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xLy = pair of nodes linked by a path labelled in L
CeExLy Cxl'y?

Example :

€ ={alx,y) = b(x,y)}
CEx(a+ b)*y C xb*y
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Word constraints and RPQ

b(x,x1)a(x1,x2)b(x2,y) = Iz1, 22, a(x, z1)c(z1, z2) a( z2, y)

bab — aca

= Reduction to string rewriting system

Theorem [GTO03]

C is a set of word constraints : C = xLy C xL'y <= L C Ancg(L’)
with Ancg(Ll’') ={x | Iy € L', x —* y}

Compute efficiently Ancg(L") by completion keeping worried by completion
in database theory
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String parallel rewriting

Once upon a time... R = {f — p,og — ince}

[flrog
s pl
@r f—s plog —» fncel
og —» ince l @r
prlince

frog —©— prince

String specialization of synchronious/multi-step rewriting [BKdVTO03] (or
concurrent rewriting [GKM87, KV90]) on terms
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srs parallely bounded

Definition
A srs is parallely bounded by k iff —o-k = —&-*

R ={a— b,b — a} is paralelly bounded by 1
e R7!is parallely-bounded

@ R is a rational relation

How to control the number of steps of completion ?



Derivation graph

Understand interaction in a derivation by using a graph
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Derivation graph

aaaaab — aaaaab —
aaaab —»» aaaa aaaab —5 aaab
—>%3 aaa —4 aa —>3 aaa —4 aa

oeoa o ogéa o

Causal equivalence [BKdVTO03] : 01 ~ 07



Derivation graph

aaaaab —1 aaaaab —1
aaaab —» aaaa aaaab —» aaab
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Causal equivalence [BKdVTO03] : 01 ~ 00 = G(01) = G(032)



Derivation graph

aaaaab —1 aaaaab —1
aaaab —» aaaa aaaab —» aaab
—>3 daa —»4 aa —>3 daa —»4 aa

egéo o egéo o

All topological sort of G(o) gives an equivalent derivation
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Maxmatch-bounded srs

Parallel complexity a a G
= depth of G

Definition

R is k-maxmatch-bounded iff for any derivation o, depth of G(o) is < k
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Main theorem
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|dea of the proof

Membership theorem

For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is PSPACE-complete.

© Guess a derivation of depth k + 1
@ Control the size of the derivation

© Improve (space-)memory by "leftmost construction"
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Laddered srs

Laddered =

Letters are leveled and
if u — v then

Yaeu bev
f(b)=1+1f(a)
Yo0.,X1, Xo...

Example :
R = {ata; — ary1} is laddered by f(a;) =t

R € MBumax(k) iff Riag € MBmax(2k + 1,%5)
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Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost = "Never rewrite a factor on the right to an other" i.e. forbid :

aaa|
[aJa bb]
[ bb Jabb
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Leftmost derivation

R={a— bb,bab — c,b — f}
aaa —* fcf

fba[a]

b :
(bb) /Nf
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Leftmost derivation

R={a— bb,bab — c,b — f}
aaa —* fcf

fc@ (0)

| PN
“ NN
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PSPACE algorithm

For all derivation there is a derivation :
@ with the same depth
@ cleaned
@ conic
o leftmost

on laddered systems :

k  k k k.  k k . k
Xk == Ul U2...U" V,' V’_1V1 VO
—_——
memory

for i #0 : |vK| < L+ M with M = max(; r)er ||
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Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff VI, P*(1) = P*+1(1)

e Undecidable in general [AHV95]
e Undecidable in arity 3 [HKMV95]
e Still open in arity 2 [Mar99, GM14]
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Chain Datalog case

Datalog theorem

Let R be an inverse context free rewriting system. Let Pr be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff Pgr is uniform-bounded by k

Arlx,x1)  Ax(x,xe)  As(xe,x3)  Aa(xs,y)

N

(x2) A2, x3) (%3, )

\/

A// (x,y)
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Generalisation to word constraints

We can extend notion of uniform boundedness to non-unary word
constraints (i.e. u v e R = |v| >2)

Cg is uniformly bounded by k iff R is k maxmatch-bounded
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Conclusion

Control parallel steps...
— allow us to compute ancestors
and help to decide C = xLy C xL'y
— or understand chase completion in database theory

a— aa ¢ MBpnax

= xa"y C xay
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Ongoing & Future Work

Open question : Decide "R € MBnax" ?
MBax with other srs classes
Link with tuple generating dependancies and Datalog

More general rewriting system for RPQ optimization
(at — a)
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H(x) : —a1(x1) A= A ap(xp)

FoF(x,y) «— Friend(x, y)
FoF(x,y) «— FoF(x,z) A FoF(z,y)
| = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos).

P2(1) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos), FoF(Alice,Carlos).

Finally, P2(1) = P3(I)
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