A circular version of Godel’s T and its abstraction complexity

Anupam Das
University of Birmingham

Journées 2021 du GT Scalp
Fontainebleau
3'4 November 2021

1/23

Outline

@ Cyclic proofs: a Curry-Howard perspective

2/23

Motivating example: circular typing for Ackermann-Péter

3/23

Motivating example: circular typing for Ackermann-Péter

Consider the functionsI : (N -+ N) - N — NandA : N - N — N given by:

Ifo f1 A0 s
Ifsx = f(Ifx) Asx = I(Ax)

3/23

Motivating example: circular typing for Ackermann-Péter

Consider the functionsI : (N -+ N) - N — NandA : N - N — N given by:

Ifo = f1 A0 = s
Ifsx = f(Ifx) Asx = I(Ax)

Can be written using only base types with ‘circular’ typing:

NN=N"

NN NN=N
cond °

N.N=N

3/23

Motivating example: circular typing for Ackermann-Péter

Consider the functionsI : (N -+ N) - N — NandA : N - N — N given by:

Ifo = f1 A0 = s
Ifsx = f(Ifx) Asx = I(Ax)

Can be written using only base types with ‘circular’ typing:

NN=N"

s

NN NN=N
cond °

N.N=N

® Apparently non-wellfounded.
® Why is the function well-defined?

3/23

Landscape of cyclic proof theory

There are now several distinct communities studying non-wellfounded reasoning.
Some of these include:

Algebra / Type systems Modal logic Predicate logic

Linear logic + u, v p-calculus FOL +ind. dfns.

Kleene Algebra+n,\,/ | PDL & Game logic Arithmetic

NB: formula expressivity increases left-to-right.
Some references:

® Algebra and type systems: [Santocanale '02], [Fortier & Santocanale '13], [Baelde,
Doumane & Saurin’16], [D. & Pous 17, 18], [Kuperberg, Pinault & Pous 21].

® Modal logics: [Niwinski & Walukiewicz *96], [Afshari & Leigh ’17], [Enqvist,
Hansen, Kupke, Marti & Venema '19].

® Predicate logic: [Brotherston & Simpson ’07], [Simpson '17], [Berardi & Tatsuta
’17], [D. "20].

4/23

The Brotherston-Simpson conjecture

Are cyclic proofs and inductive proofs equally powerful?

5/23

The Brotherston-Simpson conjecture

Are cyclic proofs and inductive proofs equally powerful?

The situation in arithmetic is now well-understood:

Theorem (Simpson '11)
Cyclic Arithmetic (CA) is equivalent to Peano Arithmetic (PA).

Theorem (D. ’20)
1Y, 1, and CX,, prove the same I1, 1 theorems.

5/23

The Brotherston-Simpson conjecture

Are cyclic proofs and inductive proofs equally powerful?

The situation in arithmetic is now well-understood:

Theorem (Simpson '11)
Cyclic Arithmetic (CA) is equivalent to Peano Arithmetic (PA).

Theorem (D. ’20)
1Y, 1, and CX,, prove the same I1, 1 theorems.

What about type theories?

5/23

Outline

@ A circular version of Gédel's T

6/23

Church’s simple type theory

Finite types:
o,7 == N | (6 —=71)

® Language: set of typed constants (always including equality =, at all o).
® Terms: formed by typed application.
® Theory: set of axioms and rules (always including intensional equality).

Example (Combinatory Algebra)

Language: Theory:
Ker o=7—0 Kxy = «x
Spor ¢ (poo—=T)o(po0o)op—>T Sxyz = xz(yz)
Standard model 1:
N = N
(c—=n" = {f:0e" ="}

Interpretations: take equational axioms as definitions left-to-right.

7/23

System T

T extends combinatory algebra by recursion cominators:
reco ;0 +(N—o—0)>N—=o
and (quantifier-free) axioms and rules:

recfgo = g —sx =0 _»(0) p(x) D p(sx)
recfgsx = gx(recfgx) sx=syDx=y o(t)

8/23

System T

T extends combinatory algebra by recursion cominators:
reco ;0 +(N—o—0)>N—=o
and (quantifier-free) axioms and rules:

recfgo = g —sx =0 _9(0) p(x) D p(sx)
recfgsx = gx(recfgx) sx=syDx=y o(t)

Theorem (Godel 41)
T is equiconsistent with Peano Arithmetic.

