
Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Types for Complexity of Parallel Computation
in π-Calculus

Alexis Ghyselen, joint work with Patrick Baillot

University of Bologna

GT Scalp, 3rd of November 2021

1/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Introduction

Goal

Obtaining time complexity properties or bounds with a type
system

Typical Result

If ` t : Nat→ Nat then, for any integer input n, we can extract
a bound on the computation time of t n

Examples, for functional languages

Hughes, Pareto, Sabry ’96: Sized Types
Hofmann ’03 : Non-size-increasing Types
Dal Lago, Gaboardi ’11: Linear Dependent Types

2/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Type-Based Complexity Analysis

Important Questions

• Soundness: Can we extract a complexity bound from a
type derivation ?

• Type-Inference: Can we automatically obtain complexity
bounds by inferring a type ?

• Expressivity: What are the useful programs that can be
typed ?

• Precision: How sharp are the complexity bounds ?

3/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Type-Based Complexity Analysis

Important Questions

• Soundness: Can we extract a complexity bound from a
type derivation ?

• Type-Inference: Can we automatically obtain complexity
bounds by inferring a type ?

• Expressivity: What are the useful programs that can be
typed ?

• Precision: How sharp are the complexity bounds ?

3/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Type-Based Complexity Analysis

Important Questions

• Soundness: Can we extract a complexity bound from a
type derivation ?

• Type-Inference: Can we automatically obtain complexity
bounds by inferring a type ?

• Expressivity: What are the useful programs that can be
typed ?

• Precision: How sharp are the complexity bounds ?

3/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Type-Based Complexity Analysis

Important Questions

• Soundness: Can we extract a complexity bound from a
type derivation ?

• Type-Inference: Can we automatically obtain complexity
bounds by inferring a type ?

• Expressivity: What are the useful programs that can be
typed ?

• Precision: How sharp are the complexity bounds ?

3/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

Complexity in a Calculus with Parallelism

• Work : Total time complexity without parallelism

• Span : Time complexity with maximal parallelism

• Width : Number of processors for maximal parallelism

• Practical Complexity : Time complexity with p processors

A Classical Result

From work and span, we can deduce a bound on practical
complexity

A Calculus for Concurrent and Parallel Computation

We work on the π-calculus, because it is simple, expressive and
wide-spread

4/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

Complexity in a Calculus with Parallelism

• Work : Total time complexity without parallelism

• Span : Time complexity with maximal parallelism

• Width : Number of processors for maximal parallelism

• Practical Complexity : Time complexity with p processors

A Classical Result

From work and span, we can deduce a bound on practical
complexity

A Calculus for Concurrent and Parallel Computation

We work on the π-calculus, because it is simple, expressive and
wide-spread

4/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

Complexity in a Calculus with Parallelism

• Work : Total time complexity without parallelism

• Span : Time complexity with maximal parallelism

• Width : Number of processors for maximal parallelism

• Practical Complexity : Time complexity with p processors

A Classical Result

From work and span, we can deduce a bound on practical
complexity

A Calculus for Concurrent and Parallel Computation

We work on the π-calculus, because it is simple, expressive and
wide-spread

4/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

Complexity in a Calculus with Parallelism

• Work : Total time complexity without parallelism

• Span : Time complexity with maximal parallelism

• Width : Number of processors for maximal parallelism

• Practical Complexity : Time complexity with p processors

A Classical Result

From work and span, we can deduce a bound on practical
complexity

A Calculus for Concurrent and Parallel Computation

We work on the π-calculus, because it is simple, expressive and
wide-spread

4/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Goal

Define several sized type systems to obtain complexity bounds
in π-calculus.

5/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Paradigm of the π-calculus

Parallelism
Communication with channels
Channels can send values and names of channels

Dynamic Aspects

Dynamic creation of new processes
Dynamic creation of channels

Model of Concurrency

Useful to study the equivalence of processes
Encoding of functional languages in the π-calculus

6/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Paradigm of the π-calculus

Parallelism
Communication with channels
Channels can send values and names of channels

Dynamic Aspects

Dynamic creation of new processes
Dynamic creation of channels

Model of Concurrency

Useful to study the equivalence of processes
Encoding of functional languages in the π-calculus

6/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Paradigm of the π-calculus

Parallelism
Communication with channels
Channels can send values and names of channels

Dynamic Aspects

Dynamic creation of new processes
Dynamic creation of channels

Model of Concurrency

Useful to study the equivalence of processes
Encoding of functional languages in the π-calculus

6/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Base Syntax

P := 0 | (P | Q) | (νa)P | a〈ẽ〉 | a(ṽ).P |!a(ṽ).P | tick.P

Example with integers

Q = a(r).r(n).r〈n + 1〉

Structural Congruence

Associativity and Commutativity of Parallel Composition . . .

