Two-Way Parikh Automata with a Visibly Pushdown Stack

Jean-Marc Talbot ²
Joint Work L. Dartois ¹, E. Filiot ¹

¹Université Libre de Bruxelles

²Université d'Aix-Marseille

Delta - Mar 27 2018

Outline

- 0 Motivations
- 1 (Two-way) Visibly Parikh Automata (2VPPA)
- 2 Emptiness for 2VPPA

Outline

0 - Motivations

Well-nested words

Encoding

Well-nested words ≡ linearizations of (unranked) trees

Well-nested words

Definition (Structured Alphabet)

A structured alphabet, Σ , is a set $\Sigma = \Sigma_c \uplus \Sigma_r$ (call and return symbols respectively).

A word is well-nested if there is no pending call c_i nor return symbols r_i (Σ_{wn}^*)

 $c_1 c_2 r_2 r_1 c_1 r_1 \checkmark c_1 c_2 r_2 r_1 r_3 c_1 r_1 c_2 \checkmark$

Well-nested words are generated by the grammar $u, v \in \Sigma_{wn}^*$: $\varepsilon \mid u.v \mid cur$.

Visibly Pushdown Automata (VPAs) [Alur, Madhusudan, 04]

VPAs = Pushdown Automata on structured alphabet $\Sigma = \Sigma_c \uplus \Sigma_r$:

- push one stack symbol on call symbols Σ_c
- pop one stack symbol on return symbols Σ_r
- accept on final state

• The height of the stack at some position in the word does not depend on the considered computation, only on the position

Two-way VPA (2VPA) [Madhusudan, Viswanathan, 09]

Main features:

- the head is placed between symbols
- directed states $Q \times \{\leftarrow, \rightarrow\}$ (\rightarrow : read the symbol on the right, ...)
- Behaviour :
 - Forward (→): just as VPA
 - ▶ Backward (←): dually, pop on call and push on return

 The height of the stack at some position in the word does not depend on the considered computation, only on the position

Two-way VPA (2VPA) [Madhusudan, Viswanathan, 09]

Main features:

- the head is placed between symbols
- directed states $Q \times \{\leftarrow, \rightarrow\}$ (\rightarrow : read the symbol on the right, ...)
- Behaviour :
 - Forward (→): just as VPA
 - ▶ Backward (←): dually, pop on call and push on return

 The height of the stack at some position in the word does not depend on the considered computation, only on the position

Theorem

2VPA are as expressive as VPA (reading from left to right).

Output Tape:

Input Tape:
$$\begin{picture}(20,0)\put(0,0)\put$$

Output Tape:

Input Tape:
$$\vdash$$
 c_1 c_2 c_3 r_3 r_2 r_1 \vdash c_1 c_2 c_3 c_4 c_5 c_7 c_8 $c_$

Output Tape:

Input Tape: \vdash c_1 c_2 c_3 r_3 r_2 r_1 \dashv c_1 c_2 c_3 c_4 c_4 c_5 c_4 c_5 c_6 c_7 c_8 $c_$

Output Tape:

Output Tape: C1

Input Tape: \vdash c_1 c_2 c_3 r_3 r_2 r_1 \vdash $(2, \rightarrow)$

Output Tape: C1

Input Tape: \vdash c_1 c_2 c_3 r_3 r_2 r_1 \vdash c_2 c_3 c_3 c_4 c_2

Output Tape:

Input Tape: \vdash c_1 c_2 c_3 r_3 r_2 r_1 \vdash c_4 c_5 c_6 c_7

stack

Output Tape:

 c_1 r_1

Input Tape: \vdash c_1 c_2 c_3 r_3 r_2 r_1 \vdash 1 $(4, \leftarrow)$

Output Tape:

 c_1 r_1

Input Tape: \vdash c_1 c_2 c_3 c_3 c_4 c_5 \leftarrow c_1

Output Tape:

 c_1

Output Tape:

*c*₁ *r*

Output Tape: C1 | r1

Output Tape:

Input Tape: \vdash c_1 c_2 c_3 r_3 r_2 r_1 \vdash 1 $(1, \rightarrow)$

Output Tape:

 c_1 r_1 c_2

Input Tape: \vdash c_1 c_2 c_3 r_3 r_2 r_1 \vdash

Output Growth

D2VPT are not linear size increase $(\exists k \in \mathbb{N}, \forall w \in \Sigma_{wn}^*, |[A](w)| \le k * |w|)$.

Single-use Property

Single-use restriction

A D2VPT is single-use (D2VPT_{su}) if in any accepting run, any producing transition occur at most once at a given position.

Decision

Given a D2VPT, deciding if it satisfies the single-use property is Exptime-complete.

Implication

D2VPT_{su} are linear size increase.

