
A circular version of Gödel’s T and its abstraction complexity

AnupamDas

University of Birmingham

Journées 2021 du GT Scalp
Fontainebleau

3rd November 2021

1 / 23

Outline

1 Cyclic proofs: a Curry-Howard perspective

2 A circular version of Gödel’s T

3 Frommodels to interpretations

4 Conclusions

2 / 23

Motivating example: circular typing for Ackermann-Péter

Consider the functions I : (N → N) → N → N and A : N → N → N given by:

I f 0 = f 1
I f sx = f (I f x)

A 0 = s
A sx = I (A x)

Can be written using only base types with ‘circular’ typing:

s
N → N

•
N,N ⇒ N

N,I′

N,N ⇒ N
cond •

N,N ⇒ N

• Apparently non-wellfounded.
• Why is the function well-defined?

3 / 23

Motivating example: circular typing for Ackermann-Péter

Consider the functions I : (N → N) → N → N and A : N → N → N given by:

I f 0 = f 1
I f sx = f (I f x)

A 0 = s
A sx = I (A x)

Can be written using only base types with ‘circular’ typing:

s
N → N

•
N,N ⇒ N

N,I′

N,N ⇒ N
cond •

N,N ⇒ N

• Apparently non-wellfounded.
• Why is the function well-defined?

3 / 23

Motivating example: circular typing for Ackermann-Péter

Consider the functions I : (N → N) → N → N and A : N → N → N given by:

I f 0 = f 1
I f sx = f (I f x)

A 0 = s
A sx = I (A x)

Can be written using only base types with ‘circular’ typing:

s
N → N

•
N,N ⇒ N

N,I′

N,N ⇒ N
cond •

N,N ⇒ N

• Apparently non-wellfounded.
• Why is the function well-defined?

3 / 23

Motivating example: circular typing for Ackermann-Péter

Consider the functions I : (N → N) → N → N and A : N → N → N given by:

I f 0 = f 1
I f sx = f (I f x)

A 0 = s
A sx = I (A x)

Can be written using only base types with ‘circular’ typing:

s
N → N

•
N,N ⇒ N

N,I′

N,N ⇒ N
cond •

N,N ⇒ N

• Apparently non-wellfounded.
• Why is the function well-defined?

3 / 23

Landscape of cyclic proof theory

There are now several distinct communities studying non-wellfounded reasoning.
Some of these include:

Algebra / Type systems Modal logic Predicate logic

Linear logic + µ, ν µ-calculus FOL + ind. dfns.

Kleene Algebra +∩, \, / PDL & Game logic Arithmetic

NB: formula expressivity increases left-to-right.

Some references:
• Algebra and type systems: [Santocanale ’02], [Fortier & Santocanale ’13], [Baelde,
Doumane & Saurin ’16], [D. & Pous ’17, ’18], [Kuperberg, Pinault & Pous ’21].

• Modal logics: [Niwinski &Walukiewicz ’96], [Afshari & Leigh ’17], [Enqvist,
Hansen, Kupke, Marti & Venema ’19].

• Predicate logic: [Brotherston & Simpson ’07], [Simpson ’17], [Berardi & Tatsuta
’17], [D. ’20].

4 / 23

The Brotherston-Simpson conjecture

Are cyclic proofs and inductive proofs equally powerful?

The situation in arithmetic is now well-understood:

Theorem (Simpson ’11)
Cyclic Arithmetic (CA) is equivalent to Peano Arithmetic (PA).

Theorem (D. ’20)
IΣn+1 and CΣn prove the sameΠn+1 theorems.

What about type theories?

5 / 23

The Brotherston-Simpson conjecture

Are cyclic proofs and inductive proofs equally powerful?

The situation in arithmetic is now well-understood:

Theorem (Simpson ’11)
Cyclic Arithmetic (CA) is equivalent to Peano Arithmetic (PA).

Theorem (D. ’20)
IΣn+1 and CΣn prove the sameΠn+1 theorems.

What about type theories?

5 / 23

The Brotherston-Simpson conjecture

Are cyclic proofs and inductive proofs equally powerful?

The situation in arithmetic is now well-understood:

Theorem (Simpson ’11)
Cyclic Arithmetic (CA) is equivalent to Peano Arithmetic (PA).

Theorem (D. ’20)
IΣn+1 and CΣn prove the sameΠn+1 theorems.

What about type theories?

