
Separation with modulo predicates

Separation with modulo predicates

Varun Ramanathan

Chennai Mathematical Institute

Joint work with Pascal Weil and Thomas Place at LaBRI, Summer 2016

DeLTA meeting, Paris, March 2018

Separation with modulo predicates

Overview

Introduction
Logic and languages
Decision problems
State of the art

Main problem

Proof
Block abstraction
Stable monoid
Transfer theorem
Enrichment
EF games for modulo predicates

Conclusion

Separation with modulo predicates

Introduction

Logic and languages

Logic and Languages

There is a strong link between formal languages and logical systems.

Rational languages←→ Finite monoids←→ MSO sentences

Star-free language←→ Aperiodic monoids←→ FO sentences

I Eg.: ∃x(a(x) ∧ (∀y(x < y) =⇒ b(y))) defines the language A∗ab∗

Separation with modulo predicates

Introduction

Logic and languages

Logic and Languages

There is a strong link between formal languages and logical systems.

Rational languages←→ Finite monoids←→ MSO sentences

Star-free language←→ Aperiodic monoids←→ FO sentences

I Eg.: ∃x(a(x) ∧ (∀y(x < y) =⇒ b(y))) defines the language A∗ab∗

Separation with modulo predicates

Introduction

Logic and languages

Logic and Languages

There is a strong link between formal languages and logical systems.

Rational languages←→ Finite monoids←→ MSO sentences

Star-free language←→ Aperiodic monoids←→ FO sentences

I Eg.: ∃x(a(x) ∧ (∀y(x < y) =⇒ b(y))) defines the language A∗ab∗

Separation with modulo predicates

Introduction

Logic and languages

Logic and Languages

There is a strong link between formal languages and logical systems.

Rational languages←→ Finite monoids←→ MSO sentences

Star-free language←→ Aperiodic monoids←→ FO sentences

I Eg.: ∃x(a(x) ∧ (∀y(x < y) =⇒ b(y))) defines the language A∗ab∗

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.

Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Fragments of FO

Fragment: formulae closed under ∧, ∨ and quantifier free substitution.
Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions → quantifier alternation: Σk : ∃∗∀∗ . . .︸ ︷︷ ︸
k

(ϕ),

Πk : ∀∗∃∗ . . .︸ ︷︷ ︸
k

(ϕ)

(ϕ quantifier free)

or by limiting no. of variables: for example FO2[<]

or both? - ΣFO2

1 [<]

In this way we get a plethora of fragments. Eg. - Σ1[<,max], FO2[<,+1]

What about non-FO definable predicates?

Separation with modulo predicates

Introduction

Logic and languages

Modulo predicates

Definition
For any d ∈ N, 0 ≤ i < d we have modd

i (x): w , [x = j] � modd
i (x) iff

i ≡ j(mod d)

MODd =
⋃
{modd

i : i < d},MOD =
⋃

MODd

(aa)∗ → ∀x(a(x) ∧ (max(x) =⇒ mod2
0(x)))

{w : |w |a is even} is not definable in FO[<,MOD].

FO[<,MOD] is more powerful than FO[<]

Separation with modulo predicates

Introduction

Logic and languages

Modulo predicates

Definition
For any d ∈ N, 0 ≤ i < d we have modd

i (x): w , [x = j] � modd
i (x) iff

i ≡ j(mod d)

MODd =
⋃
{modd

i : i < d},MOD =
⋃

MODd

(aa)∗ → ∀x(a(x) ∧ (max(x) =⇒ mod2
0(x)))

{w : |w |a is even} is not definable in FO[<,MOD].

FO[<,MOD] is more powerful than FO[<]

Separation with modulo predicates

Introduction

Logic and languages

Modulo predicates

Definition
For any d ∈ N, 0 ≤ i < d we have modd

i (x): w , [x = j] � modd
i (x) iff

i ≡ j(mod d)

MODd =
⋃
{modd

i : i < d},MOD =
⋃

MODd

(aa)∗ → ∀x(a(x) ∧ (max(x) =⇒ mod2
0(x)))

{w : |w |a is even} is not definable in FO[<,MOD].

