Minimization of subsequential transducers

Daniela Petrişan joint work with Thomas Colcombet ANR Delta March 28 2018, Paris

- Word automata in a category
- Subsequential transducers in a category
- Minimization in this setting: sufficient conditions
- A unifying framework for canonical recognizers
 - minimization of deterministic and weighted automata
 - minimization of subsequential transducers à la Choffrut
 - syntactic monoid (more generally syntactic algebra)
 - syntactic Boolean space with an internal monoid
- [Colcombet, P., CALCO 2017]

Automata Minimization: a Functorial Approach

Word automata in a category

$\begin{array}{c} a \\ \downarrow \\ 1 \rightarrow Q \rightarrow 2 \\ in Set \end{array}$

deterministic automata

deterministic automata

non-deterministic automata

Word automata

deterministic automata

non-deterministic automata

weighted automata

Word automata

non-deterministic automata

weighted automata

Subseq. transducers

Word automata

non-deterministic automata

weighted automata

Subseq. transducers

We see a pattern emerging!

no

deterministic automata	$1 \xrightarrow{f \circ \delta_{W} \circ i} 2$	in Set
n-deterministic automata	$1 \xrightarrow{f \circ \delta_w \circ i} 1$	in Rel
weighted automata	$K \xrightarrow{f \circ \delta_W \circ i} K$	in Vec _K
Subseq. transducers	$1 \xrightarrow{f \circ \delta_W \circ i} 1$	in Kl (\mathcal{T})

For objects *I* and *F* in a category *C*, a (*C*, *I*, *F*)-automaton is a tuple $\mathcal{A} = \langle Q, i, f, (\delta_a)_{a \in A} \rangle$, where

- Q is an object of C.
- $i: I \rightarrow Q$ is the «initial» arrow
- $f: Q \rightarrow F$ is the «final» arrow
- $\delta_a: Q \to Q$ is the «transition» arrow for each $a \in A$

For objects *I* and *F* in a category *C*, a (*C*, *I*, *F*)-automaton is a tuple $\mathcal{A} = \langle Q, i, f, (\delta_a)_{a \in A} \rangle$, where

- Q is an object of C.
- $i: I \rightarrow Q$ is the «initial» arrow
- $f: Q \rightarrow F$ is the «final» arrow
- $\delta_a: Q \rightarrow Q$ is the «transition» arrow for each $a \in A$

The language accepted by \mathcal{A} is a map $L_{\mathcal{A}}: A^* \to \mathcal{C}(I, F)$ that associates to a word $w = a_1 \dots a_n$ the composite morphism

$$I \xrightarrow{i} Q \xrightarrow{\delta_{a_1}} Q \xrightarrow{\delta_{a_2}} \dots \xrightarrow{\delta_{a_n}} Q \xrightarrow{f} F$$

For objects *I* and *F* in a category *C*, a (*C*, *I*, *F*)-automaton is a tuple $\mathcal{A} = \langle Q, i, f, (\delta_a)_{a \in A} \rangle$, where

- Q is an object of C.
- $i: I \rightarrow Q$ is the «initial» arrow
- $f: Q \rightarrow F$ is the «final» arrow
- $\delta_a: Q \rightarrow Q$ is the «transition» arrow for each $a \in A$

The language accepted by \mathcal{A} is a map $L_{\mathcal{A}}: A^* \to \mathcal{C}(I, F)$ that associates to a word $w = a_1 \dots a_n$ the composite morphism

$$I \xrightarrow{i} Q \xrightarrow{\delta_{a_1}} Q \xrightarrow{\delta_{a_2}} \dots \xrightarrow{\delta_{a_n}} Q \xrightarrow{f} F$$

Example

A DFA is a (Set, 1, 2)-automaton. It accepts a language $L: A^* \rightarrow Set(1, 2) \cong 2$.