5 / 23

Outline

1 Cyclic proofs: a Curry-Howard perspective

2 A circular version of Gödel’s T

3 Frommodels to interpretations

4 Conclusions

6 / 23

Church’s simple type theory

Finite types:
σ, τ ::= N | (σ → τ)

• Language: set of typed constants (always including equality=σ at all σ).
• Terms: formed by typed application.
• Theory: set of axioms and rules (always including intensional equality).

Example (Combinatory Algebra)
Language:

Kστ : σ → τ → σ
Sρστ : (ρ → σ → τ) → (ρ → σ) → ρ → τ

Theory:

K x y = x
S x y z = x z (y z)

StandardmodelN:

NN := N
(σ → τ)N := {f : σN → τN}

Interpretations: take equational axioms as definitions left-to-right.

7 / 23

System T

T extends combinatory algebra by recursion cominators:

recσ : σ → (N → σ → σ) → N → σ

and (quantifier-free) axioms and rules:

rec f g 0 = g
rec f g sx = g x (rec f g x)

¬sx = 0
sx = sy ⊃ x = y

φ(0) φ(x) ⊃ φ(sx)
ind

φ(t)

Theorem (Gödel ’41)
T is equiconsistent with Peano Arithmetic.
⇝we can trade off quantifier complexity for abstraction complexity.

Question
Canwe interpret cyclic arithmetic (directly) in a circular version of T?

8 / 23

System T

T extends combinatory algebra by recursion cominators:

recσ : σ → (N → σ → σ) → N → σ

and (quantifier-free) axioms and rules:

rec f g 0 = g
rec f g sx = g x (rec f g x)

¬sx = 0
sx = sy ⊃ x = y

φ(0) φ(x) ⊃ φ(sx)
ind

φ(t)

Theorem (Gödel ’41)
T is equiconsistent with Peano Arithmetic.
⇝we can trade off quantifier complexity for abstraction complexity.

Question
Canwe interpret cyclic arithmetic (directly) in a circular version of T?

8 / 23

System T

T extends combinatory algebra by recursion cominators:

recσ : σ → (N → σ → σ) → N → σ

and (quantifier-free) axioms and rules:

rec f g 0 = g
rec f g sx = g x (rec f g x)

¬sx = 0
sx = sy ⊃ x = y

φ(0) φ(x) ⊃ φ(sx)
ind

φ(t)

Theorem (Gödel ’41)
T is equiconsistent with Peano Arithmetic.
⇝we can trade off quantifier complexity for abstraction complexity.

Question
Canwe interpret cyclic arithmetic (directly) in a circular version of T?

8 / 23

T-terms typed in sequent style

• Each instance of a rule is construed as a constant.
•the map (derivations→ terms) is continuous.

9 / 23

Equational axiomatisation

NB: gives interpretations of constants inN, using meta-level induction.

10 / 23

Coterms and coderivations

We can generalise term trees and derivation trees to non-wellfounded counterparts:

Definition
• coterms are generated coinductively from constants and variables.
• coderivations are generated coinductively from the rules.

NB:The ‘coterm of a coderivation’ is well-defined, thanks to continuity.

A coderivation is regular or circular if it has only finitely many distinct
sub-coderivations.

Semantics: Kleene-Herbrand-Gödel style partial functionals.

11 / 23

Coterms and coderivations

We can generalise term trees and derivation trees to non-wellfounded counterparts:

Definition
• coterms are generated coinductively from constants and variables.
• coderivations are generated coinductively from the rules.

NB:The ‘coterm of a coderivation’ is well-defined, thanks to continuity.

A coderivation is regular or circular if it has only finitely many distinct
sub-coderivations.

Semantics: Kleene-Herbrand-Gödel style partial functionals.

11 / 23

Coterms and coderivations

We can generalise term trees and derivation trees to non-wellfounded counterparts:

Definition
• coterms are generated coinductively from constants and variables.
• coderivations are generated coinductively from the rules.

NB:The ‘coterm of a coderivation’ is well-defined, thanks to continuity.

A coderivation is regular or circular if it has only finitely many distinct
sub-coderivations.

Semantics: Kleene-Herbrand-Gödel style partial functionals.

11 / 23

Example: type 1 completeness of coderivations

Let f : N× Nk → N and write fi(⃗x) := f (i, x⃗).