Semantics

a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ]
!a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ] | !a(ṽ).P

Example

Q | a〈b〉 | b〈4〉 → b(n).b〈n + 1〉 | b〈4〉 → b〈5〉

7/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Base Syntax

P := 0 | (P | Q) | (νa)P | a〈ẽ〉 | a(ṽ).P |!a(ṽ).P | tick.P

Example with integers

Q = a(r).r(n).r〈n + 1〉

Structural Congruence

Associativity and Commutativity of Parallel Composition . . .

Semantics

a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ]
!a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ] | !a(ṽ).P

Example

Q | a〈b〉 | b〈4〉 → b(n).b〈n + 1〉 | b〈4〉 → b〈5〉

7/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Base Syntax

P := 0 | (P | Q) | (νa)P | a〈ẽ〉 | a(ṽ).P |!a(ṽ).P | tick.P

Example with integers

Q = a(r).r(n).r〈n + 1〉

Structural Congruence

Associativity and Commutativity of Parallel Composition . . .

Semantics

a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ]
!a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ] | !a(ṽ).P

Example

Q | a〈b〉 | b〈4〉 → b(n).b〈n + 1〉 | b〈4〉 → b〈5〉

7/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Base Syntax

P := 0 | (P | Q) | (νa)P | a〈ẽ〉 | a(ṽ).P |!a(ṽ).P | tick.P

Example with integers

Q = a(r).r(n).r〈n + 1〉

Structural Congruence

Associativity and Commutativity of Parallel Composition . . .

Semantics

a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ]
!a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ] | !a(ṽ).P

Example

Q | a〈b〉 | b〈4〉 → b(n).b〈n + 1〉 | b〈4〉 → b〈5〉

7/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

The π-calculus

Base Syntax

P := 0 | (P | Q) | (νa)P | a〈ẽ〉 | a(ṽ).P |!a(ṽ).P | tick.P

Example with integers

Q = a(r).r(n).r〈n + 1〉

Structural Congruence

Associativity and Commutativity of Parallel Composition . . .

Semantics

a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ]
!a(ṽ).P | a〈ẽ〉 → P[ṽ := ẽ] | !a(ṽ).P

Example

Q | a〈b〉 | b〈4〉 → b(n).b〈n + 1〉 | b〈4〉 → b〈5〉
7/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick | a〈〉 | tick W = 2 S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick | a〈〉 | tick W = 2 S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

tick | tick W = 2 S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick | a〈〉 | tick W = 2 S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick | a〈〉 | tick W = 2 S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick | a〈〉 | tick W = 2 S = 1

tick.P0 | tick.a().P1 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick | a〈〉 | tick W = 2 S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Examples for Work and Span

tick | tick | tick | · · ·︸ ︷︷ ︸
n times

W = n S = 1

a().tick | a〈〉 | tick W = 2 S = 1

a().tick.P0 | tick.a().P1 | a〈〉 S = max(1 + C0, 1 + C1)

!a(n).tick.if (n = 0) then 0 else a〈n − 1〉 | a〈n − 1〉

W = O(2|n|) S = O(|n|)

8/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Reduction with Cost

Work

P → Q in standard π-calculus

P →0 Q tick.P →1 P

Work = Maximal number of →1

Span

We give a new formalization by defining annotated processes

9/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Reduction with Cost

Work

P → Q in standard π-calculus

P →0 Q tick.P →1 P

Work = Maximal number of →1

Span

We give a new formalization by defining annotated processes

9/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Reduction with Cost

Work

P → Q in standard π-calculus

P →0 Q tick.P →1 P

Work = Maximal number of →1

Span

We give a new formalization by defining annotated processes

9/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Annotated Processes

Syntax

New constructor ”n : P”

