String Parallel Rewriting : analysis of the structure of

the derivations

P. Bourhis, D. Gallois, S.Tison

Meeting DELTA

26-28 Mars 2018

Université A
de Lille SORISAL Lrzia @

@ Motivation

Word constraints

Word constraints

Word constraints

Word constraints

Word constraints

Word constraints

word constraint :
b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)

xLy = pair of nodes linked by a path labelled in L

xLy = pair of nodes linked by a path labelled in L
CeExLy Cxl'y?

xLy = pair of nodes linked by a path labelled in L
CeExLy Cxl'y?

Example :

xLy = pair of nodes linked by a path labelled in L
CeExLy Cxl'y?

Example :
C={a(x,y) = b(x,y)}

xLy = pair of nodes linked by a path labelled in L
CeExLy Cxl'y?

Example :

€ ={alx,y) = b(x,y)}
CEx(a+ b)*y C xb*y

Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)

Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)

bab — aca

Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)
bab — aca

= Reduction to string rewriting system

Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)

bab — aca

= Reduction to string rewriting system

Theorem [GTO03]

C is a set of word constraints : C = xLy C xL'y <= L C Ancg(L’)

Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)
bab — aca

= Reduction to string rewriting system

Theorem [GTO03]

C is a set of word constraints : C = xLy C xL'y <= L C Ancg(L’)
with Ancg(Ll’') ={x | Iy € L', x —* y}

Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)

bab — aca

= Reduction to string rewriting system

Theorem [GTO03]

C is a set of word constraints : C = xLy C xL'y <= L C Ancg(L’)
with Ancg(Ll’') ={x | Iy € L', x —* y}

Compute efficiently Ancg(L") by completion

Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a(z2, y)

bab — aca

= Reduction to string rewriting system

Theorem [GTO03]

C is a set of word constraints : C = xLy C xL'y <= L C Ancg(L’)
with Ancg(Ll’') ={x | Iy € L', x —* y}

Compute efficiently Ancg(L") by completion keeping worried by completion
in database theory

Word constraints and completion

ab — bc

Word constraints and completion

ab — bc

Word constraints and completion

Word constraints and completion

ab — bc

Word constraints and completion

ab — bc

Word constraints and completion

ab — bc

© Concepts in parallel rewriting

String parallel rewriting

Once upon a time...

String parallel rewriting

Once upon a time... R = {f — p,0g — ince}

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

frog

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

rog

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

rog
f — pJ

@rog

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

rog
f — pJ

[PJrog]

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

rog
f — pJ{

[Pifoe]
og — ince J

pr|ince

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

rog
f — pJ{

o]

og — ince J

prlince |

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

rog
|
@r f—s plog —» incel
og —» ince l @r

pr|ince

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

I’Og
— J
plfog] e pios |
o0g —» ince J @r
prlince |

frog —©— prince

String parallel rewriting

Once upon a time... R = {f — p,og — ince}

[flrog
s pl
@r f—s plog —» fncel
og —» ince l @r
prlince

frog —©— prince

String specialization of synchronious/multi-step rewriting [BKdVTO03] (or
concurrent rewriting [GKM87, KV90]) on terms

srs parallely bounded

Definition
A srs is parallely bounded by k iff —o-k = —&-*

srs parallely bounded

Definition
A srs is parallely bounded by k iff —o-k = —&-*

R ={a— b,b — a} is paralelly bounded by 1

srs parallely bounded

Definition
A srs is parallely bounded by k iff —o-k = —&-*

R ={a— b,b — a} is paralelly bounded by 1
e R7!is parallely-bounded

srs parallely bounded

Definition
A srs is parallely bounded by k iff —o-k = —&-*

R ={a— b,b — a} is paralelly bounded by 1
e R7!is parallely-bounded

@ R is a rational relation

srs parallely bounded

Definition
A srs is parallely bounded by k iff —o-k = —&-*

R ={a— b,b — a} is paralelly bounded by 1
e R7!is parallely-bounded

@ R is a rational relation

How to control the number of steps of completion ?

