Regular transformations of data words through origin information

Antoine Durand-Gasselin and Peter Habermehl

BNP Paribas & IRIF, Univ Paris Diderot

26 mars 2018

Formal Languages: Qualitative properties on words

Formal Languages: Qualitative properties on words

Qualitative properties over words $\begin{array}{c} \text{(over finite alphabet)} \\ \varphi: \Sigma^* \to \{0,1\} \end{array}$

Formal Languages: Qualitative properties on words

Words Transformations

$$\varphi: \Sigma^* \to \Sigma^*$$

Words Transformations

$$\varphi: \Sigma^* \to \Sigma^*$$

Words Transformations

$$\varphi: \mathbf{\Sigma}^* \to \mathbf{\Sigma}^*$$

Key fact: equivalence between a logical definition and two **deterministic** computational models, one way and two way

Words Transformations

$$\varphi: \Sigma^* \to \Sigma^*$$

Key fact: equivalence between a logical definition and two **deterministic** computational models, one way and two way

Our contribution

An extension of this picture to the setting of data words.

Data word transformations

$$\varphi: (\Sigma \times \Delta)^* \to (\Sigma \times \Delta)^*$$

Data word transformations

$$\varphi: (\Sigma \times \Delta)^* \to (\Sigma \times \Delta)^*$$

Logical definition

Data word transformations $\varphi: (\Sigma \times \Delta)^* \to (\Sigma \times \Delta)^*$

Logical definition

Two-way machine

Data word transformations $\varphi: (\Sigma \times \Delta)^* \to (\Sigma \times \Delta)^*$

Data word transformations $\varphi: (\Sigma \times \Delta)^* \to (\Sigma \times \Delta)^*$

One-way machine

Data word transformations $\varphi: (\Sigma \times \Delta)^* \to (\Sigma \times \Delta)^*$

Data word transformations $\varphi: (\Sigma \times \Delta)^* \to (\Sigma \times \Delta)^*$

Contents

- Logical definition

2-way machine

Logical definition

1-way machine

Definition of finite words transformations

MSO transductions

- Definition by Courcelle
- Words can be seen as (node-labeled) graphs
- MSO graph transductions
 - A graph is an interpreted structure
 - MSO interpretation of such structures
 - Introduction of a fixed finite number of copies of the "input" structure
- Restriction to words

input: a b c b b # a a b # c c a a # b

Definition of an MSO transduction

• input and output alphabets $\Sigma = \Gamma = \{a, b, \#\}$

```
input: a b c b b # a a b # c c a a # b

copy 1: o o o o o o o o o o o o o o o o o o

copy 2: o o o o o o o o o o o o o o o o o
```

- input and output alphabets $\Sigma = \Gamma = \{a, b, \#\}$
- finite set C of copies (here $C = \{1, 2\}$)
- ullet formula $arphi_{\mathit{indom}}$

- ullet input and output alphabets $\Sigma = \Gamma = \{a,b,\#\}$
- finite set C of copies (here $C = \{1, 2\}$)
- ullet formula $arphi_{\mathit{indom}}$
- formulas $(\varphi^c_{dom})_{c \in C}$

```
      input:
      a
      b
      c
      b
      b
      #
      a
      a
      b
      #
      c
      c
      a
      a
      b

      copy 1:
      a
      b
      c
      b
      b
      b
      a
      a
      b
      c
      c
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
```

- ullet input and output alphabets $\Sigma = \Gamma = \{a,b,\#\}$
- finite set C of copies (here $C = \{1, 2\}$)
- ullet formula $arphi_{\mathit{indom}}$
- formulas $(\varphi_{dom}^c)_{c \in C}$
- formulas $(\varphi_{\alpha}^{c})_{\gamma \in \Gamma}$

input:
$$a \ b \ c \ b \ b \ \# \ a \ a \ b \ \# \ c \ c \ a \ a \ \# \ b$$

copy 1: $a \leftarrow b \leftarrow c \leftarrow b \leftarrow b$

copy 2: $a \rightarrow b \rightarrow c \rightarrow b \rightarrow b \rightarrow \#$
 $a \rightarrow a \rightarrow b \rightarrow \#$
 $c \rightarrow c \rightarrow a \rightarrow a \rightarrow \# \rightarrow b$

- ullet input and output alphabets $\Sigma = \Gamma = \{a,b,\#\}$
- finite set C of copies (here $C = \{1, 2\}$)
- formula φ_{indom}
- formulas $(\varphi_{dom}^c)_{c \in C}$
- formulas $(\varphi_{\alpha}^c)_{\gamma \in \Gamma}$
- formulas $(\varphi_{<}^{c,c'})_{c,c'\in C}$

Properties [Courcelle 90's]

- Output linearly larger
- Regular input domain
- Any MSO formula over v can be translated to an MSO formula over u
- MSO Typechecking
- Functional composition
- Functional equivalence is decidable

Definition

- A data word is a word over alphabet $\Sigma \times \Delta$ (Σ finite, Δ infinite)
- ullet We see a data word as a finite word and a mapping from pos. to Δ

Example (cont'd)

Definition

- A data word is a word over alphabet $\Sigma \times \Delta$ (Σ finite, Δ infinite)
- ullet We see a data word as a finite word and a mapping from pos. to Δ

Example (cont'd)

input: a b a b b # a a b # b b a a # b

Definition

- A data word is a word over alphabet $\Sigma \times \Delta$ (Σ finite, Δ infinite)
- ullet We see a data word as a finite word and a mapping from pos. to Δ

- We give formulas $\varphi^c_{orig}(x,y)$ stating that x in copy c has the same data value as y
- We impose functionality of φ_{orig}^c (can be done in MSO)

