Transcendental Syntax
A toolbox for the interface logic-computation

ooo

LIPN - Université Sorbonne Paris Nord

Boris Eng

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

e programs : pure A-calculus t,uii=x|Ax.t] tu.

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

e programs : pure A-calculus t,uii=x|Ax.t] tu.

e types:simple types assetof termst: A<=t € A.

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

e programs : pure A-calculus t,uii=x|Ax.t] tu.

e types:simple types assetof termst: A<=t € A.

- base type o := SN (set of terminating programs).

1/8

Realisability theory

Realisability/logical relations. [Riba, LICS 2007].

e programs : pure A-calculus t,uii=x|Ax.t] tu.

e types:simple types assetof termst: A<=t € A.

- base type o := SN (set of terminating programs).
- A=>B={t|VueA tueB)}

1/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).

e types : formulas of linear logic.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.
- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.

- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.
- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.
- At :={n |V €A n L '} (linear negation).

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.
- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.
- At :={n |V €A n L '} (linear negation).
Linear logic formulas satisfy A = A+L.

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.
- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.
- At :={n |V €A n L '} (linear negation).
Linear logic formulas satisfy A = A+L.

Transcendental Syntax (Girard, 2013). Improvements on Gol.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.
- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.
- At :={n |V €A n L '} (linear negation).
Linear logic formulas satisfy A = A+L.

Transcendental Syntax (Girard, 2013). Improvements on Gol.

e programs : "Stellar Resolution" (Turing-complete).

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.
- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.
- At :={n |V €A n L '} (linear negation).
Linear logic formulas satisfy A = A+L.

Transcendental Syntax (Girard, 2013). Improvements on Gol.
e programs : "Stellar Resolution" (Turing-complete).

e types : formulas of linear logic and more.

2/8

From Geometry of Interaction to Transcendental Syntax

Geometry of Interaction and Ludics (Girard). Reconstruction of logic from computation.

e programs : some mathematical representation of proofs(-nets).
e types : formulas of linear logic.
- A=>B:={n|Vn’ €A cut(m n’) €B)} (linear implication).
- 1l n < cut(nm, n’) satisfies some P.
- At :={n |V €A n L '} (linear negation).
Linear logic formulas satisfy A = A+L.

Transcendental Syntax (Girard, 2013). Improvements on Gol.
e programs : "Stellar Resolution" (Turing-complete).
e types : formulas of linear logic and more.

e Speaks about the "logic" of a computational model.

2/8

Stellar Resolution
Girard'’s stars and constellations

+a(x) —a(f
3(x) -- .

—b(x)

3/8

Stellar Resolution
Girard'’s stars and constellations

3(x) -a.(\x) o = \(fc.()’)

3/8

Stellar Resolution
Girard'’s stars and constellations

5(f(y)) -a-(\x\)__,/“‘_?\(f- +(y)

—b(f(y)) *

3/8

Stellar Resolution
Girard'’s stars and constellations

+c(y)
s(f(y)) - ¢1U ¢ .

—b(f(y)) *

3/8

Stellar Resolution
Girard'’s stars and constellations

s(f(y)) -

$1U ¢2

—b(f(y)) *

+c(y)

Constellation ® (n stars)
= program
l
Diagrams (maximal tilings)
l
Constellation Ex(®)
= normal form

3/8

Stellar Resolution
Girard'’s stars and constellations

s(f(y)) -

$1U ¢2

—b(f(y)) *

+c(y)

Constellation ® (n stars)
= program
l
Diagrams (maximal tilings)
l
Constellation Ex(®)
= normal form

3/8

Stellar Resolution
Girard'’s stars and constellations

Constellation @ (n stars)
+c(y) _
= program
s(f(y)) $1U ¢ .)
Diagrams (maximal tilings)
l
—b(f(y)) * Constellation Ex(®)
= normal form

A reformulation of Robinson’s first-order resolution / Query-free logic programming.

