Lempel-Ziv: a "one-bit catastrophe" but not a tragedy

G. Lagarde S. Perifel ANR DELTA 27/03/18

100 MB

Lempel-Ziv ?

Lempel-Ziv algorithms?

- Several lossless data compression algorithms (LZ'77, LZ'78, LZW, ...)
- Dictionary-based encoding
- Used everywhere
 - Deflate (gzip)
 - GIF
 - compress (Unix)
- Theoretical interest
 - Entropy of a random source
 - Lyndon factorisation
 - o ...

3

W = 001010110110101...

ε

LZ'78

$$W = 001010110110101...$$

Compressible Incomp

Incompressible

$$|D(w)| \cdot \log |D(w)| = oig(|w|ig)$$

 $\Theta(|w|)$

 $D(w) = \{\epsilon, 0, 01, 010, 1, 10, 11, \ldots\}$

Size of the compression:

 $\Theta(|D(w)|.\log |D(w)|)$

LZ'78

$$W = 001010110110101...$$

Compressible

Incompressible

Dictionary:

$$|D(w)| \cdot \log |D(w)| =$$
 $o(|w|)$
 $\Theta(|w|)$
 $D(w) = \{\epsilon, 0, 01, 010, 1, 10, 11, \ldots\}$
 $|D(w)| =$
 $o(\frac{|w|}{\log |w|})$
 $\Theta(\frac{|w|}{\log |w|})$

Size of the compression:

 $\Theta(|D(w)|.\log |D(w)|)$

Open question (Jack Lutz - Late '90s)

Does there exist an infinite word w such that

ho(w)
eq
ho(0w)

Open question (Jack Lutz - Late '90s)

Does there exist an infinite word w such that

ho(w)
eq
ho(0w) 0
eq lpha

Theorem 1

There is an infinite word w such that

$$ho_{sup}(w)=0$$

$$ho_{inf}(0w) \geq rac{1}{6075}$$

Theorem 1

There is an infinite word w such that

$$ho_{sup}(w)=0$$

$$ho_{inf}(0w) \geq rac{1}{6075}$$

Theorem 2

For all finite word w and any letter a

$$|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$$
(=Geometric mean)

Theorem 1

There is an infinite word w such that

 $ho_{sup}(w)=0$

 $ho_{inf}(0w) \geq rac{1}{6075}$

Theorem 2

For all finite word w and any letter a

$$|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$$

(≈Geometric mean)

The "not such a tragedy" part
$$|D(w)| = o(rac{|w|}{\log^2 |w|}) \longrightarrow |D(aw)| = o(rac{|w|}{\log |w|})$$

Theorem 1

There is an infinite word w such that

$$ho_{sup}(w)=0$$

$$ho_{inf}(0w) \geq rac{1}{6075}$$

Theorem 2

For all finite word w and any letter a

$$|D(aw)|\leq 3\sqrt{|w|.\,|D(w)|}$$

(≈Geometric mean)

Theorem 3

Theorem 2 is tight up to a multiplicative constant

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

 $D(aw)=D_1\cup D_2$

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

- D_1 : Blocks of Ow that overlap 2 blocks of w. $|D_1| \leq |D(w)| \leq \sqrt{|w|.\,|D(w)|}$
- D_2 : Blocks of Ow included in a block of w.

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

 D_1 \exists Blocks of Ow that overlap 2 blocks of w. $|D_1| \leq |D(w)| \leq \sqrt{|w| . |D(w)|}$

 D_2 : Blocks of Ow included in a block of w.

 $|D_1| \leq |D(w)|$

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

- D_1 : Blocks of Ow that overlap 2 blocks of w. $|D_1| \leq |D(w)| \leq \sqrt{|w|.\,|D(w)|}$
- D_2 : Blocks of Ow included in a block of w.

1. Each is a substring of a

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

- D_1 : Blocks of Ow that overlap 2 blocks of w. $|D_1| \leq |D(w)| \leq \sqrt{|w|.\,|D(w)|}$
- D_2 : Blocks of Ow included in a block of w.

1. Each is a substring of a

2. For any i, the number of distinct \square blocks of size i is $\leq |D(w)|$

 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

- D_1 : Blocks of Ow that overlap 2 blocks of w. $|D_1| \leq |D(w)| \leq \sqrt{|w|.\,|D(w)|}$
- D_2 : Blocks of Ow included in a block of w.

 $\leq |w|$

```
GOAL: Cover L with segments
CONSTRAINTS: At most N segments of each length
```



```
GOAL: Cover L with segments
CONSTRAINTS: At most N segments of each length
```



```
GOAL: Cover L with segments
CONSTRAINTS: At most N segments of each length
```



```
GOAL: Cover L with segments
CONSTRAINTS: At most N segments of each length
```



```
GOAL: Cover L with segments
CONSTRAINTS: At most N segments of each length
```



```
GOAL: Cover L with segments
CONSTRAINTS: At most N segments of each length
```



```
GOAL: Cover L with segments
CONSTRAINTS: At most N segments of each length
```


 $|D(aw)| \leq 3\sqrt{|w|.\,|D(w)|}$

- D_1 : Blocks of Ow that overlap 2 blocks of w. $|D_1| \leq |D(w)| \leq \sqrt{|w|.\,|D(w)|}$
- $D_2\;$: Blocks of Ow included in a block of w.

"Get a catastrophe": starter kit

1. Get a "weak" catastrophe. i.e maximal variation for an optimally compressible word.

"Get a catastrophe": starter kit

- 1. Get a "weak" catastrophe. i.e maximal variation for an optimally compressible word.
- 2. A "true" catastrophe:
 - a. Create a lot of independent "de Bruijn-style" words.
 - b. Use them to concatenate independent "weak" catastrophes.

Future work

- Improve the constants (from 0 to 1?)
- Remove the gadgets
- Is the weak catastrophe the typical case for optimally compressible words?
- What happens over real data?

Merci!