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Part I

Motivation
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Original motivation

A function f : A∗ → B∗ is regularity-preserving if,
for each regular language L of B∗, f−1(L) is also
regular.

More generally, let C be a class of regular languages.
A function f : A∗ → B∗ is C-preserving if, for each
L ∈ C, f−1(L) is also in C.

Goal. Find a complete description of
regularity-preserving [C-preserving] functions.

Same questions for transductions.
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A quizz (J.-E. Pin, P.A. Reynier, D. Villevallois)

Which of these functions are regularity-preserving?
Star-free preserving?

u → u2 u → ũu

u → u|u| u → a|u|ab|u|b

amcbn → anbmn

an → a2
n

an → a2
. .
.
2

︸︷︷︸
n times

u0#u1#u2 → u2#u1#u0#u1#u2

u#v → (v[a → u])|u|

u#baaba → (buubu)|u|
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A quizz on transductions (Pin-Sakarovitch 1983)

Which transductions are regularity-preserving?
Star-free preserving?

u → u∗

u →
⋃

p prime

up

u → A|u|uA|u|

u → {ṽv | v is a subword of u}
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Part II

Matrix representations
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Matrix representation of transducers [Pin-Sakarovitch]

f(u) = a|u|ab|u|b

1 2

a | a

b | 1

a | 1

b | b

µ(a) =
(
a 0
0 1

)
µ(b) =

(
1 0
0 b

)
µ(u) =

(
a|u|a 0
0 b|u|b

)

f(u) = µ1,1(u)µ2,2(u)
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Example 2

f1(u) = uu f2(u) = ũu

τ1(u) = u∗ τ2(u) =
⋃

p prime

up

1

a | a

b | b

µ(a) = a µ(b) = b µ(u) = u

f1(u) = (µ(u))2 f2(u) = µ̃(u)µ(u)

τ1(u) =
∑

n>0

µ(u) τ2(u) =
∑

p prime

µ(u)p
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Example 3

f(u) = Last(u)u

1 23

a | a, b | b

a | 1 b | 1

a | a, b | b

a b

µ(a) =

(
a 0 1
0 a 0
0 0 0

)
µ(b) =

(
b 0 0
0 b 1
0 0 0

)

f(u) = aµ1,3(u) + bµ2,3(u)
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Example 4

f(u0#u1#u2) = u2#u1#u0#u1#u2

1 2 3

a | a, b | b a | a, b | b a | a, b | b

# | 1 # | 1

µ(#) =

(
0 1 0
0 0 1
0 0 0

)
µ(u0#u1#u2) =

(
u0 0 0
0 u1 0
0 0 u2

)

f(u) = µ3,3(u)#µ1,1(u)#µ1,1(u)#µ2,2(u)#µ3,3(u)
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Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Every transduction having a matrix representation is
regularity-preserving.

Formal definition. Let M be a monoid. A
transduction τ : A∗ → M admits a matrix
representation (s, µ) if there exist n > 0, a monoid
morphism µ : A∗ → P(M)n×n, and a series s in n2

variables Xi,j such that for all u ∈ A∗,
τ(u) = s[Xi,j → µi,j(u)].
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Other results

A transduction τ : A∗ → M admits a bilateral
matrix representation (s, µ) if there exist n > 0, a
monoid morphism µ : A∗ → P(M)n×n, and a series
s in 2n2 variables Xi,j, X̃i,j such that for all u ∈ A∗,

τ(u) = s[Xi,j → µi,j(u), X̃i,j → µ̃i,j(u)].

Every transduction having a bilateral matrix
representation is regularity-preserving.

Proposition (Pin, Reynier, Villevallois, 2018)

Marseille transducers are regularity-preserving.
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Marseille transducers

The function f(ancbp) = apbpn can be realized by
the following Marseille transducer:

1 2

a | σ1

c | Id

b | σ2

Y σ

where A = {a, b, c}, B = A ∪ {X, Y } and
σ, σ1, σ2 : B

∗ → B∗ are substitutions defined by

Xσ1 = X Y σ1 = Y X dσ1 = d for d ∈ A

Xσ2 = Xb Y σ2 = Y a dσ2 = d for d ∈ A

Xσ = 1 Y σ = 1 dσ = d for d ∈ A
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Marseille transducers at work

The function f(ancbp) = apbpn can be realized by
the following Marseille transducer:

1 2

a | σ1

c | Id

b | σ2

Y σ

τ(ancbp) = Y σn
1
σ
p
2
σ = (Y Xn)σp

2
σ = ((Y σ

p
2
)(Xσ

p
2
)n)σ

= ((Y ap)(Xbp)n)σ = apbpn

Xσ1 = X Y σ1 = Y X dσ1 = d for d ∈ A

Xσ2 = Xb Y σ2 = Y a dσ2 = d for d ∈ A

Xσ = 1 Y σ = 1 dσ = d for d ∈ A
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Part III

Topological characterizations
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Monoids

A monoid is a set M equipped with an associative
binary operation (the product) and an identity 1 for
this operation.