3/8

Stellar Resolution
Automata and circuits unified

0,1

0
5 start @
Generalised automata.

4/8

Stellar Resolution
Automata and circuits unified

0,1

0
. start @ 61\
Generalised automata. N

Transitions < binary stars [—a(c - w, q), +a(w, q’)].
Run on a word <« tiling/diagram.

(=)

4/8

Stellar Resolution
Automata and circuits unified

0,1

0
. start *@ th\
Generalised automata. N

Transitions < binary stars [—a(c - w, q), +a(w, q’)].
Run on a word <« tiling/diagram.

Generalised circuits.

e

(=)

4/8

Stellar Resolution
Automata and circuits unified

0,1

0 0
. start @ th\ @
Generalised automata. N

Transitions < binary stars [—a(c - w, q), +a(w, q’)].

Run on a word <« tiling/diagram.

Generalised circuits.

Gates (not) «— star [—c;(x), —not(x, r), +¢;(r)].
1 —— @—»@ Circuit evaluation «— execution of constellation.

4/8

Stellar Resolution
Automata and circuits unified

0,1

0 0
. start *@ th\ @
Generalised automata. N

Transitions < binary stars [—a(c - w, q), +a(w, q’)].

Run on a word <« tiling/diagram.

Generalised circuits.

Gates (not) «— star [—c;(x), —not(x, r), +¢;(r)].
1 —— @—»@ Circuit evaluation «— execution of constellation.

Information flow inside a structure : pushdown/tree/alternating automata, Turing
machines, tile systems, ...

4/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).

e Pre-types A a set of constellations (programs).

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).

e Pre-types A a set of constellations (programs).

e Choose a binary orthogonality L for "correct interaction".

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).
e Pre-types A a set of constellations (programs).
e Choose a binary orthogonality L for "correct interaction".

e Define AL = {® | V®’' €A & L &’} (linear negation / duality).

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).
e Pre-types A a set of constellations (programs).
e Choose a binary orthogonality L for "correct interaction".
e Define AL = {® | V®’' €A & L &’} (linear negation / duality).

e Formulas/types : A such that A = AL+,

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).

Pre-types A a set of constellations (programs).

Choose a binary orthogonality L for "correct interaction".

Define Al = {® | V&’ € A, ® L &’} (linear negation / duality).

Formulas/types : A such that A = ALL.
Assembling types: A® B= {®, & &5 | &, € A, &5 € B} 1L

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).

Pre-types A a set of constellations (programs).

Choose a binary orthogonality L for "correct interaction".
Define Al = {® | V&’ € A, ® L &’} (linear negation / duality).
Formulas/types : A such that A = ALL.

Assembling types: A® B= {®, & &5 | &, € A, &5 € B} 1L

Deriving other connectives : A% B = (AL ® BL)L andA - B =ALl ¥ B.

5/8

Realisability and interactive typing

We have a new model of computation. What can we do ?

Reconstructing linear logic (Transcendental Syntax).
e Pre-types A a set of constellations (programs).
e Choose a binary orthogonality L for "correct interaction".

Define Al = {® | V&’ € A, ® L &’} (linear negation / duality).
AlL

Formulas/types : A such that A =
Assembling types: A® B= {®, & &5 | &, € A, &5 € B} 1L
Deriving other connectives : A% B = (AL ® BL)L andA - B =ALl ¥ B.

Various models of linear logic + a logical description of a model of computation.

5/8

Vague ideas of applications

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Danos-Regnier criterion) <I>: <I>f o7

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]

(Danos-Regnier criterion) <I>: <I>f o7

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]

J_DR J_DR R J_DR
(Danos-Regnier criterion) <I>: <I>f o7

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]
dor Lor ... Log
(Danos-Regnier criterion) <I>: <I>f o7

Unit testing and specifications.

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]
dor Lor ... Log
(Danos-Regnier criterion) <I>: <I>f o7

Unit testing and specifications.

e Unit testing : a function f is "correct" when f(a;) = b; for some (a;, b;).