Derivation graph

Understand interaction in a derivation by using a graph

Derivation graph

01 = aaaaab —»1 aaaab —»» 3aaaa —3 aaa —4 aa

Derivation graph

aaaaab —1 aaaab — adlaa| —3 —4[ala

ogéo o

Derivation graph

aaaaab — aaa —o [aalda] —3[alaa —4 aa

ogéo ©

Derivation graph

aaalab —1 [aafalab —2[alaaa —3 aaa —4 aa

agéo e

Derivation graph

0o = aaaaab —»1 aaaab —»» aaab —>3 aaa —4 aa

efo o

Derivation graph

aaaaab — aaaaab —
aaaab —» aaaa aaaab —» aaab
—>3 aaa —4 aa —3 aaa —4 aa

e:o o agéa o

Derivation graph

aaaaab — aaaaab —
aaaab —»» aaaa aaaab —5 aaab
—>%3 aaa —4 aa —>3 aaa —4 aa

oeoa o ogéa o

Causal equivalence [BKdVTO03] : 01 ~ 07

Derivation graph

aaaaab —1 aaaaab —1
aaaab —» aaaa aaaab —» aaab
—>3 daa —»4 aa —>3 daa —»4 aa

egéo o egéo o

Causal equivalence [BKdVTO03] : 01 ~ 00 = G(01) = G(032)

Derivation graph

aaaaab —1 aaaaab —1
aaaab —» aaaa aaaab —» aaab
—>3 daa —»4 aa —>3 daa —»4 aa

egéo o egéo o

All topological sort of G(o) gives an equivalent derivation

Maxmatch-bounded srs

Maxmatch-bounded srs

Maxmatch-bounded srs

Maxmatch-bounded srs

Parallel complexity aﬁ G

Maxmatch-bounded srs

Parallil ;:;EI?Z Qﬁ o

Maxmatch-bounded srs

Parallel complexity a a G
= depth of G

Definition

R is k-maxmatch-bounded iff for any derivation o, depth of G(o) is < k

Properties and membership

R is maxmatch-bounded then :

Properties and membership

R is maxmatch-bounded then :

@ R is terminating

Properties and membership

R is maxmatch-bounded then :

@ R is terminating

@ R is parallely bounded

Properties and membership

R is maxmatch-bounded then :

@ R is terminating
@ R is parallely bounded
e R~!is maxmatch-bounded

Properties and membership

R is maxmatch-bounded then :

@ R is terminating
@ R is parallely bounded
e R~!is maxmatch-bounded

Main theorem

For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is PSPACE-complete.

9 Main result : how to bound parallel complexity

|dea of the proof

Membership theorem

For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is PSPACE-complete.

|dea of the proof

Membership theorem

For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is PSPACE-complete.

© Guess a derivation of depth k + 1

|dea of the proof

Membership theorem

For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is PSPACE-complete.

© Guess a derivation of depth k + 1

@ Control the size of the derivation

|dea of the proof

Membership theorem

For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is PSPACE-complete.

© Guess a derivation of depth k + 1
@ Control the size of the derivation

© Improve (space-)memory by "leftmost construction"

Conic derivation

Goal : Find a model where the derivation has a bounded size

Conic derivation

Goal : Find a model where the derivation has a bounded size
Conic = all nodes are linked to the last one

Conic derivation

Goal : Find a model where the derivation has a bounded size
Conic = all nodes are linked to the last one
Cleaned = all letters will be used in the derivation

Conic derivation

Goal : Find a model where the derivation has a bounded size
Conic = all nodes are linked to the last one
Cleaned = all letters will be used in the derivation

g

Laddered srs

Laddered srs

a Laddered =

Laddered srs

° Laddered =

| Letters are leveled and

Laddered srs

Laddered =
Letters are leveled and
if u— v then

Laddered srs

Laddered =

Letters are leveled and
if u — v then

Yaeu bev

Laddered srs

Laddered =

Letters are leveled and
if u — v then

Yaeu bev
f(b)=1+1f(a)

Laddered srs

Laddered =

Letters are leveled and
if u — v then

Yaeu bev
f(b)=1+1f(a)

2o

Laddered srs

Laddered =

Letters are leveled and
if u — v then
Yacubev
f(b)=1+1f(a)
20,21

Laddered srs

Laddered =

Letters are leveled and
if u — v then

Yaeu bev
f(b)=1+1f(a)
Yo0.,X1, Xo...

Laddered srs

Laddered =

Letters are leveled and
if u — v then

Yaeu bev
f(b)=1+1f(a)
Yo0.,X1, Xo...

Example :
R = {ata; — ary1} is laddered by f(a;) =t

Laddered srs

Laddered =

Letters are leveled and
if u — v then

Yaeu bev
f(b)=1+1f(a)
Yo0.,X1, Xo...