FO[<,MOD] is more powerful than FO[<]

Separation with modulo predicates

Introduction

Logic and languages

Modulo predicates

Definition
For any d ∈ N, 0 ≤ i < d we have modd

i (x): w , [x = j] � modd
i (x) iff

i ≡ j(mod d)

MODd =
⋃
{modd

i : i < d},MOD =
⋃

MODd

(aa)∗ → ∀x(a(x) ∧ (max(x) =⇒ mod2
0(x)))

{w : |w |a is even} is not definable in FO[<,MOD].

FO[<,MOD] is more powerful than FO[<]

Separation with modulo predicates

Introduction

Logic and languages

Modulo predicates

Definition
For any d ∈ N, 0 ≤ i < d we have modd

i (x): w , [x = j] � modd
i (x) iff

i ≡ j(mod d)

MODd =
⋃
{modd

i : i < d},MOD =
⋃

MODd

(aa)∗ → ∀x(a(x) ∧ (max(x) =⇒ mod2
0(x)))

{w : |w |a is even} is not definable in FO[<,MOD].

FO[<,MOD] is more powerful than FO[<]

Separation with modulo predicates

Introduction

Logic and languages

Modulo predicates

Definition
For any d ∈ N, 0 ≤ i < d we have modd

i (x): w , [x = j] � modd
i (x) iff

i ≡ j(mod d)

MODd =
⋃
{modd

i : i < d},MOD =
⋃

MODd

(aa)∗ → ∀x(a(x) ∧ (max(x) =⇒ mod2
0(x)))

{w : |w |a is even} is not definable in FO[<,MOD].

FO[<,MOD] is more powerful than FO[<]

Separation with modulo predicates

Introduction

Decision problems

Decision problems

Let F be a fragment of FO.

Membership
Given a regular language L, is it definable in F?

Separation
Given L1 and L2 regular, does there exist L definable in F such that
L1 ⊆ L and L ∩ L2 = ∅?

Separation with modulo predicates

Introduction

Decision problems

Decision problems

Let F be a fragment of FO.

Membership
Given a regular language L, is it definable in F?

Separation
Given L1 and L2 regular, does there exist L definable in F such that
L1 ⊆ L and L ∩ L2 = ∅?

Separation with modulo predicates

Introduction

Decision problems

Decision problems

Let F be a fragment of FO.

Membership
Given a regular language L, is it definable in F?

Separation
Given L1 and L2 regular, does there exist L definable in F such that
L1 ⊆ L and L ∩ L2 = ∅?

Separation with modulo predicates

Introduction

Decision problems

Decision problems

Let F be a fragment of FO.

Membership
Given a regular language L, is it definable in F?

Separation
Given L1 and L2 regular, does there exist L definable in F such that
L1 ⊆ L and L ∩ L2 = ∅?

Separation with modulo predicates

Introduction

State of the art

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of
different fragments.

For successor:

I For varieties, Straubing defined an operation V 7→ V ∗ D based on
the wreath product of monoids. This corresponds to adding
successor to the fragment.

I Place and Zeitoun have defined a language operation C → C ◦ SU
and proved that it amounts to adding successor

For modulo predicates

I Barrington et al proved membership decidability for FO[<,MOD]

I Dartois and Paperman proved the decidability of membership of
F [<,MOD] for several fragments

Separation with modulo predicates

Introduction

State of the art

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of
different fragments.

For successor:

I For varieties, Straubing defined an operation V 7→ V ∗ D based on
the wreath product of monoids. This corresponds to adding
successor to the fragment.

I Place and Zeitoun have defined a language operation C → C ◦ SU
and proved that it amounts to adding successor

For modulo predicates

I Barrington et al proved membership decidability for FO[<,MOD]

I Dartois and Paperman proved the decidability of membership of
F [<,MOD] for several fragments

Separation with modulo predicates

Introduction

State of the art

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of
different fragments.

For successor:

I For varieties, Straubing defined an operation V 7→ V ∗ D based on
the wreath product of monoids. This corresponds to adding
successor to the fragment.

I Place and Zeitoun have defined a language operation C → C ◦ SU
and proved that it amounts to adding successor

For modulo predicates

I Barrington et al proved membership decidability for FO[<,MOD]

I Dartois and Paperman proved the decidability of membership of
F [<,MOD] for several fragments

Separation with modulo predicates

Introduction

State of the art

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of
different fragments.