Subsequential transducers in a category

A subsequential transducer with input alphabet A and output alphabet B consists of:

- a finite set of states Q
- an initial state with an initial output in *B*^{*}, or an undefined initial state

A subsequential transducer with input alphabet A and output alphabet B consists of:

- a finite set of states Q
- an initial state with an initial output in *B*^{*}, or an undefined initial state
- for each $a \in A$ a transition function $Q \rightarrow B^* \times Q + 1$

A subsequential transducer with input alphabet A and output alphabet B consists of:

- a finite set of states Q
- an initial state with an initial output in *B*^{*}, or an undefined initial state
- for each $a \in A$ a transition function $Q \rightarrow B^* \times Q + 1$
- for each state in Q, either an output word in B^* or undefined.

We consider partial actions for the free monoid B^* .

We consider partial actions for the free monoid B^* .

We consider a category $\mathsf{Kl}(\mathcal{T})$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \rightarrow Y$, where $f: X \rightarrow B^* \times Y + 1$ is a function

We consider partial actions for the free monoid B^* .

We consider a category $\mathsf{Kl}(\mathcal{T})$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \Rightarrow Y$, where $f: X \Rightarrow B^* \times Y + 1$ is a function

Composition of arrows in $Kl(\mathcal{T})$ is defined using the monoid multiplication in B^* .

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ then $g \circ f: X \rightarrow Z$ (i.e. $g \circ f: X \rightarrow B^* \times Z + 1$) is given by $g \circ f(x) = \begin{cases} (uv, z) & \text{if } f(x) = (u, y) \text{ and } g(y) = (v, z) \\ \bot & \text{otherwise.} \end{cases}$

We consider partial actions for the free monoid B^* .

We consider a category $\mathsf{Kl}(\mathcal{T})$ with

- objects: sets X, Y, Z, ...
- arrows: $f: X \Rightarrow Y$, where $f: X \Rightarrow B^* \times Y + 1$ is a function

Composition of arrows in $Kl(\mathcal{T})$ is defined using the monoid multiplication in B^* .

If
$$f: X \nleftrightarrow Y$$
 and $g: Y \nleftrightarrow Z$ then $g \circ f: X \nrightarrow Z$ (i.e. $g \circ f: X \to B^* \times Z + 1$) is given
by $g \circ f(x) = \begin{cases} (uv, z) & \text{if } f(x) = (u, y) \text{ and } g(y) = (v, z) \\ \bot & \text{otherwise.} \end{cases}$

This is the Kleisli category for the monad \mathcal{T} : Set \rightarrow Set given by $\mathcal{T}(X) = B^* \times X + 1$, which associates to each set X the free partial action of B^* on X. Notice that we can replace B^* with any other monoid.

Interpretting the arrows

ammounts to give

Interpretting the arrows

$$1 \xrightarrow{i} Q \xrightarrow{f} 1 \qquad \text{in } \mathsf{Kl}(\mathcal{T})$$

ammounts to give

• a function $i: 1 \rightarrow B^* \times Q + 1$, i.e. an initial state with an initial output in B^* , or an undefined initial state

Interpretting the arrows

$$1 \xrightarrow{i} Q \xrightarrow{f} 1 \qquad \text{in } \mathsf{Kl}(\mathcal{T})$$

ammounts to give

- a function $i: 1 \rightarrow B^* \times Q + 1$, i.e. an initial state with an initial output in B^* , or an undefined initial state
- for each $a \in A$ a function $\delta_a: Q \to B^* \times Q + 1$

Interpretting the arrows

ammounts to give

- a function $i: 1 \rightarrow B^* \times Q + 1$, i.e. an initial state with an initial output in B^* , or an undefined initial state
- for each $a \in A$ a function $\delta_a: Q \to B^* \times Q + 1$
- a final map f: Q → B^{*} × 1 + 1, i.e. for each state in Q either an output word in B^{*} or undefined.

