
String Parallel Rewriting : analysis of the structure of
the derivations

P. Bourhis, D. Gallois, S.Tison

Meeting DELTA

26-28 Mars 2018

Contents

1 Motivation

2 Concepts in parallel rewriting

3 Main result : how to bound parallel complexity

4 Relation with Datalog

Word constraints

a

b

b

a

a

c

a

c

c

b

a

a

c

Word constraints

a

b

b

a

a

c

a

c

c

b

a

a

c

Word constraints

a

b

b

a

a

c

a

c

c

b

a

a

c

Word constraints

a

b

b

a

a

c

a

c

c

b

a

a

c

Word constraints

a

b

b

a

a

c

a

c

c

b

a

a

c

Word constraints

a

b

b

a

a

c

a

c

c

b

a

a

c

word constraint :
b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

Problem

xLy = pair of nodes linked by a path labelled in L

C |= xLy v xL′y ?

Example :
C = {a(x , y)→ b(x , y)}
C |= x(a + b)∗y v xb∗y

Problem

xLy = pair of nodes linked by a path labelled in L
C |= xLy v xL′y ?

Example :
C = {a(x , y)→ b(x , y)}
C |= x(a + b)∗y v xb∗y

Problem

xLy = pair of nodes linked by a path labelled in L
C |= xLy v xL′y ?

Example :

C = {a(x , y)→ b(x , y)}
C |= x(a + b)∗y v xb∗y

Problem

xLy = pair of nodes linked by a path labelled in L
C |= xLy v xL′y ?

Example :
C = {a(x , y)→ b(x , y)}

C |= x(a + b)∗y v xb∗y

Problem

xLy = pair of nodes linked by a path labelled in L
C |= xLy v xL′y ?

Example :
C = {a(x , y)→ b(x , y)}
C |= x(a + b)∗y v xb∗y

Word constraints and RPQ

b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

bab → aca

⇒ Reduction to string rewriting system

Theorem [GT03]
C is a set of word constraints : C |= xLy v xL′y ⇐⇒ L ⊆ AncR(L′)
with AncR(L′) = {x | ∃y ∈ L′, x −→∗ y}

Compute efficiently AncR(L′) by completion keeping worried by completion
in database theory

Word constraints and RPQ

b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

bab → aca

⇒ Reduction to string rewriting system

Theorem [GT03]
C is a set of word constraints : C |= xLy v xL′y ⇐⇒ L ⊆ AncR(L′)
with AncR(L′) = {x | ∃y ∈ L′, x −→∗ y}

Compute efficiently AncR(L′) by completion keeping worried by completion
in database theory

Word constraints and RPQ

b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

bab → aca

⇒ Reduction to string rewriting system

Theorem [GT03]
C is a set of word constraints : C |= xLy v xL′y ⇐⇒ L ⊆ AncR(L′)
with AncR(L′) = {x | ∃y ∈ L′, x −→∗ y}

Compute efficiently AncR(L′) by completion keeping worried by completion
in database theory

Word constraints and RPQ

b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

bab → aca

⇒ Reduction to string rewriting system

Theorem [GT03]
C is a set of word constraints : C |= xLy v xL′y ⇐⇒ L ⊆ AncR(L′)

with AncR(L′) = {x | ∃y ∈ L′, x −→∗ y}

Compute efficiently AncR(L′) by completion keeping worried by completion
in database theory

Word constraints and RPQ

b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

bab → aca

⇒ Reduction to string rewriting system

Theorem [GT03]
C is a set of word constraints : C |= xLy v xL′y ⇐⇒ L ⊆ AncR(L′)
with AncR(L′) = {x | ∃y ∈ L′, x −→∗ y}

Compute efficiently AncR(L′) by completion keeping worried by completion
in database theory

Word constraints and RPQ

b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

bab → aca

⇒ Reduction to string rewriting system

Theorem [GT03]
C is a set of word constraints : C |= xLy v xL′y ⇐⇒ L ⊆ AncR(L′)
with AncR(L′) = {x | ∃y ∈ L′, x −→∗ y}

