María Emilia Descotte LaBRI ¹

DELTA Meeting in Paris March 26th 2018

Synchronized pairs of words (over a fixed alphabet \mathbb{A})

Synchronizing pairs of words

A synchronization of (w_1, w_2) is a word over $\mathbf{2} \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_i for i = 1, 2.

Synchronized pairs of words (over a fixed alphabet \mathbb{A})

Synchronizing pairs of words

A synchronization of (w_1, w_2) is a word over $\mathbf{2} \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_i for i = 1, 2.

Example

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) synchronize (ab, a).

Synchronized pairs of words (over a fixed alphabet A)

Synchronizing pairs of words

A synchronization of (w_1, w_2) is a word over $\mathbf{2} \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_i for i = 1, 2.

Example

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) synchronize (ab, a).

Every word $w \in (\mathbf{2} \times \mathbb{A})^*$ is a synchronization of a unique pair (w_1, w_2) that we denote $[\![w]\!]$.

$$[(1,a)(1,b)(2,a)] = [(1,a)(2,a)(1,b)] = (ab,a).$$

Synchronized relations

Synchronizing relations

We lift this notion to languages $L \subseteq (2 \times \mathbb{A})^*$

$$[\![L]\!]=\{[\![w]\!]\mid w\in L\}$$

Example

$$\mathbb{A} = \{a,b\}, \, L = ((1,a)(2,a) \cup (1,a)(2,b) \cup (1,b)(2,a) \cup (1,b)(2,b))^*,$$

$$[\![L]\!] = \{(w_1, w_2) \mid |w_1| = |w_2|\}.$$

Restrictions on the shape of the projection over ${\bf 2}$

}

Infinitely many different classes of relations.

Restrictions on the shape of the projection over 2

}

Infinitely many different classes of relations.

C-controlled words and languages

 $C \subseteq \mathbf{2}^*$ regular

- $w \in (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if its projection over $\mathbf{2}$ belongs to C.
- $L \subseteq (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if all its words are.

Restrictions on the shape of the projection over 2

Infinitely many different classes of relations.

C-controlled words and languages

 $C \subseteq \mathbf{2}^*$ regular

- $w \in (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if its projection over $\mathbf{2}$ belongs to C.
- $L \subseteq (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if all its words are.

Examples

Every $w \in (\mathbf{2} \times \mathbb{A})^*$ is $\mathbf{2}^*$ -controlled, (1,a)(1,b)(2,a) is 1^*2^* -controlled, (1,a)(2,a)(1,b) isn't 1^*2^* -controlled, L (previous slide) is $(12)^*$ -controlled.

Restrictions on the shape of the projection over **2**

Infinitely many different classes of relations.

C-controlled words and languages

 $C \subseteq \mathbf{2}^*$ regular

- $w \in (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if its projection over $\mathbf{2}$ belongs to C.
- $L \subseteq (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if all its words are.

Examples

Every $w \in (\mathbf{2} \times \mathbb{A})^*$ is $\mathbf{2}^*$ -controlled, (1,a)(1,b)(2,a) is 1^*2^* -controlled, (1,a)(2,a)(1,b) isn't 1^*2^* -controlled, L (previous slide) is $(12)^*$ -controlled.

C-controlled relations

Given a regular language $C \subseteq \mathbf{2}^*$

 $Rel(C) = \{ \llbracket L \rrbracket \mid L \text{ is reg. and } C\text{-controlled} \}$

Restrictions on the shape of the projection over $\mathbf{2}$

Infinitely many different classes of relations.

C-controlled words and languages

 $C \subseteq \mathbf{2}^*$ regular

- $w \in (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if its projection over $\mathbf{2}$ belongs to C.
- $L \subseteq (\mathbf{2} \times \mathbb{A})^*$ is C-controlled if all its words are.

Examples

Every $w \in (\mathbf{2} \times \mathbb{A})^*$ is $\mathbf{2}^*$ -controlled, (1,a)(1,b)(2,a) is 1^*2^* -controlled, (1,a)(2,a)(1,b) isn't 1^*2^* -controlled, L (previous slide) is $(12)^*$ -controlled.