Interpretting the arrows

$$1 \xrightarrow{i} Q \xrightarrow{f} 1 \qquad \text{in } \mathsf{Kl}(\mathcal{T})$$

ammounts to give a subsequential transducer!

Interpretting the arrows

$$1 \xrightarrow{i} Q \xrightarrow{f} 1 \qquad \text{in } \mathsf{Kl}(\mathcal{T})$$

ammounts to give a subsequential transducer!

Furthermore, the partial function realized by the corresponding subsequential transducer applied to a word $w \in A^*$ is exactly $f \circ \delta_w \circ i(w)$.

Automata in a category: minimization

- What does it mean for a (C, I, F)-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?

- What does it mean for a (C, I, F)-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?

A DFA is minimal when it divides any other automaton accepting the same language.

- What does it mean for a (C, I, F)-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?

A DFA is minimal when it divides any other automaton accepting the same language. Here divides = «is a quotient of a sub-automaton of»

- What does it mean for a (C, I, F)-automaton to be minimal?
- What are sufficient conditions on *C* so that a minimal automaton for a language exists?

A DFA is minimal when it divides any other automaton accepting the same language. Here divides = «is a quotient of a sub-automaton of»

Thus we need a notion of «quotient» (surjection for sets) and «sub-object» (injection for sets), i.e. a factorization system.

When does a 'minimal' automaton accepting a language ${\cal L}$ exist?

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L}),$ and,

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L}),$ and,
- a factorization system

then $\mathtt{Min}(\mathcal{L})$ is obtained as the factorization

$$\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \operatorname{Min}(\mathcal{L}) \mapsto \mathcal{A}_{\text{final}}(\mathcal{L}).$$

- an initial object $\mathcal{A}_{\texttt{init}}(\mathcal{L})\text{,}$
- a final object $\mathcal{A}_{\texttt{final}}(\mathcal{L}),$ and,
- a factorization system

✓ when C has copowers ✓ when C has powers ✓ when C has one

then $Min(\mathcal{L})$ is obtained as the factorization

 $\mathcal{A}_{\text{init}}(\mathcal{L}) \twoheadrightarrow \text{Min}(\mathcal{L}) \rightarrowtail \mathcal{A}_{\text{final}}(\mathcal{L}) \,.$

deterministic automata, i.e. (Set, 1, 2)-automata accepting a (Set, 1, 2)-language

deterministic automata, i.e. (Set, 1, 2)-automata accepting a (Set, 1, 2)-language

 \mathbb{R} -weighted automata, i.e. (Vec, \mathbb{R} , \mathbb{R})-automata accepting a (Vec, \mathbb{R} , \mathbb{R})-language

 \mathbb{R} -weighted automata, i.e. (Vec, \mathbb{R} , \mathbb{R})-automata accepting a (Vec, \mathbb{R} , \mathbb{R})-language

The automaton $Min(\mathcal{L})$ divides any other automaton accepting \mathcal{L} .

The automaton $Min(\mathcal{L})$ divides any other automaton accepting \mathcal{L} .

Thus far we identified simple sufficient conditions on C so that minimization of C-automata is guaranteed!

Minimization of subsequential transducers

Recall that subsequential transducers are word automata interpreted in the category Kl(T):

- objects: sets X, Y, Z, ...
- arrows: $f: X \Rightarrow Y$ where $f: X \Rightarrow B^* \times Y + 1$ is a function

Does $Kl(\mathcal{T})$ satisfy the sufficient conditions for minimization?

Recall that subsequential transducers are word automata interpreted in the category Kl(T):

- objects: sets X, Y, Z, ...
- arrows: $f: X \rightarrow Y$ where $f: X \rightarrow B^* \times Y + 1$ is a function

Does $Kl(\mathcal{T})$ satisfy the sufficient conditions for minimization?

Not quite! It does not have products, powers... so proving the existence of the final automaton for a language is problematic. The latter exists nevertheless in this case.