Compute efficiently AncR(L′) by completion

keeping worried by completion
in database theory

Word constraints and RPQ

b(x , x1)a(x1, x2)b(x2, y)→ ∃z1, z2, a(x , z1)c(z1, z2)a(z2, y)

bab → aca

⇒ Reduction to string rewriting system

Theorem [GT03]
C is a set of word constraints : C |= xLy v xL′y ⇐⇒ L ⊆ AncR(L′)
with AncR(L′) = {x | ∃y ∈ L′, x −→∗ y}

Compute efficiently AncR(L′) by completion keeping worried by completion
in database theory

Word constraints and completion

ab → bc

Word constraints and completion

ab → bc

a

a

b a b

Word constraints and completion

ab → bc

a

a

b a b

Word constraints and completion

ab → bc

a

a

b a b

b

c

b c

Word constraints and completion

ab → bc

a

a

b a b

b

c

b c

Word constraints and completion

ab → bc

a

a

b a b

b

c

b c

b

c

Contents

1 Motivation

2 Concepts in parallel rewriting

3 Main result : how to bound parallel complexity

4 Relation with Datalog

String parallel rewriting

Once upon a time...

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

frog

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

p rog

f −→ p

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

p r og

f −→ p

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

p r og

pr ince

f −→ p

og −→ ince

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

p r og

pr ince

f −→ p

og −→ ince

f r og

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

p r og

pr ince

f −→ p

og −→ ince

f r og

p r ince

f −→ p⊥og −→ ince

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

p r og

pr ince

f −→ p

og −→ ince

f r og

p r ince

f −→ p⊥og −→ ince

frog prince

String parallel rewriting

Once upon a time... R = {f→ p, og→ ince}

f rog

p r og

pr ince

f −→ p

og −→ ince

f r og

p r ince

f −→ p⊥og −→ ince

frog prince

String specialization of synchronious/multi-step rewriting [BKdVT03] (or
concurrent rewriting [GKM87, KV90]) on terms

srs parallely bounded

Definition
A srs is parallely bounded by k iff k = ∗

R = {a→ b, b → a} is paralelly bounded by 1

R−1 is parallely-bounded
R is a rational relation

How to control the number of steps of completion ?

srs parallely bounded

Definition
A srs is parallely bounded by k iff k = ∗

R = {a→ b, b → a} is paralelly bounded by 1

R−1 is parallely-bounded
R is a rational relation

How to control the number of steps of completion ?

srs parallely bounded

Definition
A srs is parallely bounded by k iff k = ∗

R = {a→ b, b → a} is paralelly bounded by 1

R−1 is parallely-bounded

R is a rational relation

How to control the number of steps of completion ?

srs parallely bounded

Definition
A srs is parallely bounded by k iff k = ∗

R = {a→ b, b → a} is paralelly bounded by 1

R−1 is parallely-bounded
R is a rational relation

How to control the number of steps of completion ?

srs parallely bounded

Definition
A srs is parallely bounded by k iff k = ∗

R = {a→ b, b → a} is paralelly bounded by 1

R−1 is parallely-bounded
R is a rational relation

How to control the number of steps of completion ?

