
Minimization of subsequential transducers

Daniela Petrişan
joint work with Thomas Colcombet
ANR Delta
March 28 2018, Paris



In this talk

• Word automata in a category
• Subsequential transducers in a category
• Minimization in this setting: sufficient conditions
• A unifying framework for canonical recognizers

• minimization of deterministic and weighted automata
• minimization of subsequential transducers à la Choffrut
• syntactic monoid (more generally syntactic algebra)
• syntactic Boolean space with an internal monoid

[Colcombet, P., CALCO 2017]
Automata Minimization: a Functorial Approach

2 / 22



Word automata in a category



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata in VecK

weighted automata in VecK

Subseq. transducers in Kl(T )

a

a

a

a

We see a pattern emerging!

3 / 22



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata in VecK

Subseq. transducers in Kl(T )

a

a

a

a

We see a pattern emerging!

3 / 22



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata K Q K in VecK

Subseq. transducers in Kl(T )

a

a

a

a

We see a pattern emerging!

3 / 22



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata K Q K in VecK

Subseq. transducers 1 Q 1 in Kl(T )

a

a

a

a

We see a pattern emerging!

3 / 22



Word automata

deterministic automata 1 Q 2 in Set

non-deterministic automata 1 Q 1 in Rel

weighted automata K Q K in VecK

Subseq. transducers 1 Q 1 in Kl(T )

a

a

a

a

We see a pattern emerging!
3 / 22



Languages accepted by word automata

deterministic automata 1 2 in Set

non-deterministic automata 1 1 in Rel

weighted automata K K in VecK

Subseq. transducers 1 1 in Kl(T )

f○δw○i

f○δw○i

f○δw○i

f○δw○i

4 / 22



Word automata in a category

For objects I and F in a category C, a (C, I, F)-automaton is a tuple
A = ⟨Q, i, f , (δa)a∈A⟩, where

• Q is an object of C.
• i∶ I→ Q is the «initial» arrow
• f ∶Q→ F is the «final» arrow
• δa∶Q→ Q is the «transition» arrow for each a ∈ A

The language accepted by A is a map LA∶A∗ → C(I, F) that associates
to a word w = a1 . . .an the composite morphism

i δa1 δa2 δan f

Example
A DFA is a (Set, 1, 2)-automaton. It accepts a language
L∶A∗ → Set(1, 2) ≅ 2.

5 / 22



Word automata in a category

For objects I and F in a category C, a (C, I, F)-automaton is a tuple
A = ⟨Q, i, f , (δa)a∈A⟩, where

• Q is an object of C.
• i∶ I→ Q is the «initial» arrow
• f ∶Q→ F is the «final» arrow
• δa∶Q→ Q is the «transition» arrow for each a ∈ A

The language accepted by A is a map LA∶A∗ → C(I, F) that associates
to a word w = a1 . . .an the composite morphism

I Q Q . . . Q Fi δa1 δa2 δan f

Example
A DFA is a (Set, 1, 2)-automaton. It accepts a language
L∶A∗ → Set(1, 2) ≅ 2.

5 / 22



Word automata in a category

For objects I and F in a category C, a (C, I, F)-automaton is a tuple
A = ⟨Q, i, f , (δa)a∈A⟩, where

• Q is an object of C.
• i∶ I→ Q is the «initial» arrow
• f ∶Q→ F is the «final» arrow
• δa∶Q→ Q is the «transition» arrow for each a ∈ A

The language accepted by A is a map LA∶A∗ → C(I, F) that associates
to a word w = a1 . . .an the composite morphism

I Q Q . . . Q Fi δa1 δa2 δan f

Example
A DFA is a (Set, 1, 2)-automaton. It accepts a language
L∶A∗ → Set(1, 2) ≅ 2.

5 / 22



Subsequential transducers in a
category



Subsequential transducers

A subsequential transducer with input alphabet A and output
alphabet B consists of:

• a finite set of states Q
• an initial state with an initial output in B∗, or an undefined
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1
• for each state in Q, either an output word in B∗ or undefined.

6 / 22



Subsequential transducers

A subsequential transducer with input alphabet A and output
alphabet B consists of:

• a finite set of states Q
• an initial state with an initial output in B∗, or an undefined
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1

• for each state in Q, either an output word in B∗ or undefined.

