Varun Ramanathan

Chennai Mathematical Institute

Joint work with Pascal Weil and Thomas Place at LaBRI, Summer 2016

DeLTA meeting, Paris, March 2018

Overview

Introduction

Logic and languages Decision problems State of the art

Main problem

Proof

Block abstraction Stable monoid Transfer theorem Enrichment EF games for modulo predicates

Conclusion

Introduction

Logic and languages

Logic and Languages

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Logic and Languages

There is a strong link between formal languages and logical systems.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Logic and Languages

There is a strong link between formal languages and logical systems.

Rational languages \longleftrightarrow Finite monoids \longleftrightarrow MSO sentences

Star-free language \longleftrightarrow Aperiodic monoids \longleftrightarrow FO sentences

Logic and Languages

There is a strong link between formal languages and logical systems.

Rational languages \longleftrightarrow Finite monoids \longleftrightarrow MSO sentences

Star-free language \longleftrightarrow Aperiodic monoids \longleftrightarrow FO sentences

► Eg.: $\exists x (\mathbf{a}(x) \land (\forall y (x < y) \implies \mathbf{b}(y)))$ defines the language $A^* a b^*$

Logic and languages

Fragments of **FO**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Fragments of **FO**

Fragment: formulae closed under \land , \lor and quantifier free substitution.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fragments of **FO**

Fragment: formulae closed under \wedge, \vee and quantifier free substitution. Natural fragments?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fragments of **FO**

Fragment: formulae closed under \wedge, \vee and quantifier free substitution. Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

Fragments of **FO**

Fragment: formulae closed under \wedge, \vee and quantifier free substitution. Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions \rightarrow quantifier alternation: $\Sigma_k : \underbrace{\exists^* \forall^* \dots}(\varphi)$,

 $\Pi_k: \underbrace{\forall^* \exists^* \dots}_k (\varphi)$ (\varphi quantifier free)

Fragments of $\ensuremath{\textbf{FO}}$

Fragment: formulae closed under \wedge, \vee and quantifier free substitution. Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions \rightarrow quantifier alternation: $\Sigma_k : \exists^* \forall^* \dots (\varphi)$,

 $\Pi_k: \underbrace{\forall^* \exists^* \dots}_k (\varphi)$ (\varphi quantifier free)

or by limiting no. of variables: for example $FO^{2}[<]$

Fragments of $\ensuremath{\textbf{FO}}$

Fragment: formulae closed under \wedge, \vee and quantifier free substitution. Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions \rightarrow quantifier alternation: $\Sigma_k : \exists^* \forall^* \dots (\varphi)$,

 $\Pi_k: \underbrace{\forall^* \exists^* \dots}_k (\varphi)$ (\varphi quantifier free)

or by limiting no. of variables: for example $FO^2[<]$

or both? - $\Sigma_1^{FO^2}[<]$

Fragments of $\ensuremath{\textbf{FO}}$

Fragment: formulae closed under \wedge, \vee and quantifier free substitution. Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions \rightarrow quantifier alternation: $\boldsymbol{\Sigma}_{k} : \underbrace{\exists^{*} \forall^{*} \dots}_{k} (\varphi),$

 $\Pi_k: \underbrace{\forall^* \exists^* \dots}_k (\varphi)$ (\varphi quantifier free)

or by limiting no. of variables: for example $FO^{2}[<]$

or both? - $\pmb{\Sigma}_1^{\text{FO}^2}[<]$

In this way we get a plethora of fragments. Eg. - $\Sigma_1[<, max]$, FO²[<, +1]

Fragments of $\ensuremath{\textbf{FO}}$

Fragment: formulae closed under \wedge, \vee and quantifier free substitution. Natural fragments?