12 / 23

Example: Turing completeness of regular coderivations

Unbounded search µx(f x = 0) is given byH 0 with:

Hx := cond (f x) x (H sx)

H is computed by the following regular coderivation:

13 / 23

A totality criterion

σ1 is an immediate ancestor of σ2 if they are in the premiss and conclusion, resp.,
and have the ‘same colour’.

Definition (Threads and progress)
• A thread is a maximal path in the graph of immediate ancestry.
• AnN-thread is progressing if it is infinitely often principal for cond.
• A coderivation is progressing if each infinite branch has a progressing
N-thread.

Definition (Circular systems)
CT is the simple type theory that has a symbol for every progressing regular
coderivation, and is axiomatised by all previous equations (over coterms).

• Tn is the restriction of T allowing only types of level n in typing derivations.
• CTn is the restriction of CT allowing only types of level n in typing derivations.

14 / 23

A totality criterion

σ1 is an immediate ancestor of σ2 if they are in the premiss and conclusion, resp.,
and have the ‘same colour’.

Definition (Threads and progress)
• A thread is a maximal path in the graph of immediate ancestry.
• AnN-thread is progressing if it is infinitely often principal for cond.
• A coderivation is progressing if each infinite branch has a progressing
N-thread.

Definition (Circular systems)
CT is the simple type theory that has a symbol for every progressing regular
coderivation, and is axiomatised by all previous equations (over coterms).

• Tn is the restriction of T allowing only types of level n in typing derivations.
• CTn is the restriction of CT allowing only types of level n in typing derivations.

14 / 23

Example: Ackermann-Péter

A(0, y) := y+ 1
A(x + 1, 0) := A(x, 1)

A(x + 1, y+ 1) := A(x, A(x + 1, y))

NB.Not representable in T0!

However:

Question
What is the relative abstraction complexity of functionals in T and CT?

15 / 23

Example: Ackermann-Péter

A(0, y) := y+ 1
A(x + 1, 0) := A(x, 1)

A(x + 1, y+ 1) := A(x, A(x + 1, y))

NB.Not representable in T0! However:

Question
What is the relative abstraction complexity of functionals in T and CT?

15 / 23

Example: Ackermann-Péter

A(0, y) := y+ 1
A(x + 1, 0) := A(x, 1)

A(x + 1, y+ 1) := A(x, A(x + 1, y))

NB.Not representable in T0! However:

Question
What is the relative abstraction complexity of functionals in T and CT?

15 / 23

Progress =⇒ totality

Proposition (Well-definedness)
A progressing coderivation computes a well-defined total functional.

Proof sketch.
• Each rule preserves totality top-down, so preserves non-totality bottom-up.
• ⇝wemay build a leftmost ‘non-total’ infinite branch.
• Assign to a progressingN-thread the least natural numbers witnessing
non-totality of the corresponding coderivations.

• This sequence will be monotone decreasing but cannot converge.

16 / 23

Progress =⇒ totality

Proposition (Well-definedness)
A progressing coderivation computes a well-defined total functional.

Proof sketch.
• Each rule preserves totality top-down, so preserves non-totality bottom-up.
• ⇝wemay build a leftmost ‘non-total’ infinite branch.
• Assign to a progressingN-thread the least natural numbers witnessing
non-totality of the corresponding coderivations.

• This sequence will be monotone decreasing but cannot converge.

16 / 23

Outline

1 Cyclic proofs: a Curry-Howard perspective

2 A circular version of Gödel’s T

3 Frommodels to interpretations

4 Conclusions

17 / 23

Confluence of T

Wemay construe the equations of T and CT as a rewrite system:

Write≈ for reflexive symmetric transitive closure of⇝.

Theorem (Confluence for CT, RCA0)
If s⇝∗ t0 and s⇝∗ t1 then there is some t with t0 ⇝∗ t and t1 ⇝∗ t.

18 / 23

Confluence of T

Wemay construe the equations of T and CT as a rewrite system:

Write≈ for reflexive symmetric transitive closure of⇝.

Theorem (Confluence for CT, RCA0)
If s⇝∗ t0 and s⇝∗ t1 then there is some t with t0 ⇝∗ t and t1 ⇝∗ t.

18 / 23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structureHR on coterms.

In particular, for any CTn-coterm t : τ :

Theorem (RCA0 + IΣn+2)
t ∈ HRτ .

Proof idea.
• Formalise the totality argument wrtHR structure.
• Well-definedness of infinite branch achieved by minimisation principles.
• Logical complexity controlled by arithmetical approximation of progress.

