A concrete model of finitary/infinitary linear logic with fixed-points

GT Scalp 2021

Thomas Ehrhard, Farzad Jafarrahmani, Alexis Saurin

IRIF, CNRS and Université de Paris

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-uniform totality spaces

Finitary linear logic with fiexed points (μLL)

Infinitary linear logic with fixed-points (μLL_{∞})

A denotational model of μLL_∞

Non-uniform totality spaces

Given a set E, and let us take $\mathcal{U} \subseteq \mathcal{P}(E)$. We define:

$$\mathcal{U}^{\perp} = \{ u' \subseteq E \mid \forall u \in \mathcal{U}(u \cap u' \neq \emptyset) \}$$

NUTS X: A pair $(|X|, \mathcal{T}X)$ such that |X| is a set, (the web of X), and $(\mathcal{T}X)^{\perp\perp} = \mathcal{T}X$ (totality candidate) wehre $\mathcal{T}X \subseteq \mathcal{P}(|X|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Notation: $Tot(X) = \{T \subseteq \mathcal{P}(X) \mid (T)^{\perp \perp} = T\}$

Non-uniform totality spaces

Given a set E, and let us take $\mathcal{U} \subseteq \mathcal{P}(E)$. We define:

$$\mathcal{U}^{\perp} = \{ u' \subseteq E \mid \forall u \in \mathcal{U}(u \cap u' \neq \emptyset) \}$$

NUTS X: A pair $(|X|, \mathcal{T}X)$ such that

• $(\mathcal{T}X)^{\perp\perp} = \mathcal{T}X$ (totality candidate) wehre $\mathcal{T}X \subseteq \mathcal{P}(|X|)$

An example: $N = (\mathbb{N}, U)$ where U is set of all infinite subsets of \mathbb{N} .

$$U^{\perp} = \{ u \subseteq \mathbb{N} \mid \mathbb{N} \setminus u \text{ is finite} \}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Characterization of bi-orthogonality

Let $U \subseteq \mathcal{P}(E)$, then $(U)^{\perp \perp} = \uparrow U = \{ v \subseteq E \mid \exists u \in U \ (u \subseteq v) \}$

Tensor product of two NUTS

Given two NUTS $A_i = (|A_i|, \mathcal{T}A_i)$ $A_1 \otimes A_2 := (|A_1 \otimes A_2|, \mathcal{T}(A_1 \otimes A_2))$ where

 $|A_1 \otimes A_2| = |A_1| \times |A_2|$

 $\mathcal{T}(A_1 \otimes A_2) = \uparrow \{u_1 \otimes u_2 \mid u_i \in \mathcal{T}A_i\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tensor product of two NUTS

Given two NUTS $A_i = (|A_i|, \mathcal{T}A_i)$ $A_1 \otimes A_2 := (|A_1 \otimes A_2|, \mathcal{T}(A_1 \otimes A_2))$ where

 $|A_1\otimes A_2|=|A_1|\times |A_2|$

$$\mathcal{T}(A_1 \otimes A_2) = \uparrow \{ u_1 \otimes u_2 \mid u_i \in \mathcal{T}A_i \}$$

Unit of tensor product:

 $1 = (\{*\}, \{\{*\}\})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cartesian product of two NUTS

Given two NUTS $A_i = (|A_i|, \mathcal{T}A_i)$ $A_1 \& A_2 = (|A_1 \& A_2|, \mathcal{T}(A_1 \& A_2))$ where $|A_1 \& A_2| = \{1\} \times |A_1| \cup \{2\} \times |A_2|$

 $\mathcal{T}(A_1 \& A_2) = \{ u \subseteq |A_1 \& A_2| \mid \pi_i(u) \in \mathcal{T}A_i \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cartesian product of two NUTS

Given two NUTS $A_i = (|A_i|, \mathcal{T}A_i)$ $A_1 \& A_2 = (|A_1 \& A_2|, \mathcal{T}(A_1 \& A_2))$ where

$$|A_1 \& A_2| = \{1\} \times |A_1| \cup \{2\} \times |A_2|$$

$$\mathcal{T}(A_1 \& A_2) = \{ u \subseteq |A_1 \& A_2| \mid \pi_i(u) \in \mathcal{T}A_i \}$$