For successor:

I For varieties, Straubing defined an operation V 7→ V ∗ D based on
the wreath product of monoids. This corresponds to adding
successor to the fragment.

I Place and Zeitoun have defined a language operation C → C ◦ SU
and proved that it amounts to adding successor

For modulo predicates

I Barrington et al proved membership decidability for FO[<,MOD]

I Dartois and Paperman proved the decidability of membership of
F [<,MOD] for several fragments

Separation with modulo predicates

Introduction

State of the art

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of
different fragments.

For successor:

I For varieties, Straubing defined an operation V 7→ V ∗ D based on
the wreath product of monoids. This corresponds to adding
successor to the fragment.

I Place and Zeitoun have defined a language operation C → C ◦ SU
and proved that it amounts to adding successor

For modulo predicates

I Barrington et al proved membership decidability for FO[<,MOD]

I Dartois and Paperman proved the decidability of membership of
F [<,MOD] for several fragments

Separation with modulo predicates

Main problem

Separability

Question: If separation is decidable for F , is it decidable for F [MOD]?

Answer: Yes, if F has successor in its signature.

Theorem
Let S be a logical signature containing +1. Let F [S]-separation be
decidable. Then, F [S,MOD]-separation is decidable.

We apply this theorem to fragments

FO[<,+],FO2[<,+],Σ1[<,+1],Σ2[<,+1],Σ3[<,+1],BΣ1[<,+],BΣ2[<,+]

Separation with modulo predicates

Main problem

Separability

Question: If separation is decidable for F , is it decidable for F [MOD]?

Answer: Yes, if F has successor in its signature.

Theorem
Let S be a logical signature containing +1. Let F [S]-separation be
decidable. Then, F [S,MOD]-separation is decidable.

We apply this theorem to fragments

FO[<,+],FO2[<,+],Σ1[<,+1],Σ2[<,+1],Σ3[<,+1],BΣ1[<,+],BΣ2[<,+]

Separation with modulo predicates

Main problem

Separability

Question: If separation is decidable for F , is it decidable for F [MOD]?

Answer: Yes, if F has successor in its signature.

Theorem
Let S be a logical signature containing +1. Let F [S]-separation be
decidable. Then, F [S,MOD]-separation is decidable.

We apply this theorem to fragments

FO[<,+],FO2[<,+],Σ1[<,+1],Σ2[<,+1],Σ3[<,+1],BΣ1[<,+],BΣ2[<,+]

Separation with modulo predicates

Main problem

Separability

Question: If separation is decidable for F , is it decidable for F [MOD]?

Answer: Yes, if F has successor in its signature.

Theorem
Let S be a logical signature containing +1. Let F [S]-separation be
decidable. Then, F [S,MOD]-separation is decidable.

We apply this theorem to fragments

FO[<,+],FO2[<,+],Σ1[<,+1],Σ2[<,+1],Σ3[<,+1],BΣ1[<,+],BΣ2[<,+]

Separation with modulo predicates

Main problem

Separability

Question: If separation is decidable for F , is it decidable for F [MOD]?

Answer: Yes, if F has successor in its signature.

Theorem
Let S be a logical signature containing +1. Let F [S]-separation be
decidable. Then, F [S,MOD]-separation is decidable.

We apply this theorem to fragments

FO[<,+],FO2[<,+],Σ1[<,+1],Σ2[<,+1],Σ3[<,+1],BΣ1[<,+],BΣ2[<,+]

Separation with modulo predicates

Proof

Proof idea

The proof proceeds in the following way:

I C is the class of languages definable in F
I Define an operation C → ‖C ‖ on languages

I Transfer theorem of separation from ‖C ‖ to C

I Prove that ‖C ‖ indeed corresponds to languages definable in
F [MOD]

Separation with modulo predicates

Proof

Proof idea

The proof proceeds in the following way:

I C is the class of languages definable in F

I Define an operation C → ‖C ‖ on languages

I Transfer theorem of separation from ‖C ‖ to C

I Prove that ‖C ‖ indeed corresponds to languages definable in
F [MOD]