Example :
R = {ata; — ary1} is laddered by f(a;) =t

R € MBumax(k) iff Riag € MBmax(2k + 1,%5)

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost =

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost = "Never rewrite a factor on the right to an other"

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost = "Never rewrite a factor on the right to an other" i.e. forbid :

aaa|
[aJa bb]
[bb Jabb

Leftmost derivation

R ={a— bb,bab — c,b — f}
aaa —* fcf

Leftmost derivation

R ={a— bb,bab — c,b — f}
aaa —"* fcf

daa

Leftmost derivation

R ={a— bb,bab — c,b — f}
aaa —"* fcf

Leftmost derivation

R ={a— bb,bab — c,b — f}
aaa —"* fcf

Ebaa

baa

Leftmost derivation

R={a— bb,bab — c,b — f}
aaa —* fcf

fba[a]

b :
(bb) /Nf

Leftmost derivation

R={a— bb,bab — c,b — f}
aaa —* fcf

Leftmost derivation

R={a— bb,bab — c,b — f}
aaa —* fcf

fc@ (0)

| PN
“ NN

PSPACE algorithm

For all derivation there is a derivation :

PSPACE algorithm

For all derivation there is a derivation :

@ with the same depth

PSPACE algorithm

For all derivation there is a derivation :
@ with the same depth

@ cleaned

PSPACE algorithm

For all derivation there is a derivation :
@ with the same depth
@ cleaned

@ conic

PSPACE algorithm

For all derivation there is a derivation :
@ with the same depth
@ cleaned
@ conic
@ leftmost

on laddered systems :

PSPACE algorithm

For all derivation there is a derivation :
@ with the same depth
@ cleaned
@ conic
o leftmost

on laddered systems :

no longer rewritten

k, k k k. k k. k
Xk == Ul U2...UI— VI' Vi—l"'Vl VO

PSPACE algorithm

For all derivation there is a derivation :
@ with the same depth
@ cleaned
@ conic
@ leftmost

on laddered systems :

no longer rewritten

k, k k k. k k. k
Xk — uy up...u; Vi Vi_1.--V1 Vg

for i £ 0 : |vf| < L+ M with M = max(g ||

PSPACE algorithm

For all derivation there is a derivation :
@ with the same depth
@ cleaned
@ conic
o leftmost

on laddered systems :

k k k k. k k . k
Xk == Ul U2...U" V,' V’_1V1 VO
—_——
memory

for i #0 : |vK| < L+ M with M = max(; r)er ||

@ Relation with Datalog

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff VI, P*(1) = P*+1(1)

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff VI, P*(1) = P*+1(1)

e Undecidable in general [AHV95]

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff VI, P*(1) = P*+1(1)

e Undecidable in general [AHV95]
e Undecidable in arity 3 [HKMV95]

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff VI, P*(1) = P*+1(1)

e Undecidable in general [AHV95]
e Undecidable in arity 3 [HKMV95]
e Still open in arity 2 [Mar99, GM14]

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]
b(x,y): —ai(x,x1) A+ A an(Xn-1,¥)

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]
b(x,y) : —a1(x,x1) A+ -+ A an(xn-1,y)
aiar...apn —beR

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]
b(X7y) : —al(X,Xl) VANERIAN a,,(x,,_l,y)
aiar...ap—~ beR

Datalog theorem

Let R be an inverse context free rewriting system. Let Pg be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff Pg is uniform-bounded by k

Chain Datalog case

Datalog theorem

Let R be an inverse context free rewriting system. Let Pr be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff Pgr is uniform-bounded by k

Chain Datalog case

Datalog theorem

Let R be an inverse context free rewriting system. Let Pr be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff Pgr is uniform-bounded by k

Chain Datalog case

Datalog theorem

Let R be an inverse context free rewriting system. Let Pr be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff Pgr is uniform-bounded by k

Arlx,x1) Ax(x,xe) As(xe,x3) Aa(xs,y)

N

(x2) A2, x3) (%3,)

\/

A// (x,y)

Generalisation to word constraints

We can extend notion of uniform boundedness to non-unary word
constraints

Generalisation to word constraints

We can extend notion of uniform boundedness to non-unary word
constraints (i.e. u v e R = |v| >2)

Generalisation to word constraints

We can extend notion of uniform boundedness to non-unary word
constraints (i.e. u v e R = |v| >2)

Cg is uniformly bounded by k iff R is k maxmatch-bounded

Conclusion

Control parallel steps...