- initial automaton
- final automaton
- factorization system

- initial automaton \checkmark
- final automaton
- factorization system

Idea: We use the lifting of the Kleisli adjunction for the monad \mathcal{T} . The left adjoint preserves the initial automaton.

The set of states of the initial $Kl(\mathcal{T})$ -automaton is A^*

- \cdot initial automaton \checkmark
- \cdot final automaton \checkmark
- factorization system

Idea: There exists a $Kl(\mathcal{T})$ -automaton mapped by the right adjoint to the final Set-automaton.

The set of states of the final $Kl(\mathcal{T})$ -automaton is $Irr(A^*, B^*)$ – the set of partial functions

- $f: A^* \to B^* + 1$ such that
 - f is defined on some word in A^* and
 - the longest common prefix of $\{f(w) | f(w) \in B^*\}$ is ϵ .

- \cdot initial automaton \checkmark
- \cdot final automaton \checkmark
- factorization system

Idea: There exists a $Kl(\mathcal{T})$ -automaton mapped by the right adjoint to the final Set-automaton.

The set of states of the final $Kl(\mathcal{T})$ -automaton is $Irr(A^*, B^*)$ – the set of partial functions

- $f: A^* \rightarrow B^* + 1$ such that
 - f is defined on some word in A^* and
 - the longest common prefix of $\{f(w) | f(w) \in B^*\}$ is ϵ .

Crucial fact: $B^* \times \operatorname{Irr}(A^*, B^*) \cong (A^* + 1)^{B^*}$.

Longest common prefixes play a fundamental role.

- \cdot initial automaton \checkmark
- \cdot final automaton \checkmark
- factorization system \checkmark

Idea: The factorization system is inherited from a factorization system $(\mathcal{E}, \mathcal{M})$ on Kl (\mathcal{T}) :

- $e: X \rightarrow Y$ (i.e. $e: X \rightarrow B^* \times Y + 1$) is in \mathcal{E} iff each $y \in Y$ is in the image of the second projection of e.
- $m:X \Rightarrow Y$ (i.e. $m:X \Rightarrow B^* \times Y + 1$) is in \mathcal{M} iff m is everywhere defined, the second projection is injective and the first projection is constant ε .

- \cdot initial automaton \checkmark
- \cdot final automaton \checkmark
- factorization system \checkmark

Idea: The factorization system is inherited from a factorization system $(\mathcal{E}, \mathcal{M})$ on Kl (\mathcal{T}) :

- $e: X \rightarrow Y$ (i.e. $e: X \rightarrow B^* \times Y + 1$) is in \mathcal{E} iff each $y \in Y$ is in the image of the second projection of e.
- $m:X \Rightarrow Y$ (i.e. $m:X \Rightarrow B^* \times Y + 1$) is in \mathcal{M} iff m is everywhere defined, the second projection is injective and the first projection is constant ε .

This also works if we replace B^* by a right cancellative monoid.

The minimal transducer in a picture

We obtain $Min(\mathcal{L})$ – the minimal subsequential transducer as obtained by Choffrut!

Conclusions

We put under the same umbrella concepts like

- minimal DFA,
- syntactic monoid/algebras,
- minimal subsequential transducers (à la Choffrut)?
- new forms of automata: minimal hybrid-set-vector automata (see [MFCS'17]),

Conclusions

We put under the same umbrella concepts like

- minimal DFA,
- syntactic monoid/algebras,
- minimal subsequential transducers (à la Choffrut)?
- new forms of automata: minimal hybrid-set-vector automata (see [MFCS'17]),

Conclusions

We put under the same umbrella concepts like

- minimal DFA,
- syntactic monoid/algebras,
- minimal subsequential transducers (à la Choffrut)?
- new forms of automata: minimal hybrid-set-vector automata (see [MFCS'17]),

What next

- Transducers with outputs in an arbitrary monoid? See next talk...
- Algebras for recognition beyond Set?
- Learning and minimization? Generic learning algorithms?