Unit of cartesian product:

 $T = (\emptyset, \{\emptyset\})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exponentials

Given a NUTS $A = (|A|, \mathcal{T}A)$ $|A = (|!A|, \mathcal{T}(!A))$ where

 $||A| = \mathcal{M}_{fin}(|A|)$

 $\mathcal{T}(!A) = \uparrow \{\mathcal{M}_{fin}(u) \mid u \in \mathcal{T}A\}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Dual of a NUTS

Given a NUTS
$$A = (|A|, \mathcal{T}A)$$

 $A^{\perp} = (|A^{\perp}|, \mathcal{T}(A^{\perp}))$ where

$$|A^{\perp}| = |A|$$
 $\mathcal{T}(A^{\perp}) = (\mathcal{T}A)^{\perp}$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Dual of a NUTS

Given a NUTS $A = (|A|, \mathcal{T}A) A^{\perp} = (|A^{\perp}|, \mathcal{T}(A^{\perp}))$ where

 $|A^{\perp}| = |A|$

 $\mathcal{T}(A^{\perp}) = (\mathcal{T}A)^{\perp}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So, one can define: dual of \otimes "=" \Im dual of & "=" \oplus

The category **NUTS**

Object: NUTS

Morphism:

 $\mathbf{NUTS}(A, B) = \{ f \subseteq |A| \times |B| \mid \forall u \in \mathcal{T}A \ (f.u \in \mathcal{T}B) \}$ where $f.u = \{ y \in |B| \mid \exists x \in u \ (x, y) \in f \}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The category **NUTS**

Object: NUTS

Morphism:

 $\mathbf{NUTS}(A, B) = \{ f \subseteq |A| \times |B| \mid \forall u \in \mathcal{T}A \ (f.u \in \mathcal{T}B) \}$ where $f.u = \{ y \in |B| \mid \exists x \in u \ (x, y) \in f \}$

Example: $N = (\mathbb{N}, U)$ where

$$U = \{ v \subseteq \mathbb{N} \mid u \neq \emptyset \}$$

Then

$$\begin{split} \mathsf{NUTS}(\mathsf{N},\mathsf{N}) &= \{ f \subseteq \mathbb{N} \times \mathbb{N} \mid \forall u \subseteq \mathbb{N} \ (u \neq \emptyset \Rightarrow f.u \neq \emptyset) \} \\ &= \{ f \subseteq \mathbb{N} \times \mathbb{N} \mid \forall n \exists m \text{ s.t } (n,m) \in f \} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Variable non-uniform totality spaces (VNUTS)

A VNUTS $\mathbb E$ is a pair $(|\mathbb E|,\mathcal T\mathbb E)$ such that

- |E|: REL → REL is a functor such that it is monotonic and continuous (both on objects and on morphisms)
- $\mathcal{T}\mathbb{E}$ is an operation on **NUTS** such that

$\mathcal{T}\mathbb{E}((|X|,\mathcal{T}X))\in\mathsf{Tot}(|\mathbb{E}|(|X|))$

For any $f \in \mathbf{NUTS}(A, B)$,

 $|\mathbb{E}|(f) \in \mathsf{NUTS}((|\mathbb{E}|(|A|), \mathcal{T}\mathbb{E}(A)), (|\mathbb{E}|(|B|), \mathcal{T}\mathbb{E}(B)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fact: Any VNUTS induces a functor **NUTS** \rightarrow **NUTS**.

Variable non-uniform totality spaces (VNUTS)

A VNUTS $\mathbb E$ is a pair $(|\mathbb E|,\mathcal T\mathbb E)$ such that

- |E|: REL → REL is a functor such that it is monotonic and continuous (both on objects and on morphisms) (REL is the category of sets and relations)
- $\mathcal{T}\mathbb{E}$ is an operation on **NUTS** such that

 $\mathcal{T}\mathbb{E}((|X|,\mathcal{T}X))\in\mathsf{Tot}(|\mathbb{E}|(|X|))$

For any $f \in \mathbf{NUTS}(A, B)$,

 $|\mathbb{E}|(f) \in \mathsf{NUTS}((|\mathbb{E}|(|A|), \mathcal{T}\mathbb{E}(A)), (|\mathbb{E}|(|B|), \mathcal{T}\mathbb{E}(B)))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fact: Any VNUTS induces a functor **NUTS** \rightarrow **NUTS**.