Conclusion

Control parallel steps...
— allow us to compute ancestors

Conclusion

Control parallel steps...
— allow us to compute ancestors
and help to decide C = xLy C xL'y

Conclusion

Control parallel steps...
— allow us to compute ancestors
and help to decide C = xLy C xL'y
— or understand chase completion in database theory

Conclusion

Control parallel steps...
— allow us to compute ancestors
and help to decide C = xLy C xL'y
— or understand chase completion in database theory

a— aa ¢ MBpnax

Conclusion

Control parallel steps...
— allow us to compute ancestors
and help to decide C = xLy C xL'y
— or understand chase completion in database theory

a— aa ¢ MBpnax

= xa"y C xay

Ongoing & Future Work

Open question :

Ongoing & Future Work

Open question : Decide "R € MBnax" ?

Ongoing & Future Work

Open question : Decide "R € MBnax" ?
MBax with other srs classes

Ongoing & Future Work

Open question : Decide "R € MBnax" ?
MBax with other srs classes

Link with tuple generating dependancies and Datalog

Ongoing & Future Work

Open question : Decide "R € MBnax" ?

MBax with other srs classes

Link with tuple generating dependancies and Datalog
More general rewriting system for RPQ optimization

Ongoing & Future Work

Open question : Decide "R € MBnax" ?
MBax with other srs classes
Link with tuple generating dependancies and Datalog

More general rewriting system for RPQ optimization
(at — a)

References |

B
B

Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of
databases, Addison-Wesley, 1995.

M. Bezem, J.W. Klop, R. de Vrijer, and Terese, Term rewriting
systems, Cambridge Tracts in Theoretica, Cambridge University Press,
2003.

Guozhu Dong and Seymour Ginsburg, On decompositions of chain
datalog programs into p (left-)linear 1-rule components, The Journal
of Logic Programming 23 (1995), no. 3, 203 — 236.

Joseph Goguen, Claude Kirchner, and José Meseguer, Concurrent
term rewriting as a model of computation, pp. 53-93, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1987.

Tomasz Gogacz and Jerzy Marcinkowski, All-instances termination of
chase is undecidable, pp. 293-304, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

References |l

ﬁ Gosta Grahne and Alex Thomo, Query containment and rewriting
using views for regular path queries under constraints, Proceedings of
the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 9-12, 2003, San Diego, CA,
USA, 2003, pp. 111-122.

ﬁ Gerd G Hillebrand, Paris C Kanellakis, Harry G Mairson, and Moshe Y
Vardi, Undecidable boundedness problems for datalog programs, The
Journal of Logic Programming 25 (1995), no. 2, 163 — 190.

[@ Claude Kirchner and Patrick Viry, Implementing parallel rewriting,
pp. 1-15, Springer Berlin Heidelberg, Berlin, Heidelberg, 1990.

ﬁ Jerzy Marcinkowski, Achilles, turtle, and undecidable boundedness
y
problems for small DATALOG programs, SIAM J. Comput. 29 (1999),
no. 1, 231-257.

Thank you'!

H(x) : —a1(x1) A= A ap(xp)

H(x) : —a1(x1) A= A ap(xp)

FoF(x,y) «— Friend(x, y)
FoF(x,y) «— FoF(x,z) A FoF(z,y)

H(x) : —a1(x1) A= A ap(xp)

FoF(x,y) «— Friend(x, y)
FoF(x,y) «— FoF(x,z) A FoF(z,y)
| = Friend(Alice,Bob), Friend(Bob,Carlos).

H(x) : —a1(x1) A= A ap(xp)

FoF(x,y) «— Friend(x, y)
FoF(x,y) «— FoF(x,z) A FoF(z,y)
| = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos).

H(x) : —a1(x1) A= A ap(xp)

FoF(x,y) «— Friend(x, y)
FoF(x,y) «— FoF(x,z) A FoF(z,y)
| = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos).
P2(1) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos), FoF(Alice,Carlos).

H(x) : —a1(x1) A= A ap(xp)

FoF(x,y) «— Friend(x, y)
FoF(x,y) «— FoF(x,z) A FoF(z,y)
| = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos).

P2(1) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos), FoF(Alice,Carlos).

Finally, P2(1) = P3(I)

	Motivation
	Concepts in parallel rewriting
	Main result : how to bound parallel complexity
	Relation with Datalog

