Regularity preserving transductions

Jean-Éric Pin

IRIF, CNRS and University Paris 7

March 2018, Paris

I I I F IRIF, CNRS and University Paris Diderot

Outline

- (1) Motivation
- (2) A series of examples
- (3) Matrix representation of transducers
- (4) Topological characterizations
- (5) Subwords and *p*-group languages

Part I

Motivation

Original motivation

A function $f : A^* \to B^*$ is regularity-preserving if, for each regular language L of B^* , $f^{-1}(L)$ is also regular.

More generally, let \mathcal{C} be a class of regular languages. A function $f : A^* \to B^*$ is \mathcal{C} -preserving if, for each $L \in \mathcal{C}, f^{-1}(L)$ is also in \mathcal{C} .

Goal. Find a complete description of regularity-preserving [C-preserving] functions.

Same questions for transductions.

A 🛆 quizz (J.-E. Pin, P.A. Reynier, D. Villevallois)

Which of these functions are regularity-preserving? Star-free preserving?

> $u \rightarrow u^2$ $u \rightarrow \tilde{u}u$ $u \to u^{|u|}$ $u \rightarrow a^{|u|_a} b^{|u|_b}$ $a^m c b^n \rightarrow a^n b^{mn}$ $a^n \to a^{2^n}$ $a^n \rightarrow a^{2^n}$ n times $u_0 \# u_1 \# u_2 \rightarrow u_2 \# u_1 \# u_0 \# u_1 \# u_2$ $u \# v \to (v[a \to u])^{|u|}$ $u \# baaba \rightarrow (buubu)^{|u|}$

A quizz on transductions (Pin-Sakarovitch 1983)

Which transductions are regularity-preserving? Star-free preserving?

$$u \to u^*$$

$$u \to \bigcup_{\substack{p \text{ prime}}} u^p$$

$$u \to A^{|u|} u A^{|u|}$$

$$u \to \{\tilde{v}v \mid v \text{ is a subword of } u\}$$

Part II

Matrix representations

Matrix representation of transducers [Pin-Sakarovitch]

🛆 🛛 🗂 🖡 IRIF, CNRS and University Paris Diderot

Example 2

Example 3

f(u) = Last(u)u

Example 4

 $f(u_0 \# u_1 \# u_2) = u_2 \# u_1 \# u_0 \# u_1 \# u_2$

$$\mu(\#) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \mu(u_0 \# u_1 \# u_2) = \begin{pmatrix} u_0 & 0 & 0 \\ 0 & u_1 & 0 \\ 0 & 0 & u_2 \end{pmatrix}$$
$$f(u) = \mu_{3,3}(u) \# \mu_{1,1}(u) \# \mu_{1,1}(u) \# \mu_{2,2}(u) \# \mu_{3,3}(u)$$

Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Every transduction having a matrix representation is regularity-preserving.

Formal definition. Let M be a monoid. A transduction $\tau : A^* \to M$ admits a matrix representation (s, μ) if there exist n > 0, a monoid morphism $\mu : A^* \to \mathcal{P}(M)^{n \times n}$, and a series s in n^2 variables $X_{i,j}$ such that for all $u \in A^*$, $\tau(u) = s[X_{i,j} \to \mu_{i,j}(u)].$

Other results

A transduction $\tau : A^* \to M$ admits a bilateral matrix representation (s, μ) if there exist n > 0, a monoid morphism $\mu : A^* \to \mathcal{P}(M)^{n \times n}$, and a series s in $2n^2$ variables $X_{i,j}, \tilde{X}_{i,j}$ such that for all $u \in A^*$, $\tau(u) = s[X_{i,j} \to \mu_{i,j}(u), \tilde{X}_{i,j} \to \tilde{\mu}_{i,j}(u)].$

Every transduction having a bilateral matrix representation is regularity-preserving.