Definition

- A data word is a word over alphabet $\Sigma \times \Delta$ (Σ finite, Δ infinite)
- ullet We see a data word as a finite word and a mapping from pos. to Δ

Example (cont'd)

- We give formulas $\varphi^c_{orig}(x,y)$ stating that x in copy c has the same data value as y
- \bullet We impose functionality of $\varphi^{\rm c}_{\rm orig}$ (can be done in MSO)

Contents

- Two-way model

2-way machine

1-way machine

Logical definition

Two-way model

Two way DFT

- Two way deterministic automaton with transitions labeled over Γ^*
- The image is defined if the run is successful as the concatenation of labels of transitions taken along the run

Theorem

Two way deterministic transducers capture MSO transductions of finite words over finite alphabet

With registers

- We add a set of registers R that store data values
- Their value is updated deterministically from data values and the current data value
- Transitions are labeled by words in $(\Gamma \times R)^*$

Contents

- Logical definition
- 2 Two-way model
- 3 From logic to two-way
- 4 One-way mode
- 5 From two-way to one-way
- 6 One-way to logic

2-way machine

Logical definition

1-way machine

From logics to two-way

Idea

- The two-way model is closed by composition [Chytil & Jákl 1977]
- We relabel the word by adding the information of (k+3)-types
 - i.e. the set of MSO formulas of quantifier depth at most (k+3) that are satisfied by the prefix and by the suffix
- We obtain a 2DFT that implements the transformation for the finite word part

And the registers

- We store data values that are present left of current position and used right of current position (and vice-versa)
- Finitely characterizeable with k-types
- If we move right
 - We reorganize data registers (thanks to the knowledge of (k+3)-types)
 - We might need to fetch a data value
 - (if we do) we need to go back to the position

Our example

Contents

- Logical definition
- 2 Two-way model
- 3 From logic to two-way
- 4 One-way model
- From two-way to one-way
- 6 One-way to logic

Logical definition

2-way machine

1-way machine

Streaming string transducers

Finite part

$$X=Y=Z=\varepsilon \longrightarrow \begin{array}{c} \alpha \begin{vmatrix} X:=X\\Y:=Y\cdot\alpha\\Z:=\alpha\cdot Z\cdot\alpha \end{vmatrix} \\ \# \begin{vmatrix} X:=X\\Z:=\varepsilon \end{array} \qquad \mathcal{F}(q)=X\cdot Y$$

$$\# \begin{vmatrix} X:=X\\Y:=\varepsilon\\Z:=\varepsilon \end{aligned}$$

Streaming string transducers

Finite part

$$X = Y = Z = \varepsilon \longrightarrow \begin{array}{c} A & |X := X \\ Y := Y \cdot \alpha \\ Z := \alpha \cdot Z \cdot \alpha \end{array}$$

$$\# \begin{vmatrix} X := X \\ Y := Y \cdot \alpha \\ Z := \alpha \cdot Z \cdot \alpha \end{vmatrix}$$

$$\# \begin{vmatrix} X := X \\ Y := S \\ Y := \varepsilon \end{vmatrix}$$

$$\mathcal{F}(q) = X \cdot Y$$

What to store in string variables

input:
$$a o b o a o b o b o \# o a o b o \# o b o a o a o \# o b$$

copy 1: $a o b o a o b o b o a o a o b$

copy 2: $a o b o a o b o b o \# o b o \# o b o \# o b o a o a o \# o b$

How to handle data values

- We need data registers
- and data parameters

Data registers and data parameters

Contents

- Logical definition
- 2 Two-way model
- From logic to two-way
- 4 One-way model
- 5 From two-way to one-way
- 6 One-way to logic

From two-way to one-way

A one-way cannot go back!

- ullet A valid run of a two way never visits a position more than |Q| times
- In which state does the two-way first reach *i* ?
- At position i, from state q in which state does the 2way first reach position i+1?

How to build the one-way? (Shepherdson)

At position i

- Easy to keep track of what happened until the 2way first reached i
- String variable X_q will contain what the two-way produces from position i in state q until it first reaches position i+1 ...
- ... with content of data registers "being" fresh parameters
- $r_{R,q}$ at position i will contain (if it exists) the last data value stored by the 2way in register R from state q in position i until it reaches position i+1

Contents

- One-way to logic

2-way machine

1-way machine

Logical definition

A semantic restriction for SST's

Restriction on copying

- Automaton + String variables + variables update function
- And the following semantic restriction:
 - The content of some register may not flow more than once in the output

One-way to Logic

The expressive power of MSO allows quite naturally to describe the behaviour of such a finite-state system.

Extension of string transformations to data strings

- Equivalence between 3 models:
 - Logical definition using MSO
 - Extension of 2DFT with data registers
 - Extension of SST with data registers and data parameters
- Determistic models
- Typechecking and functional equivalence are decidable

Extension of string transformations to data strings

- Equivalence between 3 models:
 - Logical definition using MSO
 - Extension of 2DFT with data registers
 - Extension of SST with data registers and data parameters
- Determistic models
- Typechecking and functional equivalence are decidable

Future work

- Appropriate class of properties over data words
- Streaming class memory transducer
- Transformations of other classes of objects
- Canonical objects, minimization

Extension of string transformations to data strings

- Equivalence between 3 models:
 - Logical definition using MSO
 - Extension of 2DFT with data registers
 - Extension of SST with data registers and data parameters
- Determistic models
- Typechecking and functional equivalence are decidable

Future work

- Appropriate class of properties over data words
- Streaming class memory transducer
- Transformations of other classes of objects
- Canonical objects, minimization

Thank you for your attention!

Büchi, J. R. (1962).

On a decision method in restricted second-order arithmetic.

In *Int. Congr. for Logic Methodology and Philosophy of Science*, pages 1–11. Standford University Press, Stanford.