This implies thatHR is a model of CT. In particular for any CTn-coderivation t:

Corollary (RCA0 + IΣn+2)
t is weakly normalising wrt⇝.

19 / 23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structureHR on coterms. In particular, for any CTn-coterm t : τ :

Theorem (RCA0 + IΣn+2)
t ∈ HRτ .

Proof idea.
• Formalise the totality argument wrtHR structure.
• Well-definedness of infinite branch achieved by minimisation principles.
• Logical complexity controlled by arithmetical approximation of progress.

This implies thatHR is a model of CT. In particular for any CTn-coderivation t:

Corollary (RCA0 + IΣn+2)
t is weakly normalising wrt⇝.

19 / 23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structureHR on coterms. In particular, for any CTn-coterm t : τ :

Theorem (RCA0 + IΣn+2)
t ∈ HRτ .

Proof idea.
• Formalise the totality argument wrtHR structure.
• Well-definedness of infinite branch achieved by minimisation principles.
• Logical complexity controlled by arithmetical approximation of progress.

This implies thatHR is a model of CT. In particular for any CTn-coderivation t:

Corollary (RCA0 + IΣn+2)
t is weakly normalising wrt⇝.

19 / 23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structureHR on coterms. In particular, for any CTn-coterm t : τ :

Theorem (RCA0 + IΣn+2)
t ∈ HRτ .

Proof idea.
• Formalise the totality argument wrtHR structure.
• Well-definedness of infinite branch achieved by minimisation principles.
• Logical complexity controlled by arithmetical approximation of progress.

This implies thatHR is a model of CT.

In particular for any CTn-coderivation t:

Corollary (RCA0 + IΣn+2)
t is weakly normalising wrt⇝.

19 / 23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structureHR on coterms. In particular, for any CTn-coterm t : τ :

Theorem (RCA0 + IΣn+2)
t ∈ HRτ .

Proof idea.
• Formalise the totality argument wrtHR structure.
• Well-definedness of infinite branch achieved by minimisation principles.
• Logical complexity controlled by arithmetical approximation of progress.

This implies thatHR is a model of CT. In particular for any CTn-coderivation t:

Corollary (RCA0 + IΣn+2)
t is weakly normalising wrt⇝.

19 / 23

Interpretation into T

NB: all results are arithmetised within fragments of second-order arithmetic.

We can apply well-known program extraction techniques in order to recover an
interpretation of CT into T.

Theorem (Interpretation)
If CTn ⊢ s = t then Tn+1 ⊢ s ≈ t.

Corollary (Computation at type 1)
Any type 1 function representable in CTn is also representable in Tn+1.

20 / 23

Interpretation into T

NB: all results are arithmetised within fragments of second-order arithmetic.

We can apply well-known program extraction techniques in order to recover an
interpretation of CT into T.

Theorem (Interpretation)
If CTn ⊢ s = t then Tn+1 ⊢ s ≈ t.

Corollary (Computation at type 1)
Any type 1 function representable in CTn is also representable in Tn+1.

20 / 23

Outline

1 Cyclic proofs: a Curry-Howard perspective

2 A circular version of Gödel’s T

3 Frommodels to interpretations

4 Conclusions

21 / 23

Other results

By formalising a model of ‘convertibility’ à la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. ThenACA0 proves that t is strongly normalising.

Via a form of cut-elimination and a realisation of the deduction theorem:

Theorem (Converse interpretation)
Tn+1 is interpreted into CTn (over the level n+ 1 theory).

Corollary
Tn+1 and CTn are equiconsistent.

By formalising termination of ‘runs’ along progressing coderivations inACA0, we
recover recursion along progressing coderivations directly in T:

Theorem (Functional equivalence)
CT and T comptue the same functionals, at all types.

22 / 23

Other results

By formalising a model of ‘convertibility’ à la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. ThenACA0 proves that t is strongly normalising.

Via a form of cut-elimination and a realisation of the deduction theorem:

Theorem (Converse interpretation)
Tn+1 is interpreted into CTn (over the level n+ 1 theory).

Corollary
Tn+1 and CTn are equiconsistent.

By formalising termination of ‘runs’ along progressing coderivations inACA0, we
recover recursion along progressing coderivations directly in T:

Theorem (Functional equivalence)
CT and T comptue the same functionals, at all types.

