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- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.
- At :={n |V €A n L '} (linear negation).
Linear logic formulas satisfy A = A+L.

Transcendental Syntax (Girard, 2013). Improvements on Gol.
e programs : "Stellar Resolution" (Turing-complete).
e types : formulas of linear logic and more.

e Speaks about the "logic" of a computational model.
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Stellar Resolution
Girard'’s stars and constellations

Constellation @ (n stars)
+c(y) _
= program
s(f(y)) $1U ¢ . )
Diagrams (maximal tilings)
l
—b(f(y)) * Constellation Ex(®)
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.
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Generalised automata. N

Transitions < binary stars [—a(c - w, q), +a(w, q’)].

Run on a word <« tiling/diagram.

Generalised circuits.

Gates (not) «— star [ —c;(x), —not(x, r), +¢;(r)].
1 —— @—»@ Circuit evaluation «— execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing
machines, tile systems, ...
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Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).
e Pre-types A a set of constellations (programs).
e Choose a binary orthogonality L for "correct interaction".

Define Al = {® | V&’ € A, ® L &’} (linear negation / duality).
AlL

Formulas/types : A such that A =
Assembling types: A® B= {®, & &5 | &, € A, &5 € B} 1L
Deriving other connectives : A% B = (AL ® BL)L andA - B =ALl ¥ B.

Various models of linear logic + a logical description of a model of computation.
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(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]
dor Lor ... Log
(Danos-Regnier criterion) d): <I>f o7

Unit testing and specifications.

e Unit testing : a function f is "correct" when f(a;) = b; for some (a;, b;).

e Specifications : a function f is labelled by A when it has some behaviour BH(A).
Transcendental Syntax.

e A constellation @ is correct w.r.t. A when it passes some tests in Tests(A).

e Adequation : ® is correct w.rt. A== & € BH(A) with BH(A) = BH(A)*+. é/8
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L basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

e Previous works of Aubert & Bagnol.
L Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

e P and NP as classes of formulas (Immerman, Fagin).
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Conclusion

A new model of computation : Stellar Resolution.
L Turing-complete, generalised circuit-automata-logic programs.
L Speaks about (unit) testing with orthogonality.

L, Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.
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