C-controlled relations

Given a regular language $C \subseteq \mathbf{2}^*$

 $Rel(C) = \{ \llbracket L \rrbracket \mid L \text{ is reg. and } C\text{-controlled} \}$

Examples

 $Rel(1^*2^*) = REC,$ $Rel((12)^*(1^* \cup 2^*)) = REG,$ $Rel(2^*) = RAT.$

Class Containment Problem

CLASS CONTAINMENT PROBLEM

Input: Two regular languages $C, D \subseteq \mathbf{2}^*$

Output: Is $Rel(C) \subseteq Rel(D)$?

Examples

If $C \subseteq D$, then $\text{Rel}(C) \subseteq \text{Rel}(D)$, $\text{Rel}(1^*2^*) \subseteq \text{Rel}((12)^*(1^* \cup 2^*))$, $\text{Rel}((12)^*(1^* \cup 2^*)) \not\subseteq \text{Rel}(1^*2^*)$, $\text{Rel}(1^*2^*) = \text{Rel}(2^*1^*)$, $\text{Rel}((12)^*) = \text{Rel}((21)^*)$.

Previous work²

Decidability and complexity

The problem is decidable for Rel(D) = REC, REG or RAT.

Resynchronization

The proof is constructive in terms of the automaton:

Given a NFA for a C-controlled language L, one can effectively construct a NFA for a D-controlled language L' such that $\|L\| = \|L'\|$.

²D. Figueira and L. Libkin. Synchronizing relations on words. *ACM Transactions on Computer Systems*, 2015.

Our contribution

We prove that the Class Containment Problem is decidable for arbitrary C and D and, in case of positive answer, we give an effective method for resynchronizing relations.

Proof idea

- **Step 1:** Rewrite C and D as finite unions of *simple languages*.
- Step 2: Characterization for simple languages.
- Step 3: Induction on the amount of disjuncts in the unions.

Concat-star languages

$$C_1^*u_1\cdots C_n^*u_n$$

with C_1, \ldots, C_n regular languages, u_1, \ldots, u_n words. A component C_i^* is **homogeneous** if it is contained in 1^* or 2^* .

Otherwise is heterogeneous.

- heterogeneous if it contains at least one heterogeneous component, otherwise it is homogeneous;
- smooth if every homogeneous component is 1^{k*} or 2^{k*} , for some k > 0, and there are no consecutive homogeneous components;
- simple if it has star-height 1 and it is either homogeneous or smooth heterogeneous.

	homogeneous	$\begin{array}{c} {\rm smooth} \\ {\rm heterogeneous} \end{array}$	non-smooth heterogeneous	$_{ m concat-star}^{ m non}$
sh. > 1	(1*1)*2*	1*(1*2)*2*	1*2*(1*2)*	$(1^*2)^* \cup (12)^*$
sh. = 1	1*(11)*2*	1*(12)*2*	1*2*(12)*	$(12)^*1^* \cup (12)^*2^*$

Every regular language is a finite union of concat-star languages.

Every regular language is a finite union of concat-star languages.

Every concat-star language is *Rel-equivalent* to a finite union of concat-star languages of star-height 1.

Every regular language is a finite union of concat-star languages.

Every concat-star language is *Rel-equivalent* to a finite union of concat-star languages of star-height 1.

Every concat-star language of star-height 1 is Rel-equivalent to a finite union of simple languages.

Every regular language is a finite union of concat-star languages.

Every concat-star language is *Rel-equivalent* to a finite union of concat-star languages of star-height 1.

Every concat-star language of star-height 1 is Rel-equivalent to a finite union of simple languages.