Considering local predicates: order [<], successor [+1], min, max

syntactic restrictions \rightarrow quantifier alternation: $\boldsymbol{\Sigma}_{k} : \underbrace{\exists^{*} \forall^{*} \dots}_{k} (\varphi),$

 $\Pi_k: \underbrace{\forall^* \exists^* \dots}_k (\varphi)$ (\varphi quantifier free)

or by limiting no. of variables: for example $FO^{2}[<]$

or both? - $\pmb{\Sigma}_1^{\text{FO}^2}[<]$

In this way we get a plethora of fragments. Eg. - $\Sigma_1[<, max]$, FO²[<, +1]

What about non-FO definable predicates?

Logic and languages

Modulo predicates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Modulo predicates

Definition

For any $d \in \mathbb{N}$, $0 \le i < d$ we have $\mathbf{mod}_i^d(x)$: $w, [x = j] \models \mathbf{mod}_i^d(x)$ iff $i \equiv j \pmod{d}$

Modulo predicates

Definition

For any $d \in \mathbb{N}$, $0 \le i < d$ we have $\mathbf{mod}_i^d(x)$: $w, [x = j] \models \mathbf{mod}_i^d(x)$ iff $i \equiv j \pmod{d}$

$$\mathsf{MOD}^d = \bigcup \{\mathsf{mod}_i^d : i < d\}, \mathsf{MOD} = \bigcup \mathsf{MOD}^d$$

Modulo predicates

Definition

For any $d \in \mathbb{N}$, $0 \le i < d$ we have $\mathbf{mod}_i^d(x)$: $w, [x = j] \models \mathbf{mod}_i^d(x)$ iff $i \equiv j \pmod{d}$

$$\begin{split} \mathsf{MOD}^d = \bigcup \{\mathsf{mod}_i^d \colon i < d\}, \mathsf{MOD} = \bigcup \mathsf{MOD}^d \\ (aa)^* \to \forall x (\mathsf{a}(x) \land (\mathit{max}(x) \implies \mathsf{mod}_0^2(x))) \end{split}$$

Modulo predicates

Definition

For any $d \in \mathbb{N}$, $0 \le i < d$ we have $\mathbf{mod}_i^d(x)$: $w, [x = j] \vDash \mathbf{mod}_i^d(x)$ iff $i \equiv j \pmod{d}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\begin{split} \mathsf{MOD}^d &= \bigcup \{\mathsf{mod}_i^d \colon i < d\}, \mathsf{MOD} = \bigcup \mathsf{MOD}^d \\ (aa)^* &\to \forall x (\mathsf{a}(x) \land (\mathit{max}(x) \implies \mathsf{mod}_0^2(x))) \end{split}$$

 $\{w : |w|_a \text{ is even}\}$ is not definable in FO[<, MOD].

Modulo predicates

Definition

For any $d \in \mathbb{N}$, $0 \le i < d$ we have $\mathbf{mod}_i^d(x)$: $w, [x = j] \vDash \mathbf{mod}_i^d(x)$ iff $i \equiv j \pmod{d}$

$$\mathbf{MOD}^{d} = \bigcup \{\mathbf{mod}_{i}^{d} : i < d\}, \mathbf{MOD} = \bigcup \mathbf{MOD}^{d}$$
$$(aa)^{*} \to \forall x (\mathbf{a}(x) \land (max(x) \implies \mathbf{mod}_{0}^{2}(x)))$$

 $\{w : |w|_a \text{ is even}\}\$ is not definable in FO[<, MOD].

FO[<, MOD] is more powerful than FO[<]

L Decision problems

Decision problems

Decision problems

Let \mathcal{F} be a fragment of **FO**.

Decision problems

Let \mathcal{F} be a fragment of **FO**.

Membership

Given a regular language L, is it definable in \mathcal{F} ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Decision problems

Let \mathcal{F} be a fragment of **FO**.

Membership

Given a regular language L, is it definable in \mathcal{F} ?

Separation

Given L_1 and L_2 regular, does there exist L definable in \mathcal{F} such that $L_1 \subseteq L$ and $L \cap L_2 = \emptyset$?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

State of the art

Adding modular predicates - State of the art

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Separation with modulo predicates
Introduction
State of the art

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of different fragments.