Derivation graph

Understand interaction in a derivation by using a graph

Derivation graph

σ1 = aaaaab −→1 aaaab −→2 aaaa −→3 aaa −→4 aa

1 2

3

4

0

Derivation graph

aaaaab −→1 aaaab −→2 aa aa −→3 aa a −→4 a a

1 2

3

4

0

Derivation graph

aaaaab −→1 aaa ab −→2 aa a a −→3 a aa −→4 aa

1 2

4

3

0

Derivation graph

a aa ab −→1 aa a ab −→2 a aaa −→3 aaa −→4 aa

1 3

4

2

0

Derivation graph

σ2 = aaaaab −→1 aaaab −→2 aaab −→3 aaa −→4 aa

2 3

4

1

0

Derivation graph

aaaaab −→1
aaaab −→2 aaaa
−→3 aaa −→4 aa

1 2

3

4

0

aaaaab −→1
aaaab −→2 aaab
−→3 aaa −→4 aa

2 3

4

1

0

Derivation graph

aaaaab −→1
aaaab −→2 aaaa
−→3 aaa −→4 aa

1 2

3

4

0

aaaaab −→1
aaaab −→2 aaab
−→3 aaa −→4 aa

2 3

4

1

0

Causal equivalence [BKdVT03] : σ1 ∼ σ2

Derivation graph

aaaaab −→1
aaaab −→2 aaaa
−→3 aaa −→4 aa

1 2

3

4

0

aaaaab −→1
aaaab −→2 aaab
−→3 aaa −→4 aa

2 3

4

1

0

Causal equivalence [BKdVT03] : σ1 ∼ σ2 =⇒ G(σ1) ∼= G(σ2)

Derivation graph

aaaaab −→1
aaaab −→2 aaaa
−→3 aaa −→4 aa

1 2

3

4

0

aaaaab −→1
aaaab −→2 aaab
−→3 aaa −→4 aa

2 3

4

1

0

All topological sort of G(σ) gives an equivalent derivation

Maxmatch-bounded srs

2 3

4

1

0

Maxmatch-bounded srs

2 3

4

1

0

Maxmatch-bounded srs

2 3

4

1

0

Maxmatch-bounded srs

Parallel complexity 2 3

4

1

0

Maxmatch-bounded srs

Parallel complexity
= depth of G

2 3

4

1

0

Maxmatch-bounded srs

Parallel complexity
= depth of G

2 3

4

1

0

Definition
R is k-maxmatch-bounded iff for any derivation σ, depth of G(σ) is ≤ k

Properties and membership

R is maxmatch-bounded then :

R is terminating
R is parallely bounded
R−1 is maxmatch-bounded

Main theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

Properties and membership

R is maxmatch-bounded then :

R is terminating

R is parallely bounded
R−1 is maxmatch-bounded

Main theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

Properties and membership

R is maxmatch-bounded then :

R is terminating
R is parallely bounded

R−1 is maxmatch-bounded

Main theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

Properties and membership

R is maxmatch-bounded then :

R is terminating
R is parallely bounded
R−1 is maxmatch-bounded

Main theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

Properties and membership

R is maxmatch-bounded then :

R is terminating
R is parallely bounded
R−1 is maxmatch-bounded

Main theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

Contents

1 Motivation

2 Concepts in parallel rewriting

3 Main result : how to bound parallel complexity

4 Relation with Datalog

Idea of the proof

Membership theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

1 Guess a derivation of depth k + 1
2 Control the size of the derivation
3 Improve (space-)memory by "leftmost construction"

Idea of the proof

Membership theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

1 Guess a derivation of depth k + 1

2 Control the size of the derivation
3 Improve (space-)memory by "leftmost construction"

Idea of the proof

Membership theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

1 Guess a derivation of depth k + 1
2 Control the size of the derivation

3 Improve (space-)memory by "leftmost construction"

Idea of the proof

Membership theorem
For a given k, the problem of deciding is a srs R is maxmatch-bounded by
k is pspace-complete.

1 Guess a derivation of depth k + 1
2 Control the size of the derivation
3 Improve (space-)memory by "leftmost construction"

Conic derivation

Goal : Find a model where the derivation has a bounded size

Conic = all nodes are linked to the last one
Cleaned = all letters will be used in the derivation

0

1 32

4 5

6

Conic derivation

Goal : Find a model where the derivation has a bounded size
Conic = all nodes are linked to the last one

Cleaned = all letters will be used in the derivation

0

1 32

4 5

6

Conic derivation

Goal : Find a model where the derivation has a bounded size
Conic = all nodes are linked to the last one
Cleaned = all letters will be used in the derivation

0

1 32

4 5

6

Conic derivation

Goal : Find a model where the derivation has a bounded size
Conic = all nodes are linked to the last one
Cleaned = all letters will be used in the derivation

0

1 32

4 5

6

Laddered srs

1

2
4

3

0

Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =

Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and

if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then

∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v

f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)

Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0

, Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1

, Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Laddered srs

1

2
4

3

0 Laddered =
Letters are leveled and
if u → v then
∀a ∈ u, b ∈ v
f (b) = 1 + f (a)
Σ0 , Σ1 , Σ2...

Example :
R = {atat → at+1} is laddered by f (at) = t

Theorem
R ∈ MBmax(k) iff RLad ∈ MBmax(2k + 1,Σ∗0)

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost =

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost = "Never rewrite a factor on the right to an other"

Leftmost derivation

Idea : Control how to apply rewriting steps to keep a polynomial memory
Leftmost = "Never rewrite a factor on the right to an other" i.e. forbid :

aa a
a a bb
bb abb

Leftmost derivation

R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf

Leftmost derivation

R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf

aaa 0

1 2

3 4 5

Leftmost derivation

R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf

a aa

bb aa

0

1 2

3 4 5

Leftmost derivation

R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf

b baa

f baa

0

1 2

3 4 5

Leftmost derivation

R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf

fba a

fba bb

0

1 2

3 4 5

Leftmost derivation

R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf

f bab b

f c b

0

1 2

3 4 5

Leftmost derivation

R = {a→ bb, bab → c, b → f }
aaa −→∗ fcf

fc b

fc f

0

1 2

3 4 5

pspace algorithm

For all derivation there is a derivation :

with the same depth
cleaned
conic
leftmost

pspace algorithm

For all derivation there is a derivation :
with the same depth

cleaned
conic
leftmost

pspace algorithm

For all derivation there is a derivation :
with the same depth
cleaned

conic
leftmost

pspace algorithm

For all derivation there is a derivation :
with the same depth
cleaned
conic

leftmost

pspace algorithm

For all derivation there is a derivation :
with the same depth
cleaned
conic
leftmost

on laddered systems :

pspace algorithm

For all derivation there is a derivation :
with the same depth
cleaned
conic
leftmost

on laddered systems :

xk =

no longer rewritten︷ ︸︸ ︷
uk

1uk
2 ...uk

i vk
i vk

i−1...vk
1 vk

0

pspace algorithm

For all derivation there is a derivation :
with the same depth
cleaned
conic
leftmost

on laddered systems :

xk =

no longer rewritten︷ ︸︸ ︷
uk

1uk
2 ...uk

i vk
i vk

i−1...vk
1 vk

0

for i 6= 0 : |vk
i | < L + M with M = max(l ,r)∈R |r |

pspace algorithm

For all derivation there is a derivation :
with the same depth
cleaned
conic
leftmost

on laddered systems :

xk = uk
1uk

2 ...uk
i vk

i vk
i−1...vk

1︸ ︷︷ ︸
memory

vk
0

for i 6= 0 : |vk
i | < L + M with M = max(l ,r)∈R |r |

Contents

1 Motivation

2 Concepts in parallel rewriting

3 Main result : how to bound parallel complexity

4 Relation with Datalog

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff ∀I, Pk(I) = Pk+1(I)

Undecidable in general [AHV95]
Undecidable in arity 3 [HKMV95]
Still open in arity 2 [Mar99, GM14]

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff ∀I, Pk(I) = Pk+1(I)

Undecidable in general [AHV95]

Undecidable in arity 3 [HKMV95]
Still open in arity 2 [Mar99, GM14]

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff ∀I, Pk(I) = Pk+1(I)

Undecidable in general [AHV95]
Undecidable in arity 3 [HKMV95]

Still open in arity 2 [Mar99, GM14]

Control number of iterations in Datalog

Definition
P is uniformly bounded by k iff ∀I, Pk(I) = Pk+1(I)

Undecidable in general [AHV95]
Undecidable in arity 3 [HKMV95]
Still open in arity 2 [Mar99, GM14]

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]
b(x , y) : −a1(x , x1) ∧ · · · ∧ an(xn−1, y)