Proposition (Pin, Reynier, Villevallois, 2018) *Marseille transducers are regularity-preserving.*

Marseille transducers

The function $f(a^n cb^p) = a^p b^{pn}$ can be realized by the following Marseille transducer:

where $A = \{a, b, c\}$, $B = A \cup \{X, Y\}$ and $\sigma, \sigma_1, \sigma_2 : B^* \to B^*$ are substitutions defined by

 $\begin{array}{ll} X\sigma_1 = X & Y\sigma_1 = YX & d\sigma_1 = d \text{ for } d \in A \\ X\sigma_2 = Xb & Y\sigma_2 = Ya & d\sigma_2 = d \text{ for } d \in A \\ X\sigma = 1 & Y\sigma = 1 & d\sigma = d \text{ for } d \in A \end{array}$

Marseille transducers at work

The function $f(a^n cb^p) = a^p b^{pn}$ can be realized by the following Marseille transducer:

 $\tau(a^n cb^p) = Y\sigma_1^n \sigma_2^p \sigma = (YX^n)\sigma_2^p \sigma = ((Y\sigma_2^p)(X\sigma_2^p)^n)\sigma$ $= ((Ya^p)(Xb^p)^n)\sigma = a^p b^{pn}$

 $X\sigma_1 = X$ $Y\sigma_1 = YX$ $d\sigma_1 = d$ for $d \in A$ $X\sigma_2 = Xb$ $Y\sigma_2 = Ya$ $d\sigma_2 = d$ for $d \in A$ $X\sigma = 1$ $Y\sigma = 1$ $d\sigma = d$ for $d \in A$

🔔 🛛 🖡 🖡 IRIF, CNRS and University Paris Diderot

Part III

Topological characterizations

Monoids

A monoid is a set M equipped with an associative binary operation (the product) and an identity 1 for this operation.

A monoid M is finitely generated if there exists a finite subset F of M which generates M.

Examples. The free monoid A^* , with A finite.

Given a monoid M, the set $\mathcal{P}(M)$ of subsets of M is a monoid under the product defined, for $X, Y \subseteq M$, by $XY = \{xy \mid x \in X, y \in Y\}$.

Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there exists a finite monoid F, a monoid morphism $\varphi: M \to F$ and a subset Q of F such that $P = \varphi^{-1}(Q)$.

 $\operatorname{Rec}(M) = \operatorname{set}$ of recognizable subsets of M.

If $M = A^*$, then recognizable = rational = regular [Kleene].

Transductions

Given two monoids M and N, a transduction from M into N is a relation on M and N, usually viewed as a map from M into the monoid $\mathcal{P}(N)$.

If $\tau: M \to N$ is a transduction, then the inverse relation $\tau^{-1}: N \to M$ is also a transduction. If $R \subseteq N$, then

 $\tau^{-1}(R) = \{ x \in M \mid \tau(x) \cap R \neq \emptyset \}$

A function $f: M \to N$ is recognizability-preserving if, for each $R \in \text{Rec}(N)$, $f^{-1}(R) \in \text{Rec}(M)$.

Same definition for recognizability-preserving transductions.

Residually finite monoids

A monoid F separates two elements $x, y \in M$ if there exists a morphism $\varphi : M \to F$ such that $\varphi(x) \neq \varphi(y)$.

A monoid is residually finite if any pair of distinct elements of M can be separated by a finite monoid.

Finite monoids, free monoids, free groups are residually finite. The monoids $A_1^* \times A_2^* \times \cdots \times A_n^*$ are residually finite.

Profinite metric

Let M be a residually finite monoid. The profinite metric d is defined by setting, for $u, v \in M$:

 $r(u, v) = \min\{|F|| F \text{ separates } u \text{ and } v\}$ $d(u, v) = 2^{-r(u,v)}$

with the conventions $\min \emptyset = +\infty$ and $2^{-\infty} = 0.$ Then

 $d(u,w) \leq \max(d(u,v), d(v,w)) \quad \text{(ultrametric)}$ $d(uw,vw) \leq d(u,v)$ $d(wu,wv) \leq d(u,v)$

Uniform continuity

Let (X_1, d_1) and (X_2, d_2) be metric spaces.

A function $f: X_1 \to X_2$ is uniformly continuous if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in X_1$,

 $d_1(x,y) < \delta \implies d_2(f(x),f(y)) < \varepsilon.$

Recognizability-preserving functions

Let M and N be two finitely generated, residually finite monoids. (For instance $M = A^*$ and $N = B^*$).

