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Word transductions

Definition
A transduction is a binary relation on words:

a subset of Σ∗ × Γ∗.

× ??? .

input alphabet
output alphabet

aababbca aaaabbb

bbbaaaa

compute

origin information
[Bojańczyk 2014]
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Origin graphs

a b c a b b a c b

a a a b b b b

input edge

output edge

origin edge

origin: a mapping from output positions into input positions
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What is the origin semantic
of a transducer?
featuring sst and msot

4 / 18



Streaming String Transducers (sst)

a 1-way automaton A

a finite set R of registers

including a distinguished output register

e.g., R = {X , Y }
a labelling of transitions by copyless register updates

e.g.,
{X ← X · a

Y ← ε
,

{X ← a · Y
Y ← b · a · X ,

{X ← b
Y ← X · a · Y ,

{X ← X · a
Y ← X · Y .

Definition (Origin semantics for streaming string transducers)

origin of an output position: the position of the input head
when the letter was created.

Example:
w 7→ a|w |a · b|w |b

a b c a b b a c b a

register X : register Y :

A

a a a b b b bb b b b

output

a b c a b b a c b

a a a b b b b
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string-to-string mso-transduction [Courcelle 1991]

Nondeterministic mso-colouring (nondeterministic case);
Copy (finitely many copies of the input);
mso-Interpretation

a formula for restricting the universe;
a formula for each predicate of the output vocabulary.

Definition (origin semantics of mso-transduction)

origin of an output position: the input vertex
of which it is a copy.

aa bb cc aa bb bb aa cc bb

a a a

b b b b

a a a b b b b

copy 1

copy 2 6 / 18
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What do we get from origin information?
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Origin semantics is thinner grained

Examples

a a a a a

a a a a a

a a a a a

a a a a a

unary Identity

=6=
a a a a a

a a a a a

a a a a a

a a a a a

unary Reverse

a b b a a b a

b a a
6=

a b b a a b a

b a a

Subword
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What is a regular transduction with origin?
This is still true with origin information. [Bojańczyk 2014]

also true for closure under composition, decidability of equivalence. . .

fSST

NSST=MSOT

εNSST

2fFT=fM
SOT

2NFT

2NFT with common
guess

=

REG

2NFT

2NFT with common
guess

2NFT with common
guess

sst: Streaming String Transducer
msot: mso-transduction
2FT : 2-way finite transducer
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mso satisfiability on origin graphs

Theorem: The following is decidable :
Input

an nsst A
an mso formula φ over the corresponding origin vocabulary

Question
Is φ true in some origin graph in the origin semantics of A?

origin vocabulary: binary predicates , ,
and labelling in Σ ∪ Γ;

Example
“the origin mapping is bijective and letter-preserving.”

“the output may be split in two parts
such that the origin mapping is order-preserving on each part.”

10 / 18
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an mso formula φ over the corresponding origin vocabulary

Question
Is φ true in some origin graph in the origin semantics of A?

Proof: Let A and φ be fixed.
there is a string-to-origin graph mso-transduction ρ equivalent
to A

we consider G = {G origin graph | φ is true over G}
by Backward Translation Theorem [Courcelle91],

ρ−1(G) is regular and can be tested for emptiness.
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Which properties of origin graphs
characterise

regular sets of origin graphs?
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Which sets of origin graphs are generated by transducers?

Theorem:
A set of origin graphs is realised by an unambiguous sst
if and only if it is

mso-definable:
an mso sentence using , , and labelling in Σ ∪ Γ;

functional:
for each input word, there exists at most one origin graph;

bounded degree:
each input position is the origin of at most m output positions;
bounded crossing: next slide.

12 / 18



Crossing

crossing of an input position
number of maximal factors of the output

that originate in the input prefix ended by the position

crossing of an origin graph: max of the crossings

a b c a b b a c b

a a a b b b b
left1 left2right1 right2

crossing:

(≡ particular path decomposition of bounded width)
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Which sets of origin graphs are generated by transducers?

Theorem:
A set of origin graphs is realised by an unambiguous sst
if and only if it is

k-registers sst

mso-definable:
an mso sentence using , , and labelling in Σ ∪ Γ;

functional:
for each input word, there exists at most one origin graph;

bounded degree:
each input position is the origin of at most m output positions;
crossing bounded: previous slide
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Sketch of the proof =⇒
unambiguous =⇒ functional
nsst =⇒ bounded degree

k-register =⇒ crossing bounded by k
nsst =⇒ string-to- mso-transduction

Proposition: we can inverse this mso-transduction
=⇒ mso-definable
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Note: False when ε-transitions are allowed.
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Sketch of the proof ⇐=

Start with an mso-definable set of origin graphs G

with crossing bounded by k

we define a finite set of (partial) operations Ωk on k-BLOGs

the folding of a word w over Ω∗k is the k-BLOG αk(w)
obtained from the empty graph by applying the operations.

αk can be realised by an mso-transduction.
there exists a regular language L ⊆ Ω∗k such that

g ∈ G ⇐⇒ g = αk(w) for some w ∈ L

from an automaton recognising L,
we build a nsst with ε-transitions realising G

if bounded degree =⇒ elimination of ε-transition
if functional =⇒ disambiguation

Definition
k-block origin graphs (k-BLOGs):
An origin graph with output split in k identified blocks.
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Equivalence

Corollary: The following is decidable:
Input

Two nsst, A and B.
Question

Whether they have the same origin semantics.

Proof: We show that we can check whether A ∩ B̄ is empty.
The origin semantics of B is mso-definable by a formula φ,
We can check whether ¬φ is true in some origin graph in the
origin semantics of A.
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