”P with n ticks before”

Standard rules for structural congruence
+

m : (P | Q) ≡ (m : P) | (m : Q) m : (νa)P ≡ (νa)(m : P)

m : (n : P) ≡ (m + n) : P 0 : P ≡ P

10/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Annotated Processes

Syntax

New constructor ”n : P”
”P with n ticks before”

Standard rules for structural congruence
+

m : (P | Q) ≡ (m : P) | (m : Q) m : (νa)P ≡ (νa)(m : P)

m : (n : P) ≡ (m + n) : P 0 : P ≡ P

10/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Annotated Processes

Syntax

New constructor ”n : P”
”P with n ticks before”

Standard rules for structural congruence
+

m : (P | Q) ≡ (m : P) | (m : Q) m : (νa)P ≡ (νa)(m : P)

m : (n : P) ≡ (m + n) : P 0 : P ≡ P

10/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Annotated Processes

Syntax

New constructor ”n : P”
”P with n ticks before”

Standard rules for structural congruence
+

m : (P | Q) ≡ (m : P) | (m : Q) m : (νa)P ≡ (νa)(m : P)

m : (n : P) ≡ (m + n) : P 0 : P ≡ P

10/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

tick.P ⇒ (1 : P)

(n : a(ṽ).P) | (m : a〈ẽ〉)⇒ max(m, n) : P[ṽ := ẽ]

(n :!a(ṽ).P) | (m : a〈ẽ〉)⇒ (max(m, n) : P[ṽ := ẽ]) | (n :!a(ṽ).P)

Parallel Complexity of P (Span)

Maximal n such that P ⇒∗ Q and Q ≡ n : Q0 | Q1

Remark

Complexity does not necessarily decrease with a reduction step

11/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

tick.P ⇒ (1 : P)

(n : a(ṽ).P) | (m : a〈ẽ〉)⇒ max(m, n) : P[ṽ := ẽ]

(n :!a(ṽ).P) | (m : a〈ẽ〉)⇒ (max(m, n) : P[ṽ := ẽ]) | (n :!a(ṽ).P)

Parallel Complexity of P (Span)

Maximal n such that P ⇒∗ Q and Q ≡ n : Q0 | Q1

Remark

Complexity does not necessarily decrease with a reduction step

11/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

tick.P ⇒ (1 : P)

(n : a(ṽ).P) | (m : a〈ẽ〉)⇒ max(m, n) : P[ṽ := ẽ]

(n :!a(ṽ).P) | (m : a〈ẽ〉)⇒ (max(m, n) : P[ṽ := ẽ]) | (n :!a(ṽ).P)

Parallel Complexity of P (Span)

Maximal n such that P ⇒∗ Q and Q ≡ n : Q0 | Q1

Remark

Complexity does not necessarily decrease with a reduction step

11/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

tick.P ⇒ (1 : P)

(n : a(ṽ).P) | (m : a〈ẽ〉)⇒ max(m, n) : P[ṽ := ẽ]

(n :!a(ṽ).P) | (m : a〈ẽ〉)⇒ (max(m, n) : P[ṽ := ẽ]) | (n :!a(ṽ).P)

Parallel Complexity of P (Span)

Maximal n such that P ⇒∗ Q and Q ≡ n : Q0 | Q1

Remark

Complexity does not necessarily decrease with a reduction step

11/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Parallel Complexity

tick.P ⇒ (1 : P)

(n : a(ṽ).P) | (m : a〈ẽ〉)⇒ max(m, n) : P[ṽ := ẽ]

(n :!a(ṽ).P) | (m : a〈ẽ〉)⇒ (max(m, n) : P[ṽ := ẽ]) | (n :!a(ṽ).P)

Parallel Complexity of P (Span)

Maximal n such that P ⇒∗ Q and Q ≡ n : Q0 | Q1

Remark

Complexity does not necessarily decrease with a reduction step

11/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Standard Simple Types for
π-Calculus

Syntax

T := Nat | Bool | · · · | ch(T̃)

Context

A context Γ gives a type to channel names and variables

Γ ` a : ch(T̃) Γ, ṽ : T̃ ` P

Γ ` a(ṽ).P

Γ ` a : ch(T̃) Γ ` ẽ : T̃

Γ ` a〈ẽ〉

12/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Standard Simple Types for
π-Calculus