6 / 22



Subsequential transducers

A subsequential transducer with input alphabet A and output
alphabet B consists of:

• a finite set of states Q
• an initial state with an initial output in B∗, or an undefined
initial state

• for each a ∈ A a transition function Q→ B∗ ×Q + 1
• for each state in Q, either an output word in B∗ or undefined.

6 / 22



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category Kl(T ) with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in Kl(T ) is defined using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is given

by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T ∶Set→ Set given by
T (X) = B∗ ×X+ 1, which associates to each set X the free partial action
of B∗ on X. Notice that we can replace B∗ with any other monoid.

7 / 22



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category Kl(T ) with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in Kl(T ) is defined using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is given

by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T ∶Set→ Set given by
T (X) = B∗ ×X+ 1, which associates to each set X the free partial action
of B∗ on X. Notice that we can replace B∗ with any other monoid.

7 / 22



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category Kl(T ) with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in Kl(T ) is defined using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is given

by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T ∶Set→ Set given by
T (X) = B∗ ×X+ 1, which associates to each set X the free partial action
of B∗ on X. Notice that we can replace B∗ with any other monoid.

7 / 22



The output category for subsequential transducers

We consider partial actions for the free monoid B∗.

We consider a category Kl(T ) with

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y, where f ∶X → B∗ × Y + 1 is a function

Composition of arrows in Kl(T ) is defined using the monoid
multiplication in B∗.

If f ∶X ↛ Y and g∶Y ↛ Z then g ○ f ∶X ↛ Z (i.e. g ○ f ∶X → B∗ × Z + 1) is given

by g ○ f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uv, z) if f(x) = (u, y) and g(y) = (v, z)
� otherwise.

This is the Kleisli category for the monad T ∶Set→ Set given by
T (X) = B∗ ×X+ 1, which associates to each set X the free partial action
of B∗ on X. Notice that we can replace B∗ with any other monoid.

7 / 22



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Kl(T )i

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an undefined initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1
• a final map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or undefined.

8 / 22



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Kl(T )i

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an undefined initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1
• a final map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or undefined.

8 / 22



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Kl(T )i

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an undefined initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1

• a final map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or undefined.

8 / 22



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Kl(T )i

δa

f

ammounts to give

• a function i∶ 1→ B∗ ×Q + 1, i.e. an initial state with an initial
output in B∗, or an undefined initial state

• for each a ∈ A a function δa∶Q→ B∗ ×Q + 1
• a final map f ∶Q→ B∗ × 1 + 1, i.e. for each state in Q either an
output word in B∗ or undefined.

8 / 22



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Kl(T )i

δa

f

ammounts to give a subsequential transducer!

Furthermore, the partial function realized by the corresponding
subsequential transducer applied to a word w ∈ A∗ is exactly
f ○ δw ○ i(w).

9 / 22



The output category for subsequential transducers

Interpretting the arrows

1 Q 1 in Kl(T )i

δa

f

ammounts to give a subsequential transducer!

Furthermore, the partial function realized by the corresponding
subsequential transducer applied to a word w ∈ A∗ is exactly
f ○ δw ○ i(w).

9 / 22



Automata in a category:
minimization



Minimzation of (C, I, F)-automata

• What does it mean for a (C, I, F)-automaton to be minimal?
• What are sufficient conditions on C so that a minimal automaton
for a language exists?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

10 / 22



Minimzation of (C, I, F)-automata

• What does it mean for a (C, I, F)-automaton to be minimal?
• What are sufficient conditions on C so that a minimal automaton
for a language exists?

A DFA is minimal when it divides any other automaton accepting the
same language.

Here divides = «is a quotient of a sub-automaton of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

10 / 22



Minimzation of (C, I, F)-automata

• What does it mean for a (C, I, F)-automaton to be minimal?
• What are sufficient conditions on C so that a minimal automaton
for a language exists?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

10 / 22



Minimzation of (C, I, F)-automata

• What does it mean for a (C, I, F)-automaton to be minimal?
• What are sufficient conditions on C so that a minimal automaton
for a language exists?

A DFA is minimal when it divides any other automaton accepting the
same language. Here divides = «is a quotient of a sub-automaton of»

Thus we need a notion of «quotient» (surjection for sets) and
«sub-object» (injection for sets), i.e. a factorization system.