A monoid M is finitely generated if there exists a
finite subset F of M which generates M .

Examples. The free monoid A∗, with A finite.

Given a monoid M , the set P(M) of subsets of M
is a monoid under the product defined, for
X, Y ⊆ M , by XY = {xy | x ∈ X, y ∈ Y }.
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Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there
exists a finite monoid F , a monoid morphism
ϕ : M → F and a subset Q of F such that
P = ϕ−1(Q).

Rec(M) = set of recognizable subsets of M .

If M = A∗, then recognizable = rational = regular
[Kleene].
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Transductions

Given two monoids M and N , a transduction from
M into N is a relation on M and N , usually viewed
as a map from M into the monoid P(N).

If τ : M → N is a transduction, then the inverse
relation τ−1 : N → M is also a transduction. If
R ⊆ N , then

τ−1(R) = {x ∈ M | τ(x) ∩R 6= ∅}

A function f : M → N is recognizability-preserving
if, for each R ∈ Rec(N), f−1(R) ∈ Rec(M).

Same definition for recognizability-preserving
transductions.
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Residually finite monoids

A monoid F separates two elements x, y ∈ M if
there exists a morphism ϕ : M → F such that
ϕ(x) 6= ϕ(y).

A monoid is residually finite if any pair of distinct
elements of M can be separated by a finite monoid.

Finite monoids, free monoids, free groups are
residually finite. The monoids A∗

1 × A∗
2 × · · · × A∗

n

are residually finite.
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Profinite metric

Let M be a residually finite monoid. The profinite
metric d is defined by setting, for u, v ∈ M :

r(u, v) = min
{
|F | F separates u and v}

d(u, v) = 2−r(u,v)

with the conventions min ∅ = +∞ and 2−∞ = 0.
Then

d(u, w) 6 max(d(u, v), d(v, w)) (ultrametric)

d(uw, vw) 6 d(u, v)

d(wu,wv) 6 d(u, v)
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Uniform continuity

Let (X1, d1) and (X2, d2) be metric spaces.

A function f : X1 → X2 is uniformly continuous if
for every ε > 0 there exists δ > 0 such that for all
x, y ∈ X1,

d1(x, y) < δ =⇒ d2(f(x), f(y)) < ε.
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Recognizability-preserving functions

Let M and N be two finitely generated, residually
finite monoids. (For instance M = A∗ and
N = B∗).

Theorem (Pin-Silva 2005)

A function M → N is recognizability-preserving iff
it is uniformly continuous.
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Functions from N to N

A function f : N → N is ultimately periodic modulo
n if the function f mod n is ultimately periodic. It
is cyclically ultimately periodic if it is ultimately
periodic modulo n for all n > 0.

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function f : N → N is ultimately periodic modulo
n iff for 0 6 k < n, the set f−1(k + nN) is regular.
It is regularity-preserving iff it is cyclically ultimately
periodic and, for every k ∈ N, the set f−1(k) is
regular.
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Two examples

Theorem (Siefkes 1970)

The functions n → 2n and n → 2.
. .
2

︸︷︷︸
n times

are

regularity-preserving.
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Two counterexamples

The function n →
(
2n
n

)
is not regularity-preserving.

Indeed
(
2n

n

)
mod 4 =

{
2 if n is a power of 2

0 otherwise

Let f : N → {0, 1} be a non-recursive function.
Then the function n → (

∑
06i6n f(i))! is

regularity-preserving but non recursive.

Open problem. Is it possible to describe all
recursive regularity-preserving functions (using some
recursion scheme as in Siefkes 1970)?
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Closure properties

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let f, g : N → N be cyclically ultimately periodic
functions. Then so are the following functions:

(1) g ◦ f , f + g, fg, f g, and f − g provided that
f > g and lim

n→∞
(f − g)(n) = +∞,

(2) (generalised sum) n →
∑

06i6g(n) f(i),

(3) (generalised product) n →
∏

06i6g(n) f(i).
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Another result

Proposition (Pin-Silva 2005)

The function τ : M × N → M defined by
τ(x, n) = xn is recognizability-preserving.

Corollary. The function u → u|u| is
recognizability-preserving. Indeed it can be
decomposed as

A∗ → A∗ × N A∗ × N → A∗

u → (u, |u|) (u, n) → un



IRIF, CNRS and University Paris Diderot

Recognizability-preserving transductions

Let M and N be two finitely generated, residually
finite monoids. (For instance M = A∗ and
N = B∗).