Separation with modulo predicates

Proof

Proof idea

The proof proceeds in the following way:

I C is the class of languages definable in F
I Define an operation C → ‖C ‖ on languages

I Transfer theorem of separation from ‖C ‖ to C

I Prove that ‖C ‖ indeed corresponds to languages definable in
F [MOD]

Separation with modulo predicates

Proof

Proof idea

The proof proceeds in the following way:

I C is the class of languages definable in F
I Define an operation C → ‖C ‖ on languages

I Transfer theorem of separation from ‖C ‖ to C

I Prove that ‖C ‖ indeed corresponds to languages definable in
F [MOD]

Separation with modulo predicates

Proof

Proof idea

The proof proceeds in the following way:

I C is the class of languages definable in F
I Define an operation C → ‖C ‖ on languages

I Transfer theorem of separation from ‖C ‖ to C

I Prove that ‖C ‖ indeed corresponds to languages definable in
F [MOD]

Separation with modulo predicates

Proof

Block abstraction

Block abstraction

Given an alphabet A and number d , A∗d words of length ≤ d

Words in A∗ can be cut into blocks
aaaabbabab → [aaa][abb][aba][b]

µd : A∗ → A∗d
a1a2 . . . an 7→ [a1a2 . . . ad][ad+1ad+2 . . . a2d] . . . [akd+1 . . . akd+r]

‖C ‖d = {L : ∃K ∈ C such that L = µ−1d (K)}

Definition
The block abstraction of C is

‖C ‖ =
⋃
d∈N
‖C ‖d

Separation with modulo predicates

Proof

Block abstraction

Block abstraction

Given an alphabet A and number d , A∗d words of length ≤ d

Words in A∗ can be cut into blocks
aaaabbabab → [aaa][abb][aba][b]

µd : A∗ → A∗d
a1a2 . . . an 7→ [a1a2 . . . ad][ad+1ad+2 . . . a2d] . . . [akd+1 . . . akd+r]

‖C ‖d = {L : ∃K ∈ C such that L = µ−1d (K)}

Definition
The block abstraction of C is

‖C ‖ =
⋃
d∈N
‖C ‖d

Separation with modulo predicates

Proof

Block abstraction

Block abstraction

Given an alphabet A and number d , A∗d words of length ≤ d

Words in A∗ can be cut into blocks

aaaabbabab → [aaa][abb][aba][b]

µd : A∗ → A∗d
a1a2 . . . an 7→ [a1a2 . . . ad][ad+1ad+2 . . . a2d] . . . [akd+1 . . . akd+r]

‖C ‖d = {L : ∃K ∈ C such that L = µ−1d (K)}

Definition
The block abstraction of C is

‖C ‖ =
⋃
d∈N
‖C ‖d

Separation with modulo predicates

Proof

Block abstraction

Block abstraction

Given an alphabet A and number d , A∗d words of length ≤ d

Words in A∗ can be cut into blocks
aaaabbabab → [aaa][abb][aba][b]

µd : A∗ → A∗d
a1a2 . . . an 7→ [a1a2 . . . ad][ad+1ad+2 . . . a2d] . . . [akd+1 . . . akd+r]

‖C ‖d = {L : ∃K ∈ C such that L = µ−1d (K)}

Definition
The block abstraction of C is

‖C ‖ =
⋃
d∈N
‖C ‖d

Separation with modulo predicates

Proof

Block abstraction

Block abstraction

Given an alphabet A and number d , A∗d words of length ≤ d

Words in A∗ can be cut into blocks
aaaabbabab → [aaa][abb][aba][b]

µd : A∗ → A∗d
a1a2 . . . an 7→ [a1a2 . . . ad][ad+1ad+2 . . . a2d] . . . [akd+1 . . . akd+r]

‖C ‖d = {L : ∃K ∈ C such that L = µ−1d (K)}

Definition
The block abstraction of C is

‖C ‖ =
⋃
d∈N
‖C ‖d

Separation with modulo predicates

Proof

Block abstraction

Block abstraction

Given an alphabet A and number d , A∗d words of length ≤ d

Words in A∗ can be cut into blocks
aaaabbabab → [aaa][abb][aba][b]

µd : A∗ → A∗d
a1a2 . . . an 7→ [a1a2 . . . ad][ad+1ad+2 . . . a2d] . . . [akd+1 . . . akd+r]

‖C ‖d = {L : ∃K ∈ C such that L = µ−1d (K)}

Definition
The block abstraction of C is

‖C ‖ =
⋃
d∈N
‖C ‖d

Separation with modulo predicates

Proof

Stable monoid

Stable monoid and well formed words

M = (M, ·), finite.