Syntax

T := Nat | Bool | · · · | ch(T̃)

Context

A context Γ gives a type to channel names and variables

Γ ` a : ch(T̃) Γ, ṽ : T̃ ` P

Γ ` a(ṽ).P

Γ ` a : ch(T̃) Γ ` ẽ : T̃

Γ ` a〈ẽ〉

12/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Standard Simple Types for
π-Calculus

Syntax

T := Nat | Bool | · · · | ch(T̃)

Context

A context Γ gives a type to channel names and variables

Γ ` a : ch(T̃) Γ, ṽ : T̃ ` P

Γ ` a(ṽ).P

Γ ` a : ch(T̃) Γ ` ẽ : T̃

Γ ` a〈ẽ〉

12/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Goal

If Γ ` P C K then the worst-case work for P is bounded by K .

13/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Simple Types with Sizes

Integer Expressions

I , J,K := i , j , k | f (I1, . . . , In)

Base Types with Sizes

Nat[I , J] is a type for integers n with I ≤ n ≤ J

Types

T := Nat[I , J] | ch(T̃)

Example

ch(Nat[2, 7]) ch(Nat[0, i], ch(Nat[0, i]))

And Subtyping ?

Usual subtyping can be recovered with input/output types

14/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Simple Types with Sizes

Integer Expressions

I , J,K := i , j , k | f (I1, . . . , In)

Base Types with Sizes

Nat[I , J] is a type for integers n with I ≤ n ≤ J

Types

T := Nat[I , J] | ch(T̃)

Example

ch(Nat[2, 7]) ch(Nat[0, i], ch(Nat[0, i]))

And Subtyping ?

Usual subtyping can be recovered with input/output types

14/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Simple Types with Sizes

Integer Expressions

I , J,K := i , j , k | f (I1, . . . , In)

Base Types with Sizes

Nat[I , J] is a type for integers n with I ≤ n ≤ J

Types

T := Nat[I , J] | ch(T̃)

Example

ch(Nat[2, 7]) ch(Nat[0, i], ch(Nat[0, i]))

And Subtyping ?

Usual subtyping can be recovered with input/output types

14/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Simple Types with Sizes

Integer Expressions

I , J,K := i , j , k | f (I1, . . . , In)

Base Types with Sizes

Nat[I , J] is a type for integers n with I ≤ n ≤ J

Types

T := Nat[I , J] | ch(T̃)

Example

ch(Nat[2, 7]) ch(Nat[0, i], ch(Nat[0, i]))

And Subtyping ?

Usual subtyping can be recovered with input/output types

14/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Some Work Typing Rules

Γ ` P C K
Γ ` tick.P C K + 1

Γ ` P C K Γ ` Q C K ′

Γ ` P | Q C K + K ′

15/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Some Work Typing Rules

Γ ` P C K
Γ ` tick.P C K + 1

Γ ` P C K Γ ` Q C K ′

Γ ` P | Q C K + K ′

15/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Example for replicated input

P :=!a(n).tick.if (n = 0) then 0 else a〈n − 1〉 | a〈n − 1〉

Work = 2|n|+1 − 1

We need a complexity that depends on the size of n

The complexity can only be known when an actual integer is
sent

16/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Example for replicated input

P :=!a(n).tick.if (n = 0) then 0 else a〈n − 1〉 | a〈n − 1〉

Work = 2|n|+1 − 1

We need a complexity that depends on the size of n

The complexity can only be known when an actual integer is
sent

16/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Example for replicated input

P :=!a(n).tick.if (n = 0) then 0 else a〈n − 1〉 | a〈n − 1〉

Work = 2|n|+1 − 1

We need a complexity that depends on the size of n

The complexity can only be known when an actual integer is
sent

16/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Type for replicated input (!a(ṽ).P)

∀ĩ .servK (T̃)

K stands for complexity and can depend on ĩ

P :=!a(n).tick.if (n = 0) then 0 else a〈n − 1〉 | a〈n − 1〉

a : ∀i .serv(2
i+1−1)(Nat[0, i])

17/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Type for replicated input (!a(ṽ).P)

∀ĩ .servK (T̃)