~ we can trade off quantifier complexity for abstraction complexity.

8/23

System T

T extends combinatory algebra by recursion cominators:
reco ;0 +(N—o—0)>N—=o

and (quantifier-free) axioms and rules:

recfgo = g —sx =0 _9(0) p(x) D p(sx)
recfgsx = gx(recfgx) sx=syDx=y o(t)

Theorem (Godel 41)
T is equiconsistent with Peano Arithmetic.

~ we can trade off quantifier complexity for abstraction complexity.

Question
Can we interpret cyclic arithmetic (directly) in a circular version of T?

8/23

T-terms typed in sequent style

00,0, 0 =T dg=T g,0,0 =T d=0 d,o=>T
X wkﬂ entr — cut ————————————
Dypy0,0 =T 0, 0=T 0,0=T =T
g=p 0,0=>T d,0=T
id R
o=0 o,p—>0=>T 0=>0—>T
=71 ,N=r71 c=71 o,Nyo=7
0 s cond = rec, .
=N N = N o,N=r o,N=r1

® Each instance of a rule is construed as a constant.

ethe map (derivations — terms) is continuous.

9/23

Equational axiomatisation

idr = S L
et T . R . cutst¥ = tT(sT)
xtZoryy = tTZyxy - - -

Lst =t
wktZzx = t& y fy :iy(sx))

~ - RtZx = tZxzx
cntrtxx = traxcx
recstZ?0 = s7T condstrZr0 = s
recst@sz = tZz(recstlz) cond stTsz = tZz

NB: gives interpretations of constants in 9, using meta-level induction.

10/23

Coterms and coderivations

We can generalise term trees and derivation trees to non-wellfounded counterparts:

Definition
® coterms are generated coinductively from constants and variables.

® coderivations are generated coinductively from the rules.

NB: The ‘coterm of a coderivatior is well-defined, thanks to continuity.

11/23

Coterms and coderivations

We can generalise term trees and derivation trees to non-wellfounded counterparts:
Definition

® coterms are generated coinductively from constants and variables.

® coderivations are generated coinductively from the rules.
NB: The ‘coterm of a coderivatior is well-defined, thanks to continuity.

A coderivation is regular or circular if it has only finitely many distinct
sub-coderivations.

11/23

Coterms and coderivations

We can generalise term trees and derivation trees to non-wellfounded counterparts:
Definition

® coterms are generated coinductively from constants and variables.

® coderivations are generated coinductively from the rules.
NB: The ‘coterm of a coderivatior is well-defined, thanks to continuity.

A coderivation is regular or circular if it has only finitely many distinct
sub-coderivations.

Semantics: Kleene-Herbrand-Godel style partial functionals.

11/23

Example: type 1 completeness of coderivations

Letf : N x N* — Nand write fi(¥) := f(i, X).

12/23

Example: Turing completeness of regular coderivations

Unbounded search pux(f x = 0) is given by H 0 with:
Hx := cond (fx)x (Hsx)

H is computed by the following regular coderivation:

S cut []
N =N N =N
cut
N=N
id ——— wk —mM8M8M8
V N=N N,N=N
cond
N=N N,N=N
cut °

N =N

13/23

A totality criterion

o' is an immediate ancestor of o* if they are in the premiss and conclusion, resp.,
and have the ‘same colour’.

Definition (Threads and progress)

¢ Athread is a maximal path in the graph of immediate ancestry.
® An N-thread is progressing if it is infinitely often principal for cond.

® A coderivation is progressing if each infinite branch has a progressing
N-thread.

14/23

A totality criterion

o' is an immediate ancestor of o* if they are in the premiss and conclusion, resp.,
and have the ‘same colour’.

Definition (Threads and progress)

¢ Athread is a maximal path in the graph of immediate ancestry.
® An N-thread is progressing if it is infinitely often principal for cond.

® A coderivation is progressing if each infinite branch has a progressing
N-thread.

Definition (Circular systems)

CT is the simple type theory that has a symbol for every progressing regular
coderivation, and is axiomatised by all previous equations (over coterms).