η : A∗ →M morphism to a finite monoid

Stability index → least s such that η(As) = η(A2s). (s exists because M
is finite)

Definition
Stab(M), the stable monoid is η(As) ∪ {e}
Now we look at the free monoid M∗.

Definition
m = m1m2 . . .mn ∈ M∗ is stable if m1,m2, . . .mn−1 ∈ Stab(M) and
mn ∈ η(A<d)

Definition
bLcM = {m : m is stable and β(m) ∈ η(L)}

Separation with modulo predicates

Proof

Stable monoid

Stable monoid and well formed words

M = (M, ·), finite.

η : A∗ →M morphism to a finite monoid

Stability index → least s such that η(As) = η(A2s). (s exists because M
is finite)

Definition
Stab(M), the stable monoid is η(As) ∪ {e}
Now we look at the free monoid M∗.

Definition
m = m1m2 . . .mn ∈ M∗ is stable if m1,m2, . . .mn−1 ∈ Stab(M) and
mn ∈ η(A<d)

Definition
bLcM = {m : m is stable and β(m) ∈ η(L)}

Separation with modulo predicates

Proof

Stable monoid

Stable monoid and well formed words

M = (M, ·), finite.

η : A∗ →M morphism to a finite monoid

Stability index → least s such that η(As) = η(A2s). (s exists because M
is finite)

Definition
Stab(M), the stable monoid is η(As) ∪ {e}
Now we look at the free monoid M∗.

Definition
m = m1m2 . . .mn ∈ M∗ is stable if m1,m2, . . .mn−1 ∈ Stab(M) and
mn ∈ η(A<d)

Definition
bLcM = {m : m is stable and β(m) ∈ η(L)}

Separation with modulo predicates

Proof

Stable monoid

Stable monoid and well formed words

M = (M, ·), finite.

η : A∗ →M morphism to a finite monoid

Stability index → least s such that η(As) = η(A2s). (s exists because M
is finite)

Definition
Stab(M), the stable monoid is η(As) ∪ {e}

Now we look at the free monoid M∗.

Definition
m = m1m2 . . .mn ∈ M∗ is stable if m1,m2, . . .mn−1 ∈ Stab(M) and
mn ∈ η(A<d)

Definition
bLcM = {m : m is stable and β(m) ∈ η(L)}

Separation with modulo predicates

Proof

Stable monoid

Stable monoid and well formed words

M = (M, ·), finite.

η : A∗ →M morphism to a finite monoid

Stability index → least s such that η(As) = η(A2s). (s exists because M
is finite)

Definition
Stab(M), the stable monoid is η(As) ∪ {e}
Now we look at the free monoid M∗.

Definition
m = m1m2 . . .mn ∈ M∗ is stable if m1,m2, . . .mn−1 ∈ Stab(M) and
mn ∈ η(A<d)

Definition
bLcM = {m : m is stable and β(m) ∈ η(L)}

Separation with modulo predicates

Proof

Stable monoid

Stable monoid and well formed words

M = (M, ·), finite.

η : A∗ →M morphism to a finite monoid

Stability index → least s such that η(As) = η(A2s). (s exists because M
is finite)

Definition
Stab(M), the stable monoid is η(As) ∪ {e}
Now we look at the free monoid M∗.

Definition
m = m1m2 . . .mn ∈ M∗ is stable if m1,m2, . . .mn−1 ∈ Stab(M) and
mn ∈ η(A<d)

Definition
bLcM = {m : m is stable and β(m) ∈ η(L)}

Separation with modulo predicates

Proof

Stable monoid

Stable monoid and well formed words

M = (M, ·), finite.

η : A∗ →M morphism to a finite monoid

Stability index → least s such that η(As) = η(A2s). (s exists because M
is finite)

Definition
Stab(M), the stable monoid is η(As) ∪ {e}
Now we look at the free monoid M∗.