For successor:

► For varieties, Straubing defined an operation V → V * D based on the wreath product of monoids. This corresponds to adding successor to the fragment.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of different fragments.

For successor:

- ► For varieties, Straubing defined an operation V → V * D based on the wreath product of monoids. This corresponds to adding successor to the fragment.
- ► Place and Zeitoun have defined a language operation C → C ∘ SU and proved that it amounts to adding successor

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

For modulo predicates

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of different fragments.

For successor:

- ► For varieties, Straubing defined an operation V → V * D based on the wreath product of monoids. This corresponds to adding successor to the fragment.
- ► Place and Zeitoun have defined a language operation C → C ∘ SU and proved that it amounts to adding successor

For modulo predicates

▶ Barrington et al proved membership decidability for FO[<, MOD]

Separation with modulo predicates
Introduction
State of the art

Adding modular predicates - State of the art

The membership and separation problems have been studied for a lot of different fragments.

For successor:

- ► For varieties, Straubing defined an operation V → V * D based on the wreath product of monoids. This corresponds to adding successor to the fragment.
- ► Place and Zeitoun have defined a language operation C → C ∘ SU and proved that it amounts to adding successor

For modulo predicates

- ▶ Barrington et al proved membership decidability for FO[<, MOD]
- Dartois and Paperman proved the decidability of membership of *F*[<, MOD] for several fragments

Separability

(ロ)、(型)、(E)、(E)、 E) の(の)

Separability

Question: If separation is decidable for \mathcal{F} , is it decidable for $\mathcal{F}[MOD]$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Separability

Question: If separation is decidable for \mathcal{F} , is it decidable for $\mathcal{F}[MOD]$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Answer: Yes, if \mathcal{F} has successor in its signature.

Separability

Question: If separation is decidable for \mathcal{F} , is it decidable for $\mathcal{F}[MOD]$?

Answer: Yes, if \mathcal{F} has successor in its signature.

Theorem

Let $\mathbb S$ be a logical signature containing +1. Let $\mathcal F[\mathbb S]\text{-separation}$ be decidable. Then, $\mathcal F[\mathbb S, \textbf{MOD}]\text{-separation}$ is decidable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Separability

Question: If separation is decidable for \mathcal{F} , is it decidable for $\mathcal{F}[MOD]$?

Answer: Yes, if \mathcal{F} has successor in its signature.

Theorem

Let $\mathbb S$ be a logical signature containing +1. Let $\mathcal F[\mathbb S]\text{-separation}$ be decidable. Then, $\mathcal F[\mathbb S, \textbf{MOD}]\text{-separation}$ is decidable.

We apply this theorem to fragments

 $\mathsf{FO}[<,+], \mathsf{FO}^2[<,+], \pmb{\Sigma}_1[<,+1], \pmb{\Sigma}_2[<,+1], \pmb{\Sigma}_3[<,+1], \mathcal{B}\pmb{\Sigma}_1[<,+], \mathcal{B}\pmb{\Sigma}_2[<,+]$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Proof idea

The proof proceeds in the following way:

 \blacktriangleright % is the class of languages definable in ${\cal F}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The proof proceeds in the following way:

- \blacktriangleright % is the class of languages definable in ${\cal F}$
- \blacktriangleright Define an operation $\mathscr{C} \to \|\mathscr{C}\|$ on languages

The proof proceeds in the following way:

- \blacktriangleright % is the class of languages definable in ${\cal F}$
- ▶ Define an operation $\mathscr{C} \to \|\mathscr{C}\|$ on languages
- \blacktriangleright Transfer theorem of separation from $\|\mathscr{C}\|$ to \mathscr{C}

The proof proceeds in the following way:

- \blacktriangleright % is the class of languages definable in ${\cal F}$
- \blacktriangleright Define an operation $\mathscr{C} \to \|\mathscr{C}\|$ on languages
- \blacktriangleright Transfer theorem of separation from $\|\mathscr{C}\|$ to \mathscr{C}
- \blacktriangleright Prove that $\|\mathscr{C}\|$ indeed corresponds to languages definable in $\mathcal{F}[\textbf{MOD}]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Block abstraction

Block abstraction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Block abstraction

Given an alphabet A and number d, A_d^* words of length $\leq d$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Block abstraction

Given an alphabet A and number d, A_d^* words of length $\leq d$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Words in A^* can be cut into blocks

Block abstraction

Given an alphabet A and number d, A_d^* words of length $\leq d$

Words in A^* can be cut into blocks aaaabbabab \rightarrow [aaa][abb][aba][b]

 $\mu_d: A^* \to A_d^*$ $a_1 a_2 \dots a_n \mapsto [a_1 a_2 \dots a_d] [a_{d+1} a_{d+2} \dots a_{2d}] \dots [a_{kd+1} \dots a_{kd+r}]$

Block abstraction

Given an alphabet A and number d, A_d^* words of length $\leq d$

Words in A^* can be cut into blocks aaaabbabab \rightarrow [aaa][abb][aba][b]

 $\mu_d: A^* \to A_d^*$ $a_1 a_2 \dots a_n \mapsto [a_1 a_2 \dots a_d] [a_{d+1} a_{d+2} \dots a_{2d}] \dots [a_{kd+1} \dots a_{kd+r}]$

 $\|\mathscr{C}\|_d = \{L: \exists K \in \mathscr{C} \text{ such that } L = \mu_d^{-1}(K)\}$

Block abstraction

Given an alphabet A and number d, A_d^* words of length $\leq d$

Words in A^* can be cut into blocks aaaabbabab \rightarrow [aaa][abb][aba][b]

 $\mu_d: A^* \to A_d^*$ $a_1 a_2 \dots a_n \mapsto [a_1 a_2 \dots a_d] [a_{d+1} a_{d+2} \dots a_{2d}] \dots [a_{kd+1} \dots a_{kd+r}]$

 $\|\mathscr{C}\|_d = \{L: \exists K \in \mathscr{C} \text{ such that } L = \mu_d^{-1}(K)\}$

Definition

The block abstraction of \mathscr{C} is

$$\|\mathscr{C}\| = \bigcup_{d\in\mathbb{N}} \|\mathscr{C}\|_d$$

Separation with modulo predicates
Proof
Stable monoid

Stable monoid and well formed words

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{M} = (M, \cdot)$, finite.

Separation with modulo predicates
Proof
Stable monoid

Stable monoid and well formed words

 $\mathcal{M} = (M, \cdot)$, finite.

 $\eta: A^* \to \mathcal{M}$ morphism to a finite monoid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Separation with modulo predicates
Proof
Stable monoid

Stable monoid and well formed words

 $\mathcal{M} = (M, \cdot)$, finite.

 $\eta: {\it A}^* \rightarrow {\cal M}$ morphism to a finite monoid

Stability index \rightarrow least s such that $\eta(A^s) = \eta(A^{2s})$. (s exists because M is finite)

```
Separation with modulo predicates
Proof
Stable monoid
```

 $\mathcal{M} = (M, \cdot)$, finite.

 $\eta: {\it A}^* \rightarrow {\cal M}$ morphism to a finite monoid

Stability index \rightarrow least s such that $\eta(A^s) = \eta(A^{2s})$. (s exists because M is finite)

Definition

 $\mathsf{Stab}(\mathcal{M})$, the stable monoid is $\eta(A^s) \cup \{e\}$

```
Separation with modulo predicates
Proof
Stable monoid
```

 $\mathcal{M} = (M, \cdot)$, finite.

 $\eta: {\it A}^* \rightarrow {\cal M}$ morphism to a finite monoid

Stability index \rightarrow least s such that $\eta(A^s) = \eta(A^{2s})$. (s exists because M is finite)

Definition

Stab(\mathcal{M}), the stable monoid is $\eta(A^s) \cup \{e\}$

Now we look at the free monoid M^* .