® T, isthe restriction of T allowing only types of level n in typing derivations.

® CT, is the restriction of CT allowing only types of level n in typing derivations.

14/23

Example: Ackermann-Péter

A(0,y) = y+1
Alx+1,0) = A(x,1)
Alx+1,y+1) = A(x,Alx+1,y))

NB. Not representable in To!

15/23

Example: Ackermann-Péter

A(0,y) = y+1
Alx+1,0) = A(x,1)
Alx+1,y+1) = A(x,Alx+1,y))

NB. Not representable in To! However:

=N N,N=N (2) :(3)
T NS N NNV=>N" NNoN®
NN N N=N o N.N,N >N
ﬁMNéN eond N, NN =N

N,N,N = N
N,N= N

cntr

15/23

Example: Ackermann-Péter

A(0,y) = y+1
Alx+1,0) = A(x,1)
Alx+1,y+1) = A(x,Alx+1,y))

NB. Not representable in To! However:

=N N,N=N (2) :(3)
NS N NNV=>N" NNoN®
NN N N=N o N.N.N=>N
Cﬁ&NﬁN cond N,N,.N > N
NN, N=N
TTN.N=N
Question

What is the relative abstraction complexity of functionals in T and CT?

15/23

Progress = totality

Proposition (Well-definedness)
A progressing coderivation computes a well-defined total functional.

16/23

Progress = totality

Proposition (Well-definedness)
A progressing coderivation computes a well-defined total functional.

Proof sketch.
® Each rule preserves totality top-down, so preserves non-totality bottom-up.
® - we may build a leftmost ‘non-total’ infinite branch.

® Assign to a progressing N-thread the least natural numbers witnessing
non-totality of the corresponding coderivations.

® This sequence will be monotone decreasing but cannot converge. O

16/23

Outline

© From models to interpretations

17/23

Confluence of T

We may construe the equations of T and CT as a rewrite system:

idz ~

extZixyy ~ tryxy

wktZax ~ t&

cntrt ¥z ~ tTxx

cut st ~ tT(sa)

LstZy ~ tZ(y(ra)

RtZx ~ tXux

recstx0 ~ s
recst@sy ~ tT(recsty)
condst @0 ~ s&
condstZsy ~ tdy

Write = for reflexive symmetric transitive closure of ~~.

18/23

Confluence of T

We may construe the equations of T and CT as a rewrite system:

idz ~

extZixyy ~ tryxy

wktZax ~ t&

cntrt ¥z ~ tTxx

cut st ~ tT(sa)

LstZy ~ tZ(y(ra)

RtZx ~ tXux

recstx0 ~ s
recst@sy ~ tT(recsty)
condst @0 ~ s&
condstZsy ~ tdy

Write = for reflexive symmetric transitive closure of ~~.

Theorem (Confluence for CT, RCA)
Ifs ~>" toand s ~~™ t; then there is some t with to ~* tandt; ~* t.

18/23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structure HR on coterms.

19/23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structure HR on coterms. In particular, for any CT,-coterm ¢ : 7:

Theorem (RCA, + I, ;)
t € HR,.

19/23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structure HR on coterms. In particular, for any CT,-coterm ¢ : 7:

Theorem (RCA, + I, ;)
t € HR,.

Proofidea.
® Formalise the totality argument wrt HR structure.
® Well-definedness of infinite branch achieved by minimisation principles.

® Logical complexity controlled by arithmetical approximation of progress. [

19/23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structure HR on coterms. In particular, for any CT,-coterm ¢ : 7:

Theorem (RCA, + I, ;)
t € HR,.

Proofidea.
® Formalise the totality argument wrt HR structure.
® Well-definedness of infinite branch achieved by minimisation principles.

® Logical complexity controlled by arithmetical approximation of progress. [

This implies that HR is a model of CT.

19/23

Metamathematics and normalisation

Thanks to confluence, we can recast the model of hereditary recursive operations as
a type structure HR on coterms. In particular, for any CT,-coterm ¢ : 7:

Theorem (RCA, + I, ;)
t € HR,.