Definition
m = m1m2 . . .mn ∈ M∗ is stable if m1,m2, . . .mn−1 ∈ Stab(M) and
mn ∈ η(A<d)

Definition
bLcM = {m : m is stable and β(m) ∈ η(L)}

Separation with modulo predicates

Proof

Transfer theorem

Transfer theorem

Lemma
Let L1 and L2 be regular languages recognized by the same monoid M
via a morphism η, whose stability index is s. Then, L1 and L2 are
‖C ‖s -separable if and only if bL1cM and bL2cM are C -separable.

Separation with modulo predicates

Proof

Enrichment

Modular enrichment

Now we will move on to the second part of the proof, which relates the
enrichment of the fragment with modular predicates to the class
transformation defined earlier.

Enrichment result. Let C be the class of languages definable in F [S]
with +1 ∈ S. Then, ‖C ‖ is the class of languages definable in
F [S,MOD].

Separation with modulo predicates

Proof

Enrichment

Modular enrichment

Now we will move on to the second part of the proof, which relates the
enrichment of the fragment with modular predicates to the class
transformation defined earlier.

Enrichment result. Let C be the class of languages definable in F [S]
with +1 ∈ S. Then, ‖C ‖ is the class of languages definable in
F [S,MOD].

Separation with modulo predicates

Proof

Enrichment

Proof of enrichment result

Showing ‖C ‖ languages are definable in F [S,MOD] is easy.

It involves transforming a F [S](A∗d) describing a language K into a
formula F [S,MOD](A∗) which describes µ−1d (K)

We do this by describing blocks using the successor predicate.

Eg: the following formula
∃x([aba](x))

over A3 is transformed to

∃x1 x2 x3(mod3
0(x1) ∧ (x3 = x2+1)∧(x2 = x1+1) ∧a(x1)∧b(x2) ∧ a(x3))

Separation with modulo predicates

Proof

Enrichment

Proof of enrichment result

Showing ‖C ‖ languages are definable in F [S,MOD] is easy.

It involves transforming a F [S](A∗d) describing a language K into a
formula F [S,MOD](A∗) which describes µ−1d (K)

We do this by describing blocks using the successor predicate.

Eg: the following formula
∃x([aba](x))

over A3 is transformed to

∃x1 x2 x3(mod3
0(x1) ∧ (x3 = x2+1)∧(x2 = x1+1) ∧a(x1)∧b(x2) ∧ a(x3))

Separation with modulo predicates

Proof

Enrichment

Proof of enrichment result

Showing ‖C ‖ languages are definable in F [S,MOD] is easy.

It involves transforming a F [S](A∗d) describing a language K into a
formula F [S,MOD](A∗) which describes µ−1d (K)

We do this by describing blocks using the successor predicate.

Eg: the following formula
∃x([aba](x))

over A3 is transformed to

∃x1 x2 x3(mod3
0(x1) ∧ (x3 = x2+1)∧(x2 = x1+1) ∧a(x1)∧b(x2) ∧ a(x3))

Separation with modulo predicates

Proof

Enrichment

Proof of enrichment result

Showing ‖C ‖ languages are definable in F [S,MOD] is easy.

It involves transforming a F [S](A∗d) describing a language K into a
formula F [S,MOD](A∗) which describes µ−1d (K)

We do this by describing blocks using the successor predicate.

Eg: the following formula
∃x([aba](x))

over A3 is transformed to

∃x1 x2 x3(mod3
0(x1) ∧ (x3 = x2+1)∧(x2 = x1+1) ∧a(x1)∧b(x2) ∧ a(x3))

Separation with modulo predicates

Proof

Enrichment

Proof of enrichment result

For the other direction, it is sufficient to prove the result using an
Ehrenfeucht-Fräısse game argument for F = FO.

To prove that if L /∈ ‖C ‖d , then L is not definable in FO[<,+,MODd].

If we prove for an arbitrary integer d that L is not definable in
FO[<,+,MODd], we are done.

Separation with modulo predicates

Proof

Enrichment

Proof of enrichment result

For the other direction, it is sufficient to prove the result using an
Ehrenfeucht-Fräısse game argument for F = FO.