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]
b(x , y) : −a1(x , x1) ∧ · · · ∧ an(xn−1, y)

a1a2...an → b ∈ R

Chain Datalog case

Uniform boundedness is decidable for chain datalog [DG95]
b(x , y) : −a1(x , x1) ∧ · · · ∧ an(xn−1, y)

a1a2...an → b ∈ R

Datalog theorem
Let R be an inverse context free rewriting system. Let PR be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff PR is uniform-bounded by k

Chain Datalog case

Datalog theorem
Let R be an inverse context free rewriting system. Let PR be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff PR is uniform-bounded by k

1 2

3

4

0

Chain Datalog case

Datalog theorem
Let R be an inverse context free rewriting system. Let PR be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff PR is uniform-bounded by k

1 2

3

4

0 0 0 0

Chain Datalog case

Datalog theorem
Let R be an inverse context free rewriting system. Let PR be the
corresponding Datalog program. Let k be an integer. R is paralelly
bounded by k iff PR is uniform-bounded by k

A′
1(x, x2) A′

2(x2, x3)

A′′(x, y)

A′
3(x3, y)

A1(x, x1) A2(x1, x2) A3(x2, x3) A4(x3, y)

Generalisation to word constraints

We can extend notion of uniform boundedness to non-unary word
constraints

(i.e. u → v ∈ R =⇒ |v | ≥ 2)

CR is uniformly bounded by k iff R is k maxmatch-bounded

Generalisation to word constraints

We can extend notion of uniform boundedness to non-unary word
constraints (i.e. u → v ∈ R =⇒ |v | ≥ 2)

CR is uniformly bounded by k iff R is k maxmatch-bounded

Generalisation to word constraints

We can extend notion of uniform boundedness to non-unary word
constraints (i.e. u → v ∈ R =⇒ |v | ≥ 2)

CR is uniformly bounded by k iff R is k maxmatch-bounded

Conclusion

Control parallel steps...

→ allow us to compute ancestors
and help to decide C |= xLy v xL′y

→ or understand chase completion in database theory

a→ aa /∈ MBmax

|= xa+y v xay

Conclusion

Control parallel steps...
→ allow us to compute ancestors

and help to decide C |= xLy v xL′y
→ or understand chase completion in database theory

a→ aa /∈ MBmax

|= xa+y v xay

Conclusion

Control parallel steps...
→ allow us to compute ancestors
and help to decide C |= xLy v xL′y

→ or understand chase completion in database theory

a→ aa /∈ MBmax

|= xa+y v xay

Conclusion

Control parallel steps...
→ allow us to compute ancestors
and help to decide C |= xLy v xL′y

→ or understand chase completion in database theory

a→ aa /∈ MBmax

|= xa+y v xay

Conclusion

Control parallel steps...
→ allow us to compute ancestors
and help to decide C |= xLy v xL′y

→ or understand chase completion in database theory

a→ aa /∈ MBmax

|= xa+y v xay

Conclusion

Control parallel steps...
→ allow us to compute ancestors
and help to decide C |= xLy v xL′y

→ or understand chase completion in database theory

a→ aa /∈ MBmax

|= xa+y v xay

Ongoing & Future Work

Open question :

Decide "R ∈ MBmax" ?
MBmax with other srs classes
Link with tuple generating dependancies and Datalog
More general rewriting system for RPQ optimization
(a+ → a)

Ongoing & Future Work

Open question : Decide "R ∈ MBmax" ?

MBmax with other srs classes
Link with tuple generating dependancies and Datalog
More general rewriting system for RPQ optimization
(a+ → a)

Ongoing & Future Work

Open question : Decide "R ∈ MBmax" ?
MBmax with other srs classes

Link with tuple generating dependancies and Datalog
More general rewriting system for RPQ optimization
(a+ → a)

Ongoing & Future Work

Open question : Decide "R ∈ MBmax" ?
MBmax with other srs classes
Link with tuple generating dependancies and Datalog

More general rewriting system for RPQ optimization
(a+ → a)

Ongoing & Future Work

Open question : Decide "R ∈ MBmax" ?
MBmax with other srs classes
Link with tuple generating dependancies and Datalog
More general rewriting system for RPQ optimization

(a+ → a)

Ongoing & Future Work

Open question : Decide "R ∈ MBmax" ?
MBmax with other srs classes
Link with tuple generating dependancies and Datalog
More general rewriting system for RPQ optimization
(a+ → a)

References I

Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of
databases, Addison-Wesley, 1995.