Example

 $Rel((12)^*1^*2^*) = Rel((12)^*1^* \cup (12)^*2^*).$

Parikh ratio

$$w \in \mathbf{2}^* \setminus \{\varepsilon\}, \ \rho(w) = \frac{|w|_1}{|w|}.$$

$$C \subseteq \mathbf{2}^*, \ \rho(C) = \{\rho(w) \mid w \in C \setminus \{\varepsilon\}\} \subseteq [0,1]_{\mathbb{Q}}.$$

Parikh ratio

$$w \in \mathbf{2}^* \setminus \{\varepsilon\}, \ \rho(w) = \frac{|w|_1}{|w|}.$$

$$C \subseteq \mathbf{2}^*, \ \rho(C) = \{\rho(w) \mid w \in C \setminus \{\varepsilon\}\} \subseteq [0, 1]_{\mathbb{Q}}.$$

Synchronizing morphisms

$$C = C_1^* u_1 \cdots C_n^* u_n$$
, $D = D_1^* v_1 \cdots D_m^* v_m$. $C \xrightarrow{s.m.} D$ is
$$f : [1, \dots, n] \to [1, \dots, m] \text{ s.t.}$$

- f is monotonic and
- ii) $\rho(C_i^*) \subseteq \rho(D_{f(i)}^*)$ for all $i = 1, \dots, n$.

If C is homogeneous, we have a s.m. to any D by convention.

Parikh ratio

$$w \in \mathbf{2}^* \setminus \{\varepsilon\}, \ \rho(w) = \frac{|w|_1}{|w|}.$$

$$C \subseteq \mathbf{2}^*, \ \rho(C) = \{\rho(w) \mid w \in C \setminus \{\varepsilon\}\} \subseteq [0, 1]_{\mathbb{Q}}.$$

Synchronizing morphisms

$$C = C_1^* u_1 \cdots C_n^* u_n$$
, $D = D_1^* v_1 \cdots D_m^* v_m$. $C \xrightarrow{s.m.} D$ is
$$f: [1, \dots, n] \to [1, \dots, m] \text{ s.t.}$$

- f is monotonic and
- ii) $\rho(C_i^*) \subseteq \rho(D_{f(i)}^*)$ for all $i = 1, \dots, n$.

If C is homogeneous, we have a s.m. to any D by convention.

Proposition

For all simple languages $C, D \subseteq \mathbf{2}^*$, $\operatorname{Rel}(C) \subseteq \operatorname{Rel}(D)$ iff $\pi(C) \subseteq \pi(D)$ and $C \xrightarrow{s.m.} D$.

Proposition

For all simple languages $C, D \subseteq \mathbf{2}^*$, $\operatorname{Rel}(C) \subseteq \operatorname{Rel}(D)$ iff $\pi(C) \subseteq \pi(D)$ and $C \xrightarrow{s.m.} D$.

Examples

 $\begin{array}{l} \operatorname{Rel}((12)^*(112)^*) \subseteq \operatorname{Rel}((12 \cup 11122)^*(121)^*1^*2^*), \\ \operatorname{Rel}((112)^*(12)^*) \not\subseteq \operatorname{Rel}((12 \cup 11122)^*(121)^*1^*2^*). \end{array}$

Step 3: Dealing with unions

Unions on the left

$$\operatorname{Rel}(C_1 \cup C_2) \subseteq \operatorname{Rel}(D)$$
 iff $\operatorname{Rel}(C_1) \subseteq \operatorname{Rel}(D)$ and $\operatorname{Rel}(C_2) \subseteq \operatorname{Rel}(D)$.

Main theorem

For C simple and $D = \bigcup_j D_j$ a finite union of simple languages, the following are equivalent:

- i) $\operatorname{Rel}(C) \subseteq \operatorname{Rel}(D)$,
- ii) $\pi(C) \subseteq \pi(D)$, $\exists j \text{ with } C \xrightarrow{s.m.} D_j \text{ and in addition, if } C \text{ is heterogeneous, then } \text{ReL}(C \setminus [D_j]_{\pi}) \subseteq \text{ReL}(\bigcup_{j' \neq j} D_{j'}).$

Our proof gives an effective algorithm to resynchronize relations. We would like to determine the exact complexity.

• Other natural questions about this framework: existence and computability of canonical control languages, for which control languages C Rel(C) is closed under intersection, etc.