Theorem (Pin-Silva 2005)

A function $M \rightarrow N$ is recognizability-preserving iff it is uniformly continuous.

Functions from ${\mathbb N}$ to ${\mathbb N}$

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n if the function $f \mod n$ is ultimately periodic. It is cyclically ultimately periodic if it is ultimately periodic modulo n for all n > 0.

Theorem (Siefkes 1970, SeiferasMcNaughton 1976)

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n iff for $0 \leq k < n$, the set $f^{-1}(k + n\mathbb{N})$ is regular. It is regularity-preserving iff it is cyclically ultimately periodic and, for every $k \in \mathbb{N}$, the set $f^{-1}(k)$ is regular.

Two examples

Two counterexamples

The function $n \to \binom{2n}{n}$ is not regularity-preserving. Indeed

$$\binom{2n}{n} \mod 4 = \begin{cases} 2 & \text{if } n \text{ is a power of } 2\\ 0 & \text{otherwise} \end{cases}$$

Let $f : \mathbb{N} \to \{0, 1\}$ be a non-recursive function. Then the function $n \to (\sum_{0 \leq i \leq n} f(i))!$ is regularity-preserving but non recursive.

Open problem. Is it possible to describe all recursive regularity-preserving functions (using some recursion scheme as in Siefkes 1970)?

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let $f, g: \mathbb{N} \to \mathbb{N}$ be cyclically ultimately periodic functions. Then so are the following functions: (1) $g \circ f$, f + g, fg, f^g , and f - g provided that $f \ge g$ and $\lim_{n \to \infty} (f - g)(n) = +\infty$, (2) (generalised sum) $n \to \sum_{0 \le i \le g(n)} f(i)$, (3) (generalised product) $n \to \prod_{0 \le i \le g(n)} f(i)$.

The function $\tau : M \times \mathbb{N} \to M$ defined by $\tau(x, n) = x^n$ is recognizability-preserving.

Corollary. The function $u \rightarrow u^{|u|}$ is recognizability-preserving. Indeed it can be decomposed as

 $A^* \to A^* \times \mathbb{N}$ $u \to (u, |u|)$

 $\begin{array}{c} A^* \times \mathbb{N} \to A^* \\ (u,n) \to u^n \end{array}$

🛆 I I I I I IRIF, CNRS and University Paris Diderot

Recognizability-preserving transductions

Let M and N be two finitely generated, residually finite monoids. (For instance $M = A^*$ and $N = B^*$).

Theorem

A function $M \rightarrow N$ is recognizability-preserving iff it is uniformly continuous.

What about recognizability-preserving transductions?

Completion

Let M be a finitely generated, residually finite monoid. Let \widehat{M} be the completion of the metric space (M, d).

Proposition

 \widehat{M} is a compact monoid.

Hausdorff metric

Let (M, d) be a compact metric monoid. Then the set $\mathcal{K}(M)$ of compact subsets of M is also a compact monoid for the Hausdorff metric.

The Hausdorff metric on $\mathcal{K}(M)$ is defined as follows. For $K, K' \in \mathcal{K}(M)$, let

$$\begin{split} \delta(K, K') &= \sup_{x \in K} d(x, K') \\ h(K, K') &= \max(\delta(K, K'), \delta(K', K)) \\ &+ \text{special definition if } K \text{ or } K' \text{ is empty} \end{split}$$

Let M and N be two finitely generated, residually finite monoids and let $\tau: M \to N$ be a transduction.

Define a map $\widehat{\tau} : M \to \mathcal{K}(\widehat{N})$ by setting, for each $x \in M$, $\widehat{\tau}(x) = \overline{\tau(x)}$.

Theorem (Pin-Silva 2005)

The transduction τ is recognizability preserving iff $\hat{\tau}$ is uniformly continuous.

Part IV

Target class G_p : the class of languages recognized by a finite *p*-group.

Goal. Characterization of \mathcal{G}_p -preserving functions.

p-groups

Let p be a prime number. A p-group is a group in which every element has order a power of p.

Let u and v be two words of A^* . A p-group Gseparates u and v if there is a monoid morphism φ from A^* onto G such that $\varphi(u) \neq \varphi(v)$.