M. Bezem, J.W. Klop, R. de Vrijer, and Terese, Term rewriting
systems, Cambridge Tracts in Theoretica, Cambridge University Press,
2003.
Guozhu Dong and Seymour Ginsburg, On decompositions of chain
datalog programs into p (left-)linear 1-rule components, The Journal
of Logic Programming 23 (1995), no. 3, 203 – 236.

Joseph Goguen, Claude Kirchner, and José Meseguer, Concurrent
term rewriting as a model of computation, pp. 53–93, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1987.

Tomasz Gogacz and Jerzy Marcinkowski, All–instances termination of
chase is undecidable, pp. 293–304, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

References II

Gösta Grahne and Alex Thomo, Query containment and rewriting
using views for regular path queries under constraints, Proceedings of
the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 9-12, 2003, San Diego, CA,
USA, 2003, pp. 111–122.

Gerd G Hillebrand, Paris C Kanellakis, Harry G Mairson, and Moshe Y
Vardi, Undecidable boundedness problems for datalog programs, The
Journal of Logic Programming 25 (1995), no. 2, 163 – 190.

Claude Kirchner and Patrick Viry, Implementing parallel rewriting,
pp. 1–15, Springer Berlin Heidelberg, Berlin, Heidelberg, 1990.

Jerzy Marcinkowski, Achilles, turtle, and undecidable boundedness
problems for small DATALOG programs, SIAM J. Comput. 29 (1999),
no. 1, 231–257.

Thank you !

Datalog

H(x) : −α1(x1) ∧ · · · ∧ αp(xp)

FoF(x , y)←− Friend(x , y)
FoF(x , y)←− FoF(x , z) ∧ FoF(z , y)

I = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos).
P2(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos), FoF(Alice,Carlos).
Finally, P2(I) = P3(I)

Datalog

H(x) : −α1(x1) ∧ · · · ∧ αp(xp)

FoF(x , y)←− Friend(x , y)
FoF(x , y)←− FoF(x , z) ∧ FoF(z , y)

I = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos).
P2(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos), FoF(Alice,Carlos).
Finally, P2(I) = P3(I)

Datalog

H(x) : −α1(x1) ∧ · · · ∧ αp(xp)

FoF(x , y)←− Friend(x , y)
FoF(x , y)←− FoF(x , z) ∧ FoF(z , y)

I = Friend(Alice,Bob), Friend(Bob,Carlos).

P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos).

P2(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos), FoF(Alice,Carlos).

Finally, P2(I) = P3(I)

Datalog

H(x) : −α1(x1) ∧ · · · ∧ αp(xp)

FoF(x , y)←− Friend(x , y)
FoF(x , y)←− FoF(x , z) ∧ FoF(z , y)

I = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos).

P2(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),
FoF(Bob,Carlos), FoF(Alice,Carlos).

Finally, P2(I) = P3(I)

Datalog

H(x) : −α1(x1) ∧ · · · ∧ αp(xp)

FoF(x , y)←− Friend(x , y)
FoF(x , y)←− FoF(x , z) ∧ FoF(z , y)

I = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos).
P2(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos), FoF(Alice,Carlos).

Finally, P2(I) = P3(I)

Datalog

H(x) : −α1(x1) ∧ · · · ∧ αp(xp)

FoF(x , y)←− Friend(x , y)
FoF(x , y)←− FoF(x , z) ∧ FoF(z , y)

I = Friend(Alice,Bob), Friend(Bob,Carlos).
P(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos).
P2(I) = Friend(Alice,Bob), Friend(Bob,Carlos), FoF(Alice,Bob),

FoF(Bob,Carlos), FoF(Alice,Carlos).
Finally, P2(I) = P3(I)

	Motivation
	Concepts in parallel rewriting
	Main result : how to bound parallel complexity
	Relation with Datalog