22 / 23

Other results

By formalising a model of ‘convertibility’ à la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. ThenACA0 proves that t is strongly normalising.

Via a form of cut-elimination and a realisation of the deduction theorem:

Theorem (Converse interpretation)
Tn+1 is interpreted into CTn (over the level n+ 1 theory).

Corollary
Tn+1 and CTn are equiconsistent.

By formalising termination of ‘runs’ along progressing coderivations inACA0, we
recover recursion along progressing coderivations directly in T:

Theorem (Functional equivalence)
CT and T comptue the same functionals, at all types.

22 / 23

Other results

By formalising a model of ‘convertibility’ à la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. ThenACA0 proves that t is strongly normalising.

Via a form of cut-elimination and a realisation of the deduction theorem:

Theorem (Converse interpretation)
Tn+1 is interpreted into CTn (over the level n+ 1 theory).

Corollary
Tn+1 and CTn are equiconsistent.

By formalising termination of ‘runs’ along progressing coderivations inACA0, we
recover recursion along progressing coderivations directly in T:

Theorem (Functional equivalence)
CT and T comptue the same functionals, at all types.

22 / 23

Summary and open questions

We interpreted CTn into Tn+1 and vice-versa, and showed various equivalences.
See https://arxiv.org/abs/2012.14421 for details.

Relatedwork:
Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:

• Affine progressing coterms≈ primitive recursive functions (at type 1).
• Progressing coterms≈ primitive recursive functionals (at type 1).

Futurework:
• Proof interpretations from arithmetic to type systems.
[w.i.p. withThomas Powell].

• Extensions by arbitrary inductive definitions.
[w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].

• Cyclic implicit complexity based on ramified recursion.
[w.i.p. with Gianluca Curzi]

Thank you.

23 / 23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CTn into Tn+1 and vice-versa, and showed various equivalences.
See https://arxiv.org/abs/2012.14421 for details.

Relatedwork:
Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:

• Affine progressing coterms≈ primitive recursive functions (at type 1).
• Progressing coterms≈ primitive recursive functionals (at type 1).

Futurework:
• Proof interpretations from arithmetic to type systems.
[w.i.p. withThomas Powell].

• Extensions by arbitrary inductive definitions.
[w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].

• Cyclic implicit complexity based on ramified recursion.
[w.i.p. with Gianluca Curzi]

Thank you.

23 / 23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CTn into Tn+1 and vice-versa, and showed various equivalences.
See https://arxiv.org/abs/2012.14421 for details.

Relatedwork:
Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:

• Affine progressing coterms≈ primitive recursive functions (at type 1).
• Progressing coterms≈ primitive recursive functionals (at type 1).

Futurework:
• Proof interpretations from arithmetic to type systems.
[w.i.p. withThomas Powell].

• Extensions by arbitrary inductive definitions.
[w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].

• Cyclic implicit complexity based on ramified recursion.
[w.i.p. with Gianluca Curzi]

Thank you.

23 / 23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CTn into Tn+1 and vice-versa, and showed various equivalences.
See https://arxiv.org/abs/2012.14421 for details.

Relatedwork:
Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:

• Affine progressing coterms≈ primitive recursive functions (at type 1).
• Progressing coterms≈ primitive recursive functionals (at type 1).

Futurework:
• Proof interpretations from arithmetic to type systems.
[w.i.p. withThomas Powell].

• Extensions by arbitrary inductive definitions.
[w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].

• Cyclic implicit complexity based on ramified recursion.
[w.i.p. with Gianluca Curzi]

Thank you.

23 / 23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CTn into Tn+1 and vice-versa, and showed various equivalences.
See https://arxiv.org/abs/2012.14421 for details.

Relatedwork:
Kuperberg, Pinault & Pous ’21 have also considered a variation of CT-terms:

• Affine progressing coterms≈ primitive recursive functions (at type 1).
• Progressing coterms≈ primitive recursive functionals (at type 1).

Futurework:
• Proof interpretations from arithmetic to type systems.
[w.i.p. withThomas Powell].

• Extensions by arbitrary inductive definitions.
[w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].

• Cyclic implicit complexity based on ramified recursion.
[w.i.p. with Gianluca Curzi]

Thank you.

23 / 23

https://arxiv.org/abs/2012.14421

	Cyclic proofs: a Curry-Howard perspective
	A circular version of Gödel's T
	From models to interpretations
	Conclusions