Variable non-uniform totality spaces (VNUTS)

A VNUTS $\mathbb E$ is a pair $(|\mathbb E|,\mathcal T\mathbb E)$ such that

- |E|: REL → REL is a functor such that it is monotonic and continuous (both on objects and on morphisms) (REL is the category of sets and relations)
- $\mathcal{T}\mathbb{E}$ is an operation on **NUTS** such that

 $\mathcal{T}\mathbb{E}((|X|,\mathcal{T}X))\in\mathsf{Tot}(|\mathbb{E}|(|X|))$

For any $f \in \mathbf{NUTS}(A, B)$,

 $|\mathbb{E}|(f) \in \mathsf{NUTS}((|\mathbb{E}|(|A|), \mathcal{T}\mathbb{E}(A)), (|\mathbb{E}|(|B|), \mathcal{T}\mathbb{E}(B)))$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Fact: Any VNUTS induces a functor **NUTS** \rightarrow **NUTS**.

Fixed points of VNUTS

Let us say $\mathcal{E} : \mathbf{NUTS} \to \mathbf{NUTS}$ is the induced functor from VNUTS $\mathbb{E} : \mathbb{E} : \mathbf{NUTS} \to \mathbf{NUTS}$. $\mu \mathbb{E} = (|\mu \mathbb{E}|, \mathcal{T}(\mu \mathbb{E}))$ where

$\mu \mathbb{E} = \mathsf{The}$ initial algebra of the functor $\mathcal E$

The existence of initial/final algebra is derived form a result in 1

 $^{^{1}}$ M. Wand, Fixed-Point Constructions in Order-Enriched Categories. $a \rightarrow a = 0 \circ 0 \circ 0$

Overview

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Non-uniform totality spaces

Finitary linear logic with fiexed points (μLL)

Infinitary linear logic with fixed-points (μLL_∞)

A denotational model of μLL_∞

Formulas and Inference rules of μLL based on ²

$A, B, \ldots := 1 \mid 0 \mid \bot \mid \top \mid A \oplus B \mid A \otimes B \mid A \otimes B \mid A \otimes B \mid A ?? B \mid ?A \mid !B \mid X \mid \mu X.F \mid \nu X.F$

 $(\mu X.F)^{\perp} = \nu X.(F^{\perp})$

Inference rules of μLL are the one for LL plus

$$\frac{\vdash \Gamma, A[\mu X.A/X]}{\vdash \Gamma, \mu X.A} \mu \qquad \frac{\vdash ?\Gamma, B^{\perp}, A[B/X]}{\vdash ?\Gamma, B^{\perp}, \nu X.A} \nu - \textit{rec}$$

An instance of $\nu - rec$ when $\nu X.A = nat^{\perp}$ where $nat = \mu X.(1 \oplus X)$:

$$\frac{\vdash ?\Gamma, B \vdash ?\Gamma, B, B^{\perp}}{\vdash ?\Gamma, B, \perp \& B^{\perp}} \\ \frac{\vdash ?\Gamma, B, \perp \& B^{\perp}}{\vdash ?\Gamma, B, \operatorname{nat}^{\perp}} \nu - \operatorname{rec}$$

The ? context of the $\nu - \textit{rec}$ rule has not appeared in the original system ³.