Some Results [Dartois, Filiot, Reynier, T. 16]

Expressiveness

- D2VPT_{su} are as expressive as MSO[nw2w].
- Order-preserving MSO[nw2w] is equivalent to fVPT.

Decision results

- Equivalence problem for D2VPT is decidable (reduction to DTOP2S^{LA} equiv),
- Type-checking problem against a regular language is Exptime-complete.

Some Questions for D2VPT_{su}

- functionality/k-valuedness problem
- well-nested output (when structured output alphabet) $[A] \subseteq \Sigma_{wn}^*$

Some Questions for D2VPT_{su}

- functionality/k-valuedness problem
- well-nested output (when structured output alphabet) $\llbracket A \rrbracket \subseteq \Sigma_{wn}^*$

Several questions but a single tool:

Two-way Visibly Pushdown Parikh Automata (2VPPA)

Outline

2 - (Two-way) Visibly Parikh Automata (2VPPA)

Parikh Automata

Definition

A Parikh automaton $P = (A, dim, \lambda, S)$ where $A = (\Sigma, Q, I, F, \Delta)$ is an NFA, dim is a natural number, $\lambda : \Delta \mapsto \mathbb{N}^{dim}$ and S is a semi-linear subset of \mathbb{N}^{dim} .

Here, S as a Presburger formula with dim free variables x_1, \dots, x_{dim}

Parikh Automata

Definition

A Parikh automaton $P = (A, dim, \lambda, S)$ where $A = (\Sigma, Q, I, F, \Delta)$ is an NFA, dim is a natural number, $\lambda: \Delta \mapsto \mathbb{N}^{dim}$ and S is a semi-linear subset of \mathbb{N}^{dim} .

Here, S as a Presburger formula with dim free variables x_1, \dots, x_{dim}

$$\varphi_S(x_1,x_2) = (x_1 = 2 * x_2 + 1)$$

Words containing a factor cwc with $w \in (a+b)^*$ and $|w|_a = 2|w|_b + 1$

Parikh Automata

Definition

A Parikh automaton $P = (A, dim, \lambda, S)$ where $A = (\Sigma, Q, I, F, \Delta)$ is an NFA, dim is a natural number, $\lambda : \Delta \mapsto \mathbb{N}^{dim}$ and S is a semi-linear subset of \mathbb{N}^{dim} .

Here, S as a Presburger formula with dim free variables x_1, \dots, x_{dim}

Equi-expressive to (non-deterministic) reversal-bounded counter machines [Ibarra] (weaker in the deterministic case).

In Parikh automata, counter values (and thus, updates) do not influence the control state evolution.

Two-way Visibly Pushdown ParikhParikh Automata

Definition

A two-way Visibly Pushdown Parikh automaton $P = (A, dim, \lambda, S)$ where $A = (\Sigma, Q, I, F, \Gamma, \Delta)$ is an 2VPA, dim is a natural number, $\lambda : \Delta \mapsto \mathbb{N}^{dim}$ and S is a semi-linear subset of \mathbb{N}^{dim} .

Two-way Visibly Pushdown ParikhParikh Automata

Definition

A two-way Visibly Pushdown Parikh automaton $P = (A, dim, \lambda, S)$ where $A = (\Sigma, Q, I, F, \Gamma, \Delta)$ is an 2VPA, dim is a natural number, $\lambda : \Delta \mapsto \mathbb{N}^{dim}$ and S is a semi-linear subset of \mathbb{N}^{dim} .

Reducing (D)2VPT problems to emptiness of 2VPPA

Well-nestedness of (D)2VPT

Globally as many calls as returns. Locally always more calls then returns.

dim = 4

$$q_{1} \xrightarrow{\alpha, \pm \gamma, (|w|_{\Sigma_{c}}, |w|_{\Sigma_{r}}, |w|_{\Sigma_{c}}, |w|_{\Sigma_{r}})}} q_{2}$$

$$q_{1} \xrightarrow{\alpha, \pm \gamma |w} q_{2} : \begin{cases} q_{1} \xrightarrow{\alpha, \pm \gamma, (|w|_{\Sigma_{c}}, |w|_{\Sigma_{r}}, |w|_{\Sigma_{c}}, |w|_{\Sigma_{r}})} \rightarrow q'_{2} \\ q'_{1} \xrightarrow{\alpha, \pm \gamma, (0, 0, |w|_{\Sigma_{c}}, |w|_{\Sigma_{r}})} \rightarrow q'_{2} \end{cases}$$

$$\varphi = x_3 \neq x_4 \lor x_1 < x_2$$

Not well-nested ⇔ Not empty

Functionality of 2VPT

On the same input word, there exists an output position where two different letters are output in two different computations (essentially).