Definition

 $\overline{m}=m_1m_2\dots m_n\in M^*$ is stable if $m_1,m_2,\dots m_{n-1}\in {
m Stab}(\mathcal{M})$ and $m_n\in\eta(A^{< d})$

```
Separation with modulo predicates
Proof
Stable monoid
```

 $\mathcal{M} = (M, \cdot)$, finite.

 $\eta: {\it A}^* \rightarrow {\cal M}$ morphism to a finite monoid

Stability index \rightarrow least s such that $\eta(A^s) = \eta(A^{2s})$. (s exists because M is finite)

Definition

Stab(\mathcal{M}), the stable monoid is $\eta(A^s) \cup \{e\}$

Now we look at the free monoid M^* .

Definition

 $\overline{m}=m_1m_2\dots m_n\in M^*$ is stable if $m_1,m_2,\dots m_{n-1}\in {
m Stab}(\mathcal{M})$ and $m_n\in\eta(A^{< d})$

Definition $\lfloor L \rfloor_{\mathcal{M}} = \{ \overline{m} : \overline{m} \text{ is stable and } \beta(m) \in \eta(L) \}$

```
Separation with modulo predicates
Proof
Stable monoid
```

 $\mathcal{M} = (M, \cdot)$, finite.

 $\eta: {\it A}^* \rightarrow {\cal M}$ morphism to a finite monoid

Stability index \rightarrow least s such that $\eta(A^s) = \eta(A^{2s})$. (s exists because M is finite)

Definition

Stab(\mathcal{M}), the stable monoid is $\eta(A^s) \cup \{e\}$

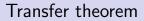
Now we look at the free monoid M^* .

Definition

 $\overline{m}=m_1m_2\dots m_n\in M^*$ is stable if $m_1,m_2,\dots m_{n-1}\in {
m Stab}(\mathcal{M})$ and $m_n\in\eta(A^{< d})$

Definition $\lfloor L \rfloor_{\mathcal{M}} = \{ \overline{m} : \overline{m} \text{ is stable and } \beta(m) \in \eta(L) \}$

Separation with modulo predicates
Proof
Transfer theorem



Lemma

Let L_1 and L_2 be regular languages recognized by the same monoid \mathcal{M} via a morphism η , whose stability index is *s*. Then, L_1 and L_2 are $\|\mathscr{C}\|_s$ -separable if and only if $\lfloor L_1 \rfloor_{\mathcal{M}}$ and $\lfloor L_2 \rfloor_{\mathcal{M}}$ are \mathscr{C} -separable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Modular enrichment

Now we will move on to the second part of the proof, which relates the enrichment of the fragment with modular predicates to the class transformation defined earlier.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Modular enrichment

Now we will move on to the second part of the proof, which relates the enrichment of the fragment with modular predicates to the class transformation defined earlier.

Enrichment result. Let \mathscr{C} be the class of languages definable in $\mathcal{F}[\mathbb{S}]$ with $+1 \in \mathbb{S}$. Then, $\|\mathscr{C}\|$ is the class of languages definable in $\mathcal{F}[\mathbb{S}, MOD]$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof of enrichment result

Showing $\|\mathscr{C}\|$ languages are definable in $\mathcal{F}[\mathbb{S}, \textbf{MOD}]$ is easy.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of enrichment result

Showing $\|\mathscr{C}\|$ languages are definable in $\mathcal{F}[\mathbb{S}, \mathbf{MOD}]$ is easy.

It involves transforming a $\mathcal{F}[\mathbb{S}](A_d^*)$ describing a language K into a formula $\mathcal{F}[\mathbb{S}, \mathbf{MOD}](A^*)$ which describes $\mu_d^{-1}(K)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of enrichment result

Showing $\|\mathscr{C}\|$ languages are definable in $\mathcal{F}[\mathbb{S}, \mathbf{MOD}]$ is easy.