10 / 22



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a final object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

11 / 22



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers
• a final object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

11 / 22



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a final object Afinal(L), and,

when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

11 / 22



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L),

when C has copowers

• a final object Afinal(L), and,

when C has powers

• a factorization system

when C has one

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

11 / 22



The three ingredients for minimization

When does a ‘minimal’ automaton accepting a language L exist?

If the category of automata accepting L has

• an initial object Ainit(L), when C has copowers
• a final object Afinal(L), and, when C has powers
• a factorization system when C has one

then Min(L) is obtained as the factorization

Ainit(L) ↠ Min(L) ↣ Afinal(L) .

11 / 22



Trivial example

deterministic automata, i.e. (Set, 1, 2)-automata
accepting a (Set, 1, 2)-language

A∗

1 Q 2

2A∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

12 / 22



Trivial example

deterministic automata, i.e. (Set, 1, 2)-automata
accepting a (Set, 1, 2)-language

A∗

1 Min(L) 2

2A∗

L?

reachedState

L

ε

i f

acceptedLanguage

ε?

12 / 22



Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec,R,R)-language

⊕
u∈A∗

R

R Q R

∏
u∈A∗

R

L?

reachedState

L

ε

i F

acceptedLanguage

ε?

13 / 22



Another trivial example

R-weighted automata, i.e. (Vec,R,R)-automata
accepting a (Vec,R,R)-language

⊕
u∈A∗

R

R Min(L) R

∏
u∈A∗

R

L?

reachedState

L

ε

i F

acceptedLanguage

ε?

13 / 22



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identified simple sufficient conditions on C so that
minimization of C-automata is guaranteed!

14 / 22



Minimial Automaton Min(L) for a Language

The automaton Min(L) divides any other automaton accepting L.

A

Ainit(L) reach(A) obs(reach(A)) Afinal(L)

Min(L)

Thus far we identified simple sufficient conditions on C so that
minimization of C-automata is guaranteed!

14 / 22



Minimization of subsequential
transducers



Minimization of subsequential transducers à la Choffrut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

15 / 22



Minimization of subsequential transducers à la Choffrut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

15 / 22



Minimization of subsequential transducers à la Choffrut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

15 / 22



Minimization of subsequential transducers à la Choffrut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

15 / 22



Minimization of subsequential transducers à la Choffrut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

15 / 22



Minimization of subsequential transducers à la Choffrut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

15 / 22



Minimization of subsequential transducers à la Choffrut

00 11

2233

ε

aaε

babaε

a∣aba∣abbaa∣abba

a∣baba∣baba∣b

a∣abba∣abbaa∣abba

a∣aba∣aba∣b
b∣b

b∣bab∣bab∣bab∣ba

b∣bb∣abb∣abb∣bab∣ba

15 / 22



Minimization of subsequential transducers à la Choffrut

0 1

23

0′ 1′ε

ε

a

ε

ba

a∣ab
a∣abba

a∣bab
a∣b

a∣abb

a∣ab
b∣b

b∣ba

b∣b

b∣b

b∣ab

b∣ba

16 / 22



Minimization of subsequential transducers:
the category-theoretic version

Recall that subsequential transducers are word automata
interpreted in the category Kl(T ):

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y where f ∶X → B∗ × Y + 1 is a function

Does Kl(T ) satisfy the sufficient conditions for minimization?

Not quite! It does not have products, powers... so proving the
existence of the final automaton for a language is problematic. The
latter exists nevertheless in this case.

17 / 22



Minimization of subsequential transducers:
the category-theoretic version

Recall that subsequential transducers are word automata
interpreted in the category Kl(T ):

• objects: sets X,Y,Z, . . .
• arrows: f ∶X ↛ Y where f ∶X → B∗ × Y + 1 is a function

Does Kl(T ) satisfy the sufficient conditions for minimization?

Not quite! It does not have products, powers... so proving the
existence of the final automaton for a language is problematic. The
latter exists nevertheless in this case.