To prove that if L /∈ ‖C ‖d , then L is not definable in FO[<,+,MODd].

If we prove for an arbitrary integer d that L is not definable in
FO[<,+,MODd], we are done.

Separation with modulo predicates

Proof

Enrichment

Proof of enrichment result

For the other direction, it is sufficient to prove the result using an
Ehrenfeucht-Fräısse game argument for F = FO.

To prove that if L /∈ ‖C ‖d , then L is not definable in FO[<,+,MODd].

If we prove for an arbitrary integer d that L is not definable in
FO[<,+,MODd], we are done.

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)

I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)

I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)

I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Ehrenfeucht-Fraisse game

Gk(w1,w2)→ k-round game for FO[<,+] for two words w1 and w2:

I Spoiler (S) and Duplicator (D) play

I Round i : S picks a word from w1,w2 and plays a position on that
word

I D plays a position on the other word

I Pi (w1) = x1, x2 . . . xi and Pi (w2) = y1, y2 . . . yi , then we proceed to
the next round iff

I xi = xj + 1 iff yi = yj + 1 (equivalently −1)
I xi > xj iff yi > yj (equivalently < and =)
I For MODd - xi ≡ yi (mod d)
I xi and yi have the same letter

I If D cannot pick such a position, S wins and game is terminated

I If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy transfer

If for every k, there exists w1 ∈ L and w2 /∈ L such that D has a strategy
on Gk(w1,w2), then L is not definable in the fragment.

For our purposes, this translates to the following sufficient condition:

For w1 and w2, if G (µd(w1), µd(w2)) and G ′(w1,w2) are the FO[<,+]
and FO[<,+,MODd] EF games, and if Duplicator has a winning
strategy for G , then Duplicator has a winning strategy for G ′.

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy transfer

If for every k, there exists w1 ∈ L and w2 /∈ L such that D has a strategy
on Gk(w1,w2), then L is not definable in the fragment.

For our purposes, this translates to the following sufficient condition:

For w1 and w2, if G (µd(w1), µd(w2)) and G ′(w1,w2) are the FO[<,+]
and FO[<,+,MODd] EF games, and if Duplicator has a winning
strategy for G , then Duplicator has a winning strategy for G ′.

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy transfer

If for every k, there exists w1 ∈ L and w2 /∈ L such that D has a strategy
on Gk(w1,w2), then L is not definable in the fragment.

For our purposes, this translates to the following sufficient condition:

For w1 and w2, if G (µd(w1), µd(w2)) and G ′(w1,w2) are the FO[<,+]
and FO[<,+,MODd] EF games, and if Duplicator has a winning
strategy for G , then Duplicator has a winning strategy for G ′.

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy Transfer

For G (µd(w1), µd(w2))

[aba][bab][ba]

[aba][bba][bab][ba]

For G ′(w1,w2)

abababba

ababbababba

I Round i - Spoiler plays xi on w1 in G ′

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy Transfer

For G (µd(w1), µd(w2))

[aba][bab][ba]

[aba][bba][bab][ba]

For G ′(w1,w2)

abababba

ababbababba

I Round i - Spoiler plays xi on w1 in G ′

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy Transfer

For G (µd(w1), µd(w2))

[aba][bab][ba]

[aba][bba][bab][ba]

For G ′(w1,w2)

abababba

ababbababba

I Round i - Spoiler plays xi on w1 in G ′

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy Transfer

For G (µd(w1), µd(w2))

[aba][bab][ba]

[aba][bba][bab][ba]

For G ′(w1,w2)

abababba

ababbababba

I Round i - Spoiler plays xi on w1 in G ′

I Simulate Spoiler playing position bxi/dc on µd(w1) in G

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy Transfer

For G (µd(w1), µd(w2))

[aba][bab][ba]

[aba][bba][bab][ba]

For G ′(w1,w2)

abababba

ababbababba

I Round i - Spoiler plays xi on w1 in G ′

I Simulate Spoiler playing position pi = bxi/dc on µd(w1) in G

I Get position qi played by Duplicator according to his winning
strategy in G

Separation with modulo predicates

Proof

EF games for modulo predicates

Strategy Transfer

For G (µd(w1), µd(w2))