It involves transforming a $\mathcal{F}[\mathbb{S}](A_d^*)$ describing a language K into a formula $\mathcal{F}[\mathbb{S}, \mathbf{MOD}](A^*)$ which describes $\mu_d^{-1}(K)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We do this by describing blocks using the successor predicate.

Proof of enrichment result

Showing $\|\mathscr{C}\|$ languages are definable in $\mathcal{F}[\mathbb{S}, \mathbf{MOD}]$ is easy.

It involves transforming a $\mathcal{F}[\mathbb{S}](A_d^*)$ describing a language K into a formula $\mathcal{F}[\mathbb{S}, \mathbf{MOD}](A^*)$ which describes $\mu_d^{-1}(K)$

We do this by describing blocks using the successor predicate.

Eg: the following formula

$$\exists x([aba](x))$$

over A^3 is transformed to

 $\exists x_1 \, x_2 \, x_3(\mathsf{mod}_0^3(x_1) \land (x_3 = x_2 + 1) \land (x_2 = x_1 + 1) \land \mathsf{a}(x_1) \land \mathsf{b}(x_2) \land \mathsf{a}(x_3))$

Proof of enrichment result

For the other direction, it is sufficient to prove the result using an Ehrenfeucht-Fraïsse game argument for $\mathcal{F} = FO$.

Proof of enrichment result

For the other direction, it is sufficient to prove the result using an Ehrenfeucht-Fraïsse game argument for $\mathcal{F} = FO$.

To prove that if $L \notin ||\mathscr{C}||_d$, then L is not definable in $\mathbf{FO}[<, +, \mathbf{MOD}^d]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proof of enrichment result

For the other direction, it is sufficient to prove the result using an Ehrenfeucht-Fraïsse game argument for $\mathcal{F} = FO$.

To prove that if $L \notin ||\mathscr{C}||_d$, then L is not definable in $\mathbf{FO}[<, +, \mathbf{MOD}^d]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If we prove for an arbitrary integer d that L is not definable in $FO[<, +, MOD^{d}]$, we are done.

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for **FO**[<, +] for two words w_1 and w_2 :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Separation with modulo predicates
Proof
EF games for modulo predicates

Ehrenfeucht-Fraisse game

G_k(w₁, w₂) → k-round game for FO[<, +] for two words w₁ and w₂:
Spoiler (S) and Duplicator (D) play

Separation with modulo predicates Proof EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- ▶ Spoiler (S) and Duplicator (D) play
- ▶ Round *i*: S picks a word from w₁, w₂ and plays a position on that word

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Separation with modulo predicates Proof EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- ▶ Round *i*: S picks a word from w₁, w₂ and plays a position on that word

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

D plays a position on the other word

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- ▶ Round *i*: S picks a word from w₁, w₂ and plays a position on that word
- D plays a position on the other word
- ▶ $P_i(w_1) = x_1, x_2 \dots x_i$ and $P_i(w_2) = y_1, y_2 \dots y_i$, then we proceed to the next round iff

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- ▶ Round *i*: S picks a word from w₁, w₂ and plays a position on that word
- D plays a position on the other word
- ▶ $P_i(w_1) = x_1, x_2 \dots x_i$ and $P_i(w_2) = y_1, y_2 \dots y_i$, then we proceed to the next round iff

• $x_i = x_j + 1$ iff $y_i = y_j + 1$ (equivalently -1)

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow \text{k-round}$ game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- ▶ Round *i*: S picks a word from w₁, w₂ and plays a position on that word
- D plays a position on the other word
- ▶ $P_i(w_1) = x_1, x_2 \dots x_i$ and $P_i(w_2) = y_1, y_2 \dots y_i$, then we proceed to the next round iff

- $x_i = x_j + 1$ iff $y_i = y_j + 1$ (equivalently -1)
- $x_i > x_j$ iff $y_i > y_j$ (equivalently < and =)

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- Round i: S picks a word from w₁, w₂ and plays a position on that word
- D plays a position on the other word
- ▶ $P_i(w_1) = x_1, x_2 \dots x_i$ and $P_i(w_2) = y_1, y_2 \dots y_i$, then we proceed to the next round iff

- $x_i = x_j + 1$ iff $y_i = y_j + 1$ (equivalently -1)
- $x_i > x_j$ iff $y_i > y_j$ (equivalently < and =)
- For **MOD**^d $x_i \equiv y_i \pmod{d}$

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow \text{k-round}$ game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- Round i: S picks a word from w₁, w₂ and plays a position on that word
- D plays a position on the other word
- ▶ $P_i(w_1) = x_1, x_2 \dots x_i$ and $P_i(w_2) = y_1, y_2 \dots y_i$, then we proceed to the next round iff

- $x_i = x_j + 1$ iff $y_i = y_j + 1$ (equivalently -1)
- $x_i > x_j$ iff $y_i > y_j$ (equivalently < and =)
- For **MOD**^d $x_i \equiv y_i \pmod{d}$
- x_i and y_i have the same letter

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- Round i: S picks a word from w₁, w₂ and plays a position on that word
- D plays a position on the other word
- ▶ $P_i(w_1) = x_1, x_2 \dots x_i$ and $P_i(w_2) = y_1, y_2 \dots y_i$, then we proceed to the next round iff
 - $x_i = x_j + 1$ iff $y_i = y_j + 1$ (equivalently -1)
 - $x_i > x_j$ iff $y_i > y_j$ (equivalently < and =)
 - For **MOD**^d $x_i \equiv y_i \pmod{d}$
 - x_i and y_i have the same letter
- If D cannot pick such a position, S wins and game is terminated

EF games for modulo predicates

Ehrenfeucht-Fraisse game

 $G_k(w_1, w_2) \rightarrow k$ -round game for $\mathbf{FO}[<, +]$ for two words w_1 and w_2 :

- Spoiler (S) and Duplicator (D) play
- Round i: S picks a word from w₁, w₂ and plays a position on that word
- D plays a position on the other word
- ▶ $P_i(w_1) = x_1, x_2 \dots x_i$ and $P_i(w_2) = y_1, y_2 \dots y_i$, then we proceed to the next round iff
 - $x_i = x_j + 1$ iff $y_i = y_j + 1$ (equivalently -1)
 - $x_i > x_j$ iff $y_i > y_j$ (equivalently < and =)
 - For **MOD**^d $x_i \equiv y_i \pmod{d}$
 - x_i and y_i have the same letter
- If D cannot pick such a position, S wins and game is terminated
- If D can successfully play for k rounds, he/she wins the game

Separation with modulo predicates
Proof
EF games for modulo predicates

Strategy transfer

If for every k, there exists $w_1 \in L$ and $w_2 \notin L$ such that D has a strategy on $G_k(w_1, w_2)$, then L is not definable in the fragment.

Separation with modulo predicates Proof EF games for modulo predicates

Strategy transfer

If for every k, there exists $w_1 \in L$ and $w_2 \notin L$ such that D has a strategy on $G_k(w_1, w_2)$, then L is not definable in the fragment.

For our purposes, this translates to the following sufficient condition:

Separation with modulo predicates
Proof
EF games for modulo predicates

Strategy transfer

If for every k, there exists $w_1 \in L$ and $w_2 \notin L$ such that D has a strategy on $G_k(w_1, w_2)$, then L is not definable in the fragment.

For our purposes, this translates to the following sufficient condition:

For w_1 and w_2 , if $G(\mu_d(w_1), \mu_d(w_2))$ and $G'(w_1, w_2)$ are the **FO**[<, +] and **FO**[<, +, **MOD**^d] EF games, and if Duplicator has a winning strategy for *G*, then Duplicator has a winning strategy for *G'*.