17 / 22



The ingredients for minimization

• initial automaton
• final automaton
• factorization system

States States
FT

UT

18 / 22



The ingredients for minimization

• initial automaton
• final automaton
• factorization system

Idea: We use the lifting of the Kleisli adjunction for the monad
T . The left adjoint preserves the initial automaton.
The set of states of the initial Kl(T )-automaton is A∗

Auto(LSet) � Auto(LKl(T )

Set � Kl(T )

States States
FT

UT 18 / 22



The ingredients for minimization

• initial automaton
• final automaton
• factorization system

Idea: There exists a Kl(T )-automaton mapped by the right ad-
joint to the final Set-automaton.
The set of states of the final Kl(T )-automaton is Irr(A∗,B∗) –
the set of partial functions
f ∶A∗ → B∗ + 1 such that
• f is defined on some word in A∗ and
• the longest common prefix of {f(w) ∣ f(w) ∈ B∗} is ε.

Crucial fact: B∗ × Irr(A∗,B∗) ≅ (A∗ + 1)B∗ .
Longest common prefixes play a fundamental role.

19 / 22



The ingredients for minimization

• initial automaton
• final automaton
• factorization system

Idea: There exists a Kl(T )-automaton mapped by the right ad-
joint to the final Set-automaton.
The set of states of the final Kl(T )-automaton is Irr(A∗,B∗) –
the set of partial functions
f ∶A∗ → B∗ + 1 such that
• f is defined on some word in A∗ and
• the longest common prefix of {f(w) ∣ f(w) ∈ B∗} is ε.

Crucial fact: B∗ × Irr(A∗,B∗) ≅ (A∗ + 1)B∗ .
Longest common prefixes play a fundamental role.

19 / 22



The ingredients for minimization

• initial automaton
• final automaton
• factorization system

Idea: The factorization system is inherited from a factorization
system (E ,M) on Kl(T ):

• e∶X ↛ Y (i.e. e∶X → B∗ × Y + 1) is in E iff each y ∈ Y is in the
image of the second projection of e.

• m∶X ↛ Y (i.e. m∶X → B∗ × Y + 1) is inM iff m is everywhere
defined, the second projection is injective and the first
projection is constant ε.

This also works if we replace B∗ by a right cancellative monoid.

20 / 22



The ingredients for minimization

• initial automaton
• final automaton
• factorization system

Idea: The factorization system is inherited from a factorization
system (E ,M) on Kl(T ):

• e∶X ↛ Y (i.e. e∶X → B∗ × Y + 1) is in E iff each y ∈ Y is in the
image of the second projection of e.

• m∶X ↛ Y (i.e. m∶X → B∗ × Y + 1) is inM iff m is everywhere
defined, the second projection is injective and the first
projection is constant ε.

This also works if we replace B∗ by a right cancellative monoid.
20 / 22



The minimal transducer in a picture

We obtain Min(L) – the minimal subsequential transducer as
obtained by Choffrut!

A∗

1 Min(L) 1

Irr(A∗,B∗)

L?

L

ε

i f

ε?

21 / 22



Conclusions

We put under the same umbrella concepts like
• minimal DFA,
• syntactic monoid/algebras,
• minimal subsequential transducers (à la
Choffrut)?

• new forms of automata: minimal
hybrid-set-vector automata (see [MFCS’17]),

What next

• Transducers with outputs in an arbitrary monoid? See next talk...
• Algebras for recognition beyond Set?
• Learning and minimization? Generic learning algorithms?

22 / 22



Conclusions

We put under the same umbrella concepts like
• minimal DFA,
• syntactic monoid/algebras,
• minimal subsequential transducers (à la
Choffrut)?

• new forms of automata: minimal
hybrid-set-vector automata (see [MFCS’17]),

What next

• Transducers with outputs in an arbitrary monoid? See next talk...
• Algebras for recognition beyond Set?
• Learning and minimization? Generic learning algorithms?

22 / 22



Conclusions

We put under the same umbrella concepts like
• minimal DFA,
• syntactic monoid/algebras,
• minimal subsequential transducers (à la
Choffrut)?

• new forms of automata: minimal
hybrid-set-vector automata (see [MFCS’17]),

What next

• Transducers with outputs in an arbitrary monoid? See next talk...
• Algebras for recognition beyond Set?
• Learning and minimization? Generic learning algorithms?

22 / 22


	Word automata in a category
	Subsequential transducers in a category
	Automata in a category: minimization
	Minimization of subsequential transducers