[aba][bab][ba]

[aba][bba][bab][ba]

For G ′(w1,w2)

abababba

ababbababba

I Round i - Spoiler plays xi on w1 in G ′

I Simulate Spoiler playing position pi = bxi/dc on µd(w1) in G

I Get position qi played by Duplicator according to his winning
strategy in G

I Play position yi = (qi ∗ d + xi (mod d)) on µd(w2) in G ′. Then
move to round i + 1

Separation with modulo predicates

Conclusion

Conclusion and closing remarks

I Trivial to prove that Duplicator wins using the strategy described
earlier.

I The proof techniques will work for any fragment of first order logic
provided it has successor.

I If we have successor then in some sense we are getting modular
separation ”for free” because:

I Use of successor to describe blocks of letters, effectively abstracting
modularity

I Language transformation is defined generically
I independence of strategy transfer on the number of rounds played in

the EF game, reducing dependence of the proof on logical structure

Separation with modulo predicates

Conclusion

Conclusion and closing remarks

I Trivial to prove that Duplicator wins using the strategy described
earlier.

I The proof techniques will work for any fragment of first order logic
provided it has successor.

I If we have successor then in some sense we are getting modular
separation ”for free” because:

I Use of successor to describe blocks of letters, effectively abstracting
modularity

I Language transformation is defined generically
I independence of strategy transfer on the number of rounds played in

the EF game, reducing dependence of the proof on logical structure

Separation with modulo predicates

Conclusion

Conclusion and closing remarks

I Trivial to prove that Duplicator wins using the strategy described
earlier.

I The proof techniques will work for any fragment of first order logic
provided it has successor.

I If we have successor then in some sense we are getting modular
separation ”for free” because:

I Use of successor to describe blocks of letters, effectively abstracting
modularity

I Language transformation is defined generically
I independence of strategy transfer on the number of rounds played in

the EF game, reducing dependence of the proof on logical structure

Separation with modulo predicates

Conclusion

Conclusion and closing remarks

I Trivial to prove that Duplicator wins using the strategy described
earlier.

I The proof techniques will work for any fragment of first order logic
provided it has successor.

I If we have successor then in some sense we are getting modular
separation ”for free” because:

I Use of successor to describe blocks of letters, effectively abstracting
modularity

I Language transformation is defined generically
I independence of strategy transfer on the number of rounds played in

the EF game, reducing dependence of the proof on logical structure

Separation with modulo predicates

Conclusion

Conclusion and closing remarks

I Trivial to prove that Duplicator wins using the strategy described
earlier.

I The proof techniques will work for any fragment of first order logic
provided it has successor.

I If we have successor then in some sense we are getting modular
separation ”for free” because:

I Use of successor to describe blocks of letters, effectively abstracting
modularity

I Language transformation is defined generically
I independence of strategy transfer on the number of rounds played in

the EF game, reducing dependence of the proof on logical structure

Separation with modulo predicates

Conclusion

Conclusion and closing remarks

I Trivial to prove that Duplicator wins using the strategy described
earlier.

I The proof techniques will work for any fragment of first order logic
provided it has successor.

I If we have successor then in some sense we are getting modular
separation ”for free” because:

I Use of successor to describe blocks of letters, effectively abstracting
modularity

I Language transformation is defined generically

I independence of strategy transfer on the number of rounds played in
the EF game, reducing dependence of the proof on logical structure

Separation with modulo predicates

Conclusion

Conclusion and closing remarks

I Trivial to prove that Duplicator wins using the strategy described
earlier.

I The proof techniques will work for any fragment of first order logic
provided it has successor.

I If we have successor then in some sense we are getting modular
separation ”for free” because:

I Use of successor to describe blocks of letters, effectively abstracting
modularity

I Language transformation is defined generically
I independence of strategy transfer on the number of rounds played in

the EF game, reducing dependence of the proof on logical structure

Separation with modulo predicates

Conclusion

Thank you!

	Introduction
	Logic and languages
	Decision problems
	State of the art

	Main problem
	Proof
	Block abstraction
	Stable monoid
	Transfer theorem
	Enrichment
	EF games for modulo predicates

	Conclusion