EF games for modulo predicates

Strategy Transfer

For
$$G(\mu_d(w_1), \mu_d(w_2))$$

[aba][bab][ba]
[aba][bba][bab][ba]

For $G'(w_1, w_2)$ abababba ababbababba

(ロ)、(型)、(E)、(E)、 E) の(の)

EF games for modulo predicates

Strategy Transfer

For
$$G(\mu_d(w_1), \mu_d(w_2))$$
For $G'(w_1, w_2)$ $[aba][bab][ba]$ $abababba$ $[aba][bba][bab][ba]$ $ababbabbabba$

Round i - Spoiler plays x_i on w₁ in G'

EF games for modulo predicates

Strategy Transfer

For
$$G(\mu_d(w_1), \mu_d(w_2))$$
For $G'(w_1, w_2)$ $[aba][bab][ba]$ $abababba$ $[aba][bba][bab][ba]$ $ababbabbabba$

Round i - Spoiler plays x_i on w₁ in G'

EF games for modulo predicates

Strategy Transfer

- For $G(\mu_d(w_1), \mu_d(w_2))$ For $G'(w_1, w_2)$ [aba][bab][ba]abababba[aba][bba][bab][ba]ababbabbabba
 - Round i Spoiler plays x_i on w₁ in G'
 - Simulate Spoiler playing position $\lfloor x_i/d \rfloor$ on $\mu_d(w_1)$ in G

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

EF games for modulo predicates

Strategy Transfer

- For $G(\mu_d(w_1), \mu_d(w_2))$ For $G'(w_1, w_2)$ [aba][bab][ba]abababba[aba][bba][bba][bba][bba]ababbabba
 - Round *i* Spoiler plays x_i on w_1 in G'
 - ▶ Simulate Spoiler playing position $p_i = \lfloor x_i/d \rfloor$ on $\mu_d(w_1)$ in G
 - Get position q_i played by Duplicator according to his winning strategy in G

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

EF games for modulo predicates

Strategy Transfer

For $G(\mu_d(w_1), \mu_d(w_2))$	For $G'(w_1, w_2)$
[aba] <mark>[bab]</mark> [ba]	aba <mark>b</mark> abba
[aba][bba][<mark>bab</mark>][ba]	ababbababba

- Round i Spoiler plays x_i on w₁ in G'
- Simulate Spoiler playing position $p_i = \lfloor x_i/d \rfloor$ on $\mu_d(w_1)$ in G
- Get position q_i played by Duplicator according to his winning strategy in G
- Play position y_i = (q_i ∗ d + x_i(mod d)) on µ_d(w₂) in G'. Then move to round i + 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Trivial to prove that Duplicator wins using the strategy described earlier.

- Trivial to prove that Duplicator wins using the strategy described earlier.
- The proof techniques will work for any fragment of first order logic provided it has successor.

- Trivial to prove that Duplicator wins using the strategy described earlier.
- The proof techniques will work for any fragment of first order logic provided it has successor.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If we have successor then in some sense we are getting modular separation "for free" because:

- Trivial to prove that Duplicator wins using the strategy described earlier.
- The proof techniques will work for any fragment of first order logic provided it has successor.
- If we have successor then in some sense we are getting modular separation "for free" because:
 - Use of successor to describe blocks of letters, effectively abstracting modularity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Trivial to prove that Duplicator wins using the strategy described earlier.
- The proof techniques will work for any fragment of first order logic provided it has successor.
- If we have successor then in some sense we are getting modular separation "for free" because:
 - Use of successor to describe blocks of letters, effectively abstracting modularity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Language transformation is defined generically

- Trivial to prove that Duplicator wins using the strategy described earlier.
- The proof techniques will work for any fragment of first order logic provided it has successor.
- If we have successor then in some sense we are getting modular separation "for free" because:
 - Use of successor to describe blocks of letters, effectively abstracting modularity
 - Language transformation is defined generically
 - independence of strategy transfer on the number of rounds played in the EF game, reducing dependence of the proof on logical structure

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?