Proofidea.
® Formalise the totality argument wrt HR structure.
® Well-definedness of infinite branch achieved by minimisation principles.

® Logical complexity controlled by arithmetical approximation of progress. [

This implies that HR is a model of CT. In particular for any CT,-coderivation ¢:

Corollary (RCA, +1%,,,)

t is weakly normalising wrt ~.

19/23

Interpretation into T

NB: all results are arithmetised within fragments of second-order arithmetic.

We can apply well-known program extraction techniques in order to recover an
interpretation of CT into T.

20/23

Interpretation into T

NB: all results are arithmetised within fragments of second-order arithmetic.

We can apply well-known program extraction techniques in order to recover an
interpretation of CT into T.

Theorem (Interpretation)
IfCT, Fs=tthen Tha Fs~t.

Corollary (Computation at type 1)
Any type 1 function representable in CT, is also representable in T 11.

20/23

Outline

O Conclusions

21/23

Other results

22/23

Other results

By formalising a model of ‘convertibility’ a la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. Then ACA, proves that t is strongly normalising.

22/23

Other results

By formalising a model of ‘convertibility’ a la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. Then ACA, proves that t is strongly normalising.

Via a form of cut-elimination and a realisation of the deduction theorem:

Theorem (Converse interpretation)
Tyy1 is interpreted into CT, (over the level n + 1theory).

Corollary
Tyy1 and CT,, ave equiconsistent.

22/23

Other results

By formalising a model of ‘convertibility’ a la Tait, we obtain:

Theorem (Strong normalisation)
Let t be representable in CT. Then ACA, proves that t is strongly normalising.

Via a form of cut-elimination and a realisation of the deduction theorem:
Theorem (Converse interpretation)

Tyy1 is interpreted into CT, (over the level n + 1theory).

Corollary
Tyy1 and CT,, ave equiconsistent.

By formalising termination of ‘runs’ along progressing coderivations in ACA,, we
recover recursion along progressing coderivations directly in T:

Theorem (Functional equivalence)
CT and T comptue the same functionals, at all types.

22/23

Summary and open questions

23/23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CT, into Ty4; and vice-versa, and showed various equivalences.
Seehttps://arxiv.org/abs/2012.14421 for details.

23/23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CT, into Ty4; and vice-versa, and showed various equivalences.
Seehttps://arxiv.org/abs/2012.14421 for details.

Related work:
Kuperberg, Pinault & Pous 21 have also considered a variation of CT-terms:
e Affine progressing coterms A primitive recursive functions (at type 1).

® Progressing coterms =2 primitive recursive functionals (at type 1).

23/23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CT, into Ty4; and vice-versa, and showed various equivalences.
Seehttps://arxiv.org/abs/2012.14421 for details.

Related work:
Kuperberg, Pinault & Pous 21 have also considered a variation of CT-terms:
e Affine progressing coterms A primitive recursive functions (at type 1).

® Progressing coterms =2 primitive recursive functionals (at type 1).

Future work:

® Proof interpretations from arithmetic to type systems.
[w.i.p. with Thomas Powell].

® Extensions by arbitrary inductive definitions.
[w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].

® Cyclic implicit complexity based on ramified recursion.
[w.i.p. with Gianluca Curzi]

23/23

https://arxiv.org/abs/2012.14421

Summary and open questions

We interpreted CT, into Ty4; and vice-versa, and showed various equivalences.
Seehttps://arxiv.org/abs/2012.14421 for details.

Related work:
Kuperberg, Pinault & Pous 21 have also considered a variation of CT-terms:
e Affine progressing coterms A primitive recursive functions (at type 1).

® Progressing coterms =2 primitive recursive functionals (at type 1).

Future work:

® Proof interpretations from arithmetic to type systems.
[w.i.p. with Thomas Powell].

® Extensions by arbitrary inductive definitions.
[w.i.p. with Lukas Holter Melgaard], cf. also [Berardi & Tatsuta ’18].

® Cyclic implicit complexity based on ramified recursion.
[w.i.p. with Gianluca Curzi]

Thank you.

23/23

https://arxiv.org/abs/2012.14421

	Cyclic proofs: a Curry-Howard perspective
	A circular version of Gödel's T
	From models to interpretations
	Conclusions