dim = 2

Compute a position in the output

$$q_1 \xrightarrow{\alpha, \pm \gamma \mid w} q_2 \quad \Rightarrow q_1 \xrightarrow{\alpha, \pm \gamma, (\mid w \mid, 0)} q_2$$

Guess the (first half of the) mismatched

$$q_1 \xrightarrow{\alpha, \pm \gamma \mid w} q_2 \quad \Rightarrow q_1 \xrightarrow{\alpha, \pm \gamma, (|w_1|, 0)} q_2^a \qquad w = w_1 a w_2$$

• Rewind the input word and start reading again

$$q_1 \xrightarrow{\alpha, \pm \gamma \mid w} q_2 \quad \Rightarrow q_1^a \xrightarrow{\alpha, \pm \gamma, (0, \mid w \mid)} q_2^a$$

Guess the (second half of the) mismatched

$$q_1 \xrightarrow{\alpha, \pm \gamma \mid w} q_2 \Rightarrow q_1^a \xrightarrow{\alpha, \pm \gamma, (0, |w_1|)} q_F \qquad w = w_1 b w_2, \ a \neq b$$

$$\varphi = x_1 = x_2$$

Not functional ⇔ Not empty

Outline

3 - Emptiness for 2VPPA

Some Existing Results

Emptiness for:

deterministic two-way counter machines with 2 counters and k (fixed)
 counter-reversals is undecidable

Some Existing Results

Emptiness for:

- deterministic two-way counter machines with 2 counters and k (fixed)
 counter-reversals is undecidable
- (non-deterministic) two-way reversal-bounded counter machines with finite crossing is decidable

Some Existing Results

Emptiness for:

- deterministic two-way counter machines with 2 counters and k (fixed) counter-reversals is undecidable
- (non-deterministic) two-way reversal-bounded counter machines with finite crossing is decidable
- (non-deterministic) two-way pushdown automata with finite crossing is undecidable

Some Bad News

Theorem

Emptiness for deterministic two-way visibly pushdown Parikh automata is undecidable.

Proof Idea:

Reduction of solvability of Diophantine Eq. : P = Q with $P, Q \in \mathbb{N}[\mathcal{X}]$, eg 2xy + zz = 4x + 2xz + 6

The automaton part encodes only of monomials; sums and equality test encoded in Presburger accepting formula, a dimension for each monomial : $2x_1 + x_2 = 4x_3 + 2x_4 + 6$.

Input nested words represent valuations of variables

The automaton checks well-formedness

- visibly pushdown "regular" sequence of monomials
- ullet one dimension for each variable occurrence in P and Q: test via the Presburger accepting formula that there are valuated the same way.

and evaluates monomials via counters:

The dimension updated as $[\mathsf{Encode}(x_c c^3 \, \mathsf{Encode}(y*1, [x \mapsto 3, y \mapsto 2]) r^3 x_r)] = 3* [[\mathsf{Encode}(y*1, [x \mapsto 3, y \mapsto 2])]]$

Theorem

The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

Theorem

The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

Theorem

The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

- Step 1 : Define a NPA B accepting words of the form $\alpha_1 u_0^1 u_1^2 \alpha_2 u_3^1 u_2^2 \alpha_3 u_0^1 u_0^2 \alpha_4 u_0^1 u_1^2 \alpha_5 \dots$ such that
 - $\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5...$ has a run in A from an initial to a final configuration
 - each $u_{v_1}^1 u_{v_2}^2$ corresponds to the update performed by the run at that position : $(v_1, v_2) \Rightarrow u_{v_1}^1 u_{v_2}^2$
 - ► B is of polynomial size in A

Theorem

The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

- Step 1 : Define a NPA B accepting words of the form $\alpha_1 u_0^1 u_1^2 \alpha_2 u_3^1 u_2^2 \alpha_3 u_0^1 u_0^2 \alpha_4 u_0^1 u_1^2 \alpha_5 \dots$ such that
 - $\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5...$ has a run in A from an initial to a final configuration
 - each $u_{v_1}^1 u_{v_2}^2$ corresponds to the update performed by the run at that position : $(v_1, v_2) \Rightarrow u_{v_1}^1 u_{v_2}^2$
 - ► B is of polynomial size in A
- Step 2 : There is an existential Presburger formula $\psi((y_{\sigma})_{\sigma \in \Sigma'})$ of size polynomial in B defining the Parikh image of L(B). [Verma, et al. 05]

