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1 Project MealyM

My research lies between computer science and mathematics and, more
precisely, between group theory and automata theory. Mealy machines –
a special type of automata, can be seen as a (semi-)groups of automor-
phisms over the free monoid (see [2, 12]. It is interesting to look at the-
ses groups (so-called automata-groups) and their properties, especially since
counter-examples to important group theoretical conjectures (Burnside, Mil-
nor, Atiyah, Day or Gromov problems for instance) arose as automata
groups.
As a PhD student, supervised by Ines Klimann1 and Matthieu Pi-
cantin2, I am part of the ANR project MealyM3. This project has two
main axes, first respond to theoretical (semi-)group problems using com-
puter science techniques ; and secondly to use Mealy machines to generate
random (semi-)groups.
The first axe deals mainly with structure problems [1, 10, 11, 7, 6], decid-
ability problems [4, 8] and uses the algorithmic properties of Mealy machines
and the embedding of automata groups as groups acting on trees of fixed
arity.
The second axe uses the possibility of generating uniformly automata [?] and
the grand variety of groups generated by Mealy automata (any finite group,
groups belonging to various classes of growth, amenable or not, finitely gen-
erated but not necessarily presented). Some result in this setting have ready
been obtened [5].

2 Reversible Automata

A Mealy automaton is a letter-to-letter deterministic transducer, given by
A = (Q,Σ, {δi : Q → Q}i∈Σ, {ρq : Σ → Σ}q∈Q) where Q is the state-set,
Σ is the alphabet, δi is the transition function associated to the letter i
and ρq the production function associated to the state q. If the automaton
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reads a letter i in state q then it goes to state δi(q) and produces the letter
ρq(i). One can extend the production function to function ρq : Σ∗ → Σ∗.
Then the semi-group generated by A is the semi-group 〈ρq, q ∈ Q〉+ with
the composition of function as semi-group operation. Moreover, if the pro-
duction functions are permutation of the state-set – the auomaton is said to
be invertible – then one can consider the group generated 〈ρq, q ∈ Q〉.
On the over hand one can ask what appends when the transition function
are permutation – the automaton is said to be reversible.
Indeed any known example of infinite Burnside or intermediate growth au-
tomata group is non reversible, whereas automata generating free products
are reversible.
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Figure 1: A just-invertible-reversible Mealy automaton (left) and its inverse
(right), both generating the lamplighter group Z2 o Z (see [9]).
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Figure 2: Grigorchuk automaton0

By looking at the tree of the connected component of a reversible Mealy
automaton, which can be labelled and bring us several structural infor-
mation, it as been proven that a connected 3-state invertible-reversible
Mealy automata cannot generate an infinite Burnside group [10, 11]. Us-
ing the same tool and adding structure to our automata we proved that
an invertible-reversible without bireversible connected component generates
a torsion-free semi-group [7], which extend the previous result as it forbid

2



the group to be infinite Burnside. The next step is now to weaken the
structural hyppothesis and to find free (semi-)groups of rank greater than
2, which would also gives us properties on the growth of this groups.

3 Game Theory

Before my PhD, I was doing my master thesis under the supervision of
Hugo Gimbert and Anca Muscholl. In this work, we settle a probabilistic
framework for distributed games (namely games on Zielonka automata) and
extend decidability results [3] by proving the existence of value in this games,
under topological assumptions.
This work should have various applications in distributed game theory and
in model checking.
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