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]
dor Lor ... Log
(Danos-Regnier criterion) <I>: <I>f o7

Unit testing and specifications.

e Unit testing : a function f is "correct" when f(a;) = b; for some (a;, b;).

e Specifications : a function f is labelled by A when it has some behaviour BH(A).

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]
dor Lor ... Log
(Danos-Regnier criterion) <I>: <I>f o7

Unit testing and specifications.

e Unit testing : a function f is "correct" when f(a;) = b; for some (a;, b;).

e Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]
dor Lor ... Log
(Danos-Regnier criterion) <I>: <I>f o7

Unit testing and specifications.

e Unit testing : a function f is "correct" when f(a;) = b; for some (a;, b;).

e Specifications : a function f is labelled by A when it has some behaviour BH(A).

Transcendental Syntax.

e A constellation @ is correct w.r.t. A when it passes some tests in Tests(A).

6/8

(Unit) testing in logic

Generalising the correctness criterion

Transcendental Syntax. A constellation @ is a proof of A when :

(Tested constellation) 0] (o] (o]
dor Lor ... Log
(Danos-Regnier criterion) d): <I>f o7

Unit testing and specifications.

e Unit testing : a function f is "correct" when f(a;) = b; for some (a;, b;).

e Specifications : a function f is labelled by A when it has some behaviour BH(A).
Transcendental Syntax.

e A constellation @ is correct w.r.t. A when it passes some tests in Tests(A).

e Adequation : ® is correct w.rt. A== & € BH(A) with BH(A) = BH(A)*+. é/8

Atypic typing and complexity

Typing outside A-calculus. Automata, logic programs, circuits, tile systems, ...

7/8

Atypic typing and complexity

Typing outside A-calculus. Automata, logic programs, circuits, tile systems, ...
L basically information flow in a structure.

7/8

Atypic typing and complexity

Typing outside A-calculus. Automata, logic programs, circuits, tile systems, ...
L basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

7/8

Atypic typing and complexity

Typing outside A-calculus. Automata, logic programs, circuits, tile systems, ...
L basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

e Previous works of Aubert & Bagnol.

7/8

Atypic typing and complexity

Typing outside A-calculus. Automata, logic programs, circuits, tile systems, ...
L basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

e Previous works of Aubert & Bagnol.
L Capture of classes P and (N)L (with pointer machines).

7/8

Atypic typing and complexity

Typing outside A-calculus. Automata, logic programs, circuits, tile systems, ...
L basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

e Previous works of Aubert & Bagnol.
L Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

7/8

Atypic typing and complexity

Typing outside A-calculus. Automata, logic programs, circuits, tile systems, ...
L basically information flow in a structure.

Implicit Computational Complexity (ICC). Capture classes with restrictions on
constellations.

e Previous works of Aubert & Bagnol.
L Capture of classes P and (N)L (with pointer machines).

Descriptive complexity. Capture classes with formulas.

e P and NP as classes of formulas (Immerman, Fagin).

7/8

Conclusion

A new model of computation : Stellar Resolution.

8/8

Conclusion

A new model of computation : Stellar Resolution.
L Turing-complete, generalised circuit-automata-logic programs.

8/8

Conclusion

A new model of computation : Stellar Resolution.
L Turing-complete, generalised circuit-automata-logic programs.
L Speaks about (unit) testing with orthogonality.

8/8

Conclusion

A new model of computation : Stellar Resolution.

L Turing-complete, generalised circuit-automata-logic programs.

L, Speaks about (unit) testing with orthogonality.

L, Speaks about the behaviour/specification of programs with realisability types.

8/8

Conclusion

A new model of computation : Stellar Resolution.
L Turing-complete, generalised circuit-automata-logic programs.
L Speaks about (unit) testing with orthogonality.

L, Speaks about the behaviour/specification of programs with realisability types.

Thank you for listening to my talk.

8/8

	Vague ideas of applications