Overview

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Non-uniform totality spaces

Finitary linear logic with fiexed points (μLL)

Infinitary linear logic with fixed-points (μLL_{∞})

A denotational model of μLL_∞

μLL_∞ syntax based on 4

 $A, B, \ldots := 1 \mid 0 \mid \bot \mid \top \mid A \oplus B \mid A \otimes B \mid A \otimes B \mid A \otimes B \mid A ?? B \mid ?A \mid !B \mid X \mid \mu X.F \mid \nu X.F$

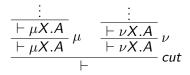
A possibly infinite tree, generated by LL rules plus two following rules:

$$\frac{\vdash \Gamma, \mathcal{A}[\mu X. \mathcal{A}/X]}{\vdash \Gamma, \mu X. \mathcal{A}} \mu \qquad \frac{\vdash \Gamma, \mathcal{A}[\nu X. \mathcal{A}/X]}{\vdash \Gamma, \nu X. \mathcal{A}} \nu$$

Example: nat = $\mu X.(1 \oplus X)$ (nat^{\perp} = $\nu X.(\perp \& X)$):

⁴David Baelde, Amina Doumane, Alexis Saurin: Infinitary Proof Theory: the Multiplicative Additive Case.

But...



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Validity criteria based on ⁵:

There is a validity criteria to distinguish valid proof from the ordinary ones.

⁵David Baelde, Amina Doumane, Alexis Saurin: Infinitary Proof Theory: the Multiplicative Additive Case.

Overview

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Non-uniform totality spaces

Finitary linear logic with fiexed points (μLL)

Infinitary linear logic with fixed-points (μLL_{∞})

A denotational model of μLL_∞

NUTS as a denotational model of μLL_{∞}

A formula $A(X) \mapsto A$ VNUTS $\llbracket A \rrbracket_X : \mathsf{NUTS} \to \mathsf{NUTS}$.

Interpretation of proofs:

The interpretation of LL inference rules in **NUTS** is same as their interpretation in **REL**.

Let us take π as a possibly infinite proof in μLL_{∞} : $[\![\pi]\!]$ = union of the interpretation of all finite approximation. (More elegant way in ⁶)

Theorem: If π and π' are μLL_{∞} proofs of Γ and π reduces to π' by the cut-elimination rules of μLL_{∞} , then $[\![\pi]\!] = [\![\pi']\!]$.

⁶Denis Kuperberg, Laureline Pinault, Damien Pous. Cyclic Proofs, System T, and the Power of Contraction

An example

A syntatic-free proof that any term of booleans has a defined boolean value true or false

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consider $1 \oplus 1$ (The type of booleans). $\llbracket 1 \oplus 1 \rrbracket = (\{(1, \star), (2, \star)\}, \mathcal{T}\llbracket 1 \oplus 1 \rrbracket)$ where $\mathcal{T}(\llbracket 1 \oplus 1 \rrbracket) = \mathcal{P}(|\llbracket 1 \oplus 1 \rrbracket|) \setminus \emptyset$

For any proof π of $1 \oplus 1$, we have $[\![\pi]\!] \in \mathcal{T}[\![1 \oplus 1]\!]$. Hence $[\![\pi]\!] \neq \emptyset$. Validity implies totality

Theorem: If π is a valid proof of the sequent $\vdash \Gamma$, then $\llbracket \pi \rrbracket \in \mathcal{T}\llbracket \Gamma \rrbracket$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Validity implies totality

Theorem: If π is a valid proof of the sequent $\vdash \Gamma$, then $\llbracket \pi \rrbracket \in \mathcal{T}\llbracket \Gamma \rrbracket$.

The proof is similar to the proof of soundness of $LKID^{\omega}$ in ⁷. However:

The system is classical logic with inductive definitions and the proof is for a Tarskian semantic.

We need to adapt the proof in two aspects:

considering μLL_{∞} instead of \textit{LKID}^{ω} ,

and deal with the denotational semantic instead of Tarskian semantics.

Adapation for $\mu LL_\infty:$ somehow done in 8

So, basically, the main point of this proof is adapting a Tarskian soundness theorem to a denotational semantic soundness.

⁷James Brotherston.Sequent Calculus Proof Systems for Inductive Def-initions. PhD thesis, University of Edinburgh, November 2006.

⁸Amina Doumane. On the infinitary proof theory of logics with fixedpoints. PhD thesis, Paris Diderