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b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)
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C = {a(x , y)→ b(x , y)}
C |= x(a + b)∗y v xb∗y
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Once upon a time... R = {f→ p, og→ ince}

f rog

p r og

pr ince
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f r og

p r ince

f −→ p⊥og −→ ince

frog prince

String specialization of synchronious/multi-step rewriting [BKdVT03] (or
concurrent rewriting [GKM87, KV90]) on terms
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Derivation graph

Understand interaction in a derivation by using a graph
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Causal equivalence [BKdVT03] : σ1 ∼ σ2 =⇒ G(σ1) ∼= G(σ2)
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All topological sort of G(σ) gives an equivalent derivation
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Definition
R is k-maxmatch-bounded iff for any derivation σ, depth of G(σ) is ≤ k
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Laddered srs

1

2
4

3

0 Laddered =

Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and

if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then

∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v

f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)

Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0

, Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1

, Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)



Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory



Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost =



Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost = "Never rewrite a factor on the right to an other"



Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost = "Never rewrite a factor on the right to an other" i.e. forbid :

aa a
a a bb
bb abb
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R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf
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pspace algorithm

For all derivation there is a derivation :
with the same depth
cleaned
conic
leftmost

on laddered systems :

xk = uk
1uk

2 ...uk
i vk

i vk
i−1...vk

1︸ ︷︷ ︸
memory

vk
0

for i 6= 0 : |vk
i | < L + M with M = max(l ,r)∈R |r |
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Chain Datalog case

Datalog theorem
Let R be an inverse context free rewriting system. Let PR be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff PR is uniform-bounded by k

A′
1(x, x2) A′

2(x2, x3)

A′′(x, y)

A′
3(x3, y)

A1(x, x1) A2(x1, x2) A3(x2, x3) A4(x3, y)
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