Proposition

Any pair of distinct words can be separated by a finite p-group.

$\mathsf{Pro-}p$ metrics

Let u and v be two words. Put

 $r_p(u,v) = \min \{ |G| \mid G \text{ is a } p\text{-group}$ that separates u and $v \}$ $d_p(u,v) = p^{-r_p(u,v)}$

with the usual convention $\min \emptyset = -\infty$ and $p^{-\infty} = 0$. Then d_p is an ultrametric: (1) $d_p(u, v) = 0$ if and only if u = v, (2) $d_p(u, v) = d_p(v, u)$, (3) $d_p(u, v) \leq \max(d_p(u, w), d_p(w, v))$

🔊 🛿 🖡 🖡 IRIF, CNRS and University Paris Diderot

An equivalent metric

Let us set

$$r'_p(u,v) = \min\left\{ |x| \mid \binom{u}{x} \not\equiv \binom{v}{x} \pmod{p} \right\}$$
$$d'_p(u,v) = p^{-r'_p(u,v)}$$

Proposition

 d'_p is an ultrametric uniformly equivalent to d_p .

Binomial coefficients (see Eilenberg or Lothaire)

Let $x = a_1 \cdots a_n$ and u be two words of A^* . The binomial coefficient of u and x is

$$\binom{u}{x} = |\{(v_0,\ldots,v_n) \mid v = v_0 a_1 v_1 \ldots a_n v_n\}|$$

If a is a letter, then $\binom{u}{a} = |u|_a$. If $u = a^n$ and $x = a^m$, then $\binom{u}{x} = \binom{m}{n}$.

$$\binom{abab}{a} = 2$$
 $\binom{abab}{b} = 2$ $\binom{abab}{ab} = 3$ $\binom{abab}{ba} = 1$

🛆 🛛 🖬 🖡 IRIF, CNRS and University Paris Diderot

Languages recognized by a p-group

A language recognized by a finite p-group is called a p-group language.

Theorem (Eilenberg-Schützenberger 1976)

A language of A^* is a *p*-group language iff it is a Boolean combination of the languages

$$L(x, r, p) = \{ u \in A^* \mid \binom{u}{x} \equiv r \bmod p \},\$$

for $0 \leq r < p$ and $x \in A^*$.

The noncommutative difference operator

Let $f : A^* \to F(B)$ be a function. For each letter *a*, the difference operator $\Delta^a f : A^* \to F(B)$ by

 $(\Delta^a f)(u) = f(u)^{-1} f(ua)$

The operator $\Delta^w f : A^* \to F(B)$ is defined for each word $w \in A^*$ by setting $\Delta^1 f = f$, and for each letter $a \in A$ and each word $w \in A^*$,

$$\Delta^{aw} f = \Delta^a (\Delta^w f)$$

In fact, for all $v, w \in A^*$, $\Delta^{vw} f = \Delta^v (\Delta^w f)$

Taking u = 1

For $w \in A^*$, let $\delta^w f = (\Delta^w f)(1)$. Then

$$\begin{split} \delta^{1}f &= f(1) \\ \delta^{a}f &= f(1)^{-1}f(a) \\ \delta^{aa}f &= f(a)^{-1}f(1)f(a)^{-1}f(aa) \\ \delta^{baa}f &= f(aa)^{-1}f(a)f(1)^{-1}f(a)f(ba)^{-1}f(b) \\ f(ba)^{-1}f(baa) \\ \delta^{abaa}f &= f(baa)^{-1}f(ba)f(b)^{-1}f(ba)f(a)^{-1}f(1) \\ f(a)^{-1}f(aa)f(aaa)^{-1}f(aa)f(a)^{-1} \\ f(aa)f(aba)^{-1}f(ab)f(aba)^{-1}f(abaa) \end{split}$$

\mathcal{G}_{p} -preserving functions

Theorem (Pin-Reutenauer 2018)

Let f be a function from A^* to B^* . TFCAE: (1) f is uniformly continuous for d_p (or d'_p), (2) f is \mathcal{G}_p -preserving, (3) $\lim_{|u|\to\infty} d_p(\delta^u f, 1) = 0$,