Theorem

A function M → N is recognizability-preserving iff
it is uniformly continuous.

What about recognizability-preserving
transductions?
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Completion

Let M be a finitely generated, residually finite

monoid. Let M̂ be the completion of the metric
space (M, d).

Proposition

M̂ is a compact monoid.
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Hausdorff metric

Let (M, d) be a compact metric monoid. Then the
set K(M) of compact subsets of M is also a
compact monoid for the Hausdorff metric.

The Hausdorff metric on K(M) is defined as
follows. For K,K ′ ∈ K(M), let

δ(K,K ′) = sup
x∈K

d(x,K ′)

h(K,K ′) = max(δ(K,K ′), δ(K ′, K))

+ special definition if K or K ′ is empty
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Back to transductions

Let M and N be two finitely generated, residually
finite monoids and let τ : M → N be a
transduction.

Define a map τ̂ : M → K(N̂) by setting, for each

x ∈ M , τ̂(x) = τ(x).

Theorem (Pin-Silva 2005)

The transduction τ is recognizability preserving iff τ̂

is uniformly continuous.
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Part IV

p-group languages

Target class Gp: the class of languages recognized
by a finite p-group.

Goal. Characterization of Gp-preserving functions.
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p-groups

Let p be a prime number. A p-group is a group in
which every element has order a power of p.

Let u and v be two words of A∗. A p-group G

separates u and v if there is a monoid morphism ϕ

from A∗ onto G such that ϕ(u) 6= ϕ(v).

Proposition

Any pair of distinct words can be separated by a
finite p-group.
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Pro-p metrics

Let u and v be two words. Put

rp(u, v) = min
{
|G| G is a p-group

that separates u and v}

dp(u, v) = p−rp(u,v)

with the usual convention min ∅ = −∞ and
p−∞ = 0. Then dp is an ultrametric:

(1) dp(u, v) = 0 if and only if u = v,

(2) dp(u, v) = dp(v, u),

(3) dp(u, v) 6 max(dp(u, w), dp(w, v))
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An equivalent metric

Let us set

r′p(u, v) = min

{
|x|

(
u

x

)
6≡
(
v

x

)
(mod p)

}

d′p(u, v) = p−r′p(u,v)

Proposition

d′p is an ultrametric uniformly equivalent to dp.
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Binomial coefficients (see Eilenberg or Lothaire)

Let x = a1 · · · an and u be two words of A∗. The
binomial coefficient of u and x is

(
u

x

)
= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}|

If a is a letter, then
(
u

a

)
= |u|a. If u = an and

x = am, then
(
u

x

)
=
(
m

n

)
.

(
abab

a

)
= 2

(
abab

b

)
= 2

(
abab

ab

)
= 3

(
abab

ba

)
= 1
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Languages recognized by a p-group

A language recognized by a finite p-group is called a
p-group language.

Theorem (Eilenberg-Schützenberger 1976)

A language of A∗ is a p-group language iff it is a
Boolean combination of the languages

L(x, r, p) = {u ∈ A∗ |
(
u

x

)
≡ r mod p},

for 0 6 r < p and x ∈ A∗.
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The noncommutative difference operator

Let f : A∗ → F (B) be a function. For each letter
a, the difference operator ∆af : A∗ → F (B) by

(∆af)(u) = f(u)−1f(ua)

The operator ∆wf : A∗ → F (B) is defined for each
word w ∈ A∗ by setting ∆1f = f , and for each
letter a ∈ A and each word w ∈ A∗,

∆awf = ∆a(∆wf)

In fact, for all v, w ∈ A∗, ∆vwf = ∆v(∆wf)
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Taking u = 1

For w ∈ A∗, let δwf = (∆wf)(1). Then

δ1f = f(1)

δaf = f(1)−1f(a)

δaaf = f(a)−1f(1)f(a)−1f(aa)

δbaaf = f(aa)−1f(a)f(1)−1f(a)f(ba)−1f(b)

f(ba)−1f(baa)

δabaaf = f(baa)−1f(ba)f(b)−1f(ba)f(a)−1f(1)

f(a)−1f(aa)f(aaa)−1f(aa)f(a)−1

f(aa)f(aba)−1f(ab)f(aba)−1f(abaa)
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Gp-preserving functions

Theorem (Pin-Reutenauer 2018)

Let f be a function from A∗ to B∗. TFCAE:

(1) f is uniformly continuous for dp (or d
′
p),

(2) f is Gp-preserving,

(3) lim|u|→∞ dp(δ
uf, 1) = 0,
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