K stands for complexity and can depend on ĩ

P :=!a(n).tick.if (n = 0) then 0 else a〈n − 1〉 | a〈n − 1〉

a : ∀i .serv(2
i+1−1)(Nat[0, i])

17/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Type for replicated input (!a(ṽ).P)

∀ĩ .servK (T̃)

K stands for complexity and can depend on ĩ

P :=!a(n).tick.if (n = 0) then 0 else a〈n − 1〉 | a〈n − 1〉

a : ∀i .serv(2
i+1−1)(Nat[0, i])

17/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Simple Types
(Reminder)

Γ ` a : ch(T̃) Γ, ṽ : T̃ ` P

Γ `!a(ṽ).P

Γ ` a : ch(T̃) Γ ` ẽ : T̃

Γ ` a〈ẽ〉

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ `!a(ṽ).P

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ ` a : ∀ĩ .servK (T̃)

Γ `!a(ṽ).P

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ ` a : ∀ĩ .servK (T̃) Γ, ṽ : T̃ ` P C K ĩ fresh

Γ `!a(ṽ).P

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ ` a : ∀ĩ .servK (T̃) Γ, ṽ : T̃ ` P C K ĩ fresh

Γ `!a(ṽ).P C 0

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ ` a : ∀ĩ .servK (T̃) Γ, ṽ : T̃ ` P C K ĩ fresh

Γ `!a(ṽ).P C 0

Γ ` a〈ẽ〉

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ ` a : ∀ĩ .servK (T̃) Γ, ṽ : T̃ ` P C K ĩ fresh

Γ `!a(ṽ).P C 0

Γ ` a : ∀ĩ .servK (T̃)

Γ ` a〈ẽ〉

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ ` a : ∀ĩ .servK (T̃) Γ, ṽ : T̃ ` P C K ĩ fresh

Γ `!a(ṽ).P C 0

Γ ` a : ∀ĩ .servK (T̃) Γ ` ẽ : T̃{J̃/ĩ}
Γ ` a〈ẽ〉

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Typing Rules for Work

Γ ` a : ∀ĩ .servK (T̃) Γ, ṽ : T̃ ` P C K ĩ fresh

Γ `!a(ṽ).P C 0

Γ ` a : ∀ĩ .servK (T̃) Γ ` ẽ : T̃{J̃/ĩ}
Γ ` a〈ẽ〉 C K{J̃/ĩ}

18/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Methodology: Subject Reduction

If Γ ` P C K and P →0 Q then Γ ` Q C K

If Γ ` P C K and P →1 Q then Γ ` Q C K − 1

Theorem

If Γ ` P C K then K is a bound on the work of P

19/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Methodology: Subject Reduction

If Γ ` P C K and P →0 Q then Γ ` Q C K

If Γ ` P C K and P →1 Q then Γ ` Q C K − 1

Theorem

If Γ ` P C K then K is a bound on the work of P

19/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Types for Span

Extending the Previous Type System

We need some time information

Syntax with Time Indications

T := Nat[I , J] | · · · | chI (T̃) | ∀ĩ .servKI (T̃)
I : time at which the channel is ready to communicate

〈Γ〉−1 ` P C K

Γ ` tick.P C K + 1

Γ ` P C K Γ ` Q C K ′

Γ ` P | Q Cmax(K ,K ′)

20/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Types for Span

Extending the Previous Type System

We need some time information

Syntax with Time Indications

T := Nat[I , J] | · · · | chI (T̃) | ∀ĩ .servKI (T̃)

I : time at which the channel is ready to communicate

〈Γ〉−1 ` P C K

Γ ` tick.P C K + 1

Γ ` P C K Γ ` Q C K ′

Γ ` P | Q Cmax(K ,K ′)

20/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Types for Span

Extending the Previous Type System

We need some time information

Syntax with Time Indications

T := Nat[I , J] | · · · | chI (T̃) | ∀ĩ .servKI (T̃)
I : time at which the channel is ready to communicate

〈Γ〉−1 ` P C K

Γ ` tick.P C K + 1

Γ ` P C K Γ ` Q C K ′

Γ ` P | Q Cmax(K ,K ′)

20/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Types for Span

Extending the Previous Type System

We need some time information

Syntax with Time Indications

T := Nat[I , J] | · · · | chI (T̃) | ∀ĩ .servKI (T̃)
I : time at which the channel is ready to communicate

〈Γ〉−1 ` P C K

Γ ` tick.P C K + 1

Γ ` P C K Γ ` Q C K ′

Γ ` P | Q Cmax(K ,K ′)

20/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Rules for Servers

Γ ` a : ∀ĩ .servKI (T̃) 〈Γ〉−I , ṽ : T̃ ` P C K

Γ `!a(ṽ).P C I

Γ ` a : ∀ĩ .servKI (T̃) 〈Γ〉−I ` ẽ : T̃{J̃/ĩ}

Γ ` a〈ẽ〉C K{J̃/ĩ}+I

21/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Subject Reduction

If Γ ` P C K and P ⇒ Q then Γ ` Q C K

If Γ ` P C K and P ≡ n : P1 | P2 then K ≥ n

Theorem

If Γ ` P C K then K is a bound on the span of P

22/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Subject Reduction

If Γ ` P C K and P ⇒ Q then Γ ` Q C K

If Γ ` P C K and P ≡ n : P1 | P2 then K ≥ n

Theorem

If Γ ` P C K then K is a bound on the span of P

22/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Simple Semaphore

Limitations of the span type system:

a().tick.a〈〉 | a().tick.a〈〉 | · · · | a().tick.a〈〉 | a〈〉

Span type system cannot count the number of similar parallel
processes.
Also, it cannot give a ”time” to a.

23/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Simple Semaphore

Limitations of the span type system:

a().tick.a〈〉 | a().tick.a〈〉 | · · · | a().tick.a〈〉 | a〈〉

Span type system cannot count the number of similar parallel
processes.
Also, it cannot give a ”time” to a.

23/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Usage Type System, Briefly

T := Nat[I , J] | ch(T̃)/U | ∀ĩ .servK (T̃)/U

Intuitively, U described the behavior of the channel in a process
independently from other channels.

U,V ≈ 0 | (U | V) | Intotc .U | Out
to
tc .U

We need usages adapted to span, joint work with Naoki
Kobayashi.

24/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Usage Type System, Briefly

T := Nat[I , J] | ch(T̃)/U | ∀ĩ .servK (T̃)/U

Intuitively, U described the behavior of the channel in a process
independently from other channels.

U,V ≈ 0 | (U | V) | Intotc .U | Out
to
tc .U

We need usages adapted to span, joint work with Naoki
Kobayashi.

24/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Usage Type System, Briefly

T := Nat[I , J] | ch(T̃)/U | ∀ĩ .servK (T̃)/U

Intuitively, U described the behavior of the channel in a process
independently from other channels.

U,V ≈ 0 | (U | V) | Intotc .U | Out
to
tc .U

We need usages adapted to span, joint work with Naoki
Kobayashi.

24/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Usage Type System, Briefly

T := Nat[I , J] | ch(T̃)/U | ∀ĩ .servK (T̃)/U

Intuitively, U described the behavior of the channel in a process
independently from other channels.

U,V ≈ 0 | (U | V) | Intotc .U | Out
to
tc .U

We need usages adapted to span, joint work with Naoki
Kobayashi.

24/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Sum Up

Contributions

• Simple definition of Parallel Complexity

• Size-based type system for π-calculus

• Elegant proof method for complexity soundness

Typable Process for Span

Bitonic Sort with O(log(n)2) comparisons

Perspective

• Full Type Inference

• Analysis of Width

• Amortized Complexity

25/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Sum Up

Contributions

• Simple definition of Parallel Complexity

• Size-based type system for π-calculus

• Elegant proof method for complexity soundness

Typable Process for Span

Bitonic Sort with O(log(n)2) comparisons

Perspective

• Full Type Inference

• Analysis of Width

• Amortized Complexity

25/26

Types for
Parallel

Complexity

Alexis
Ghyselen,
joint work
with Patrick

Baillot

1) Type-Based
Complexity
Analysis

2) Work and
Span in
π-Calculus

3) Type
System for
Work

4) Type
System for
Span

5) Conclusion

Thank you for your attention.

26/26

	1) Type-Based Complexity Analysis
	2) Work and Span in -Calculus
	3) Type System for Work
	4) Type System for Span
	5) Conclusion