Theorem

The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

- Step 1 : Define a NPA B accepting words of the form $\alpha_1 u_0^1 u_1^2 \alpha_2 u_3^1 u_2^2 \alpha_3 u_0^1 u_0^2 \alpha_4 u_0^1 u_1^2 \alpha_5 \dots$ such that
 - $\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5...$ has a run in A from an initial to a final configuration
 - each $u_{v_1}^1 u_{v_2}^2$ corresponds to the update performed by the run at that position : $(v_1, v_2) \Rightarrow u_{v_1}^1 u_{v_2}^2$
 - ► B is of polynomial size in A
- Step 2: There is an existential Presburger formula $\psi((y_{\sigma})_{\sigma \in \Sigma'})$ of size polynomial in B defining the Parikh image of L(B). [Verma, et al. 05]
- Step 3: In NP [Scarpellini84], satisfiability test of

$$\psi((y_{\sigma})_{\sigma \in \Sigma'}) \wedge \phi(x_1, \dots, x_n) \wedge \bigwedge_{1 \leq i \leq dim} x_i = \sum_{v \in V} v. y_{u_v^i}$$

Lower bound : (hardness does not rely on the acceptance set, eg Presburger satisfiability).

Lower bound : (hardness does not rely on the acceptance set, eg Presburger satisfiability).

Reduction of the 2-partition problem :

- I a finite set of natural numbers represented in binary.
- Does there exists $J \subseteq I$ such that

$$\sum_{e \in J} e = \sum_{e \notin J} e$$

Lower bound : (hardness does not rely on the acceptance set, eg Presburger satisfiability).

Reduction of the 2-partition problem :

- / a finite set of natural numbers represented in binary.
- Does there exists $J \subseteq I$ such that

$$\sum_{e \in J} e = \sum_{e \notin J} e$$

One dimension for J and one for $I \setminus J$.

Input words : $T_1v_1L_2v_2T_3v_3T_4v_4L_5v_5...$

- v_k : representation of the unary encoding of the kth natural.
- T_i : take the *i*th natural (in J) L_j : leave the *j*th natural

 v_k is encoded as $u_n u_{n-1} \dots u_1 u_0$ where

- $u_i = \epsilon$ if the jth bit of v_k is 0 and w_i otherwise
- recursively, $w_0 = 1$ and $w_l = c_l w_{l-1} r_l c_l w_{l-1} r_l$

and can be recognized by a small VPA.

Lower bound : (hardness does not rely on the acceptance set, eg Presburger satisfiability).

Reduction of the 2-partition problem :

- I a finite set of natural numbers represented in binary.
- Does there exists $J \subseteq I$ such that

$$\sum_{e \in J} e = \sum_{e \notin J} e$$

One dimension for J and one for $I \setminus J$.

Input words : $T_1v_1L_2v_2T_3v_3T_4v_4L_5v_5...$

- v_k : representation of the unary encoding of the kth natural.
- T_i : take the *i*th natural (in J) L_j : leave the *j*th natural

 v_k is encoded as $u_n u_{n-1} \dots u_1 u_0$ where

- $u_i = \epsilon$ if the jth bit of v_k is 0 and w_i otherwise
- recursively, $w_0 = 1$ and $w_l = c_l w_{l-1} r_l c_l w_{l-1} r_l$

and can be recognized by a small VPA.

Thus, holds even if the automata are deterministic, with a fixed dimension 2, tuples of values in $\{0,1\}^2$ and with a fixed Presburger formula $(x_1,x_2)=x_1=x_2$

Single-use 2VPPA: a position is visited only once per counter modifying transition.

Single-use 2VPPA: a position is visited only once per counter modifying transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most exponential size.

Single-use 2VPPA: a position is visited only once per counter modifying transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most exponential size.

Proof Idea

 Extends [Dartois, Filiot, Reynier, T. 16] following Sherpherson's ideas (for FSA) on traversals T

$$((q,d)(q',d')) \in T(u)$$
 iff some run enters u by (q,d) and leaves it by (q',d')

Single-use 2VPPA: a position is visited only once per counter modifying transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most exponential size.

Proof Idea

 Extends [Dartois, Filiot, Reynier, T. 16] following Sherpherson's ideas (for FSA) on traversals T.

```
((q,d)(q',d')) \in T(u) iff some run enters u by (q,d) and leaves it by (q',d')
```

- Productive and Non-productive traversals form a finite algebra.
- Consider possible decompositions of traversals ((q,→)(q', ←)) on c₁rw₂ into productive traversals (finitely many as single-use) reachable from each other by non-productive traversals.
- Using commutativity of addition over \mathbb{N}^{dim} , extract a VPA and a mapping λ

Single-use 2VPPA: a position is visited only once per counter modifying transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most exponential size.

Corollary

Emptiness for single-use 2VPPA is in NEXPtime.

Proposition

Emptiness for single-use 2VPPA is in NEXPtime-hard.

Implied Results

For well-nestedness, functionality and k-valuedness, single-use 2VPT yields single-use 2VPPA

Proposition

For single-use 2VPT, well-nestedness, functionality and k-valuedness are in NEXP time.

Both known as EXPtime-hard.

Thank You!