \cup 11122)^*(121)^*1^*2^*)$,
$\text{Rel}((112)^*(12)^*) \nsubseteq \text{Rel}((12 \cup 11122)^*(121)^*1^*2^*)$.
Step 3: Dealing with unions

Unions on the left

\[
\text{REL}(C_1 \cup C_2) \subseteq \text{REL}(D) \text{ iff } \text{REL}(C_1) \subseteq \text{REL}(D) \text{ and } \text{REL}(C_2) \subseteq \text{REL}(D).
\]

Main theorem

For \(C \) simple and \(D = \bigcup_j D_j \) a finite union of simple languages, the following are equivalent:

i) \(\text{REL}(C) \subseteq \text{REL}(D) \),

ii) \(\pi(C) \subseteq \pi(D) \), \(\exists j \) with \(C \xrightarrow{s.m.} D_j \) and in addition, if \(C \) is heterogeneous, then \(\text{REL}(C \setminus [D_j]_\pi) \subseteq \text{REL}(\bigcup_{j' \neq j} D_{j'}) \).
Our proof gives an effective algorithm to resynchronize relations. We would like to determine the exact complexity.

Other natural questions about this framework: existence and computability of canonical control languages, for which control languages $C \text{ REL}(C)$ is closed under intersection, etc.
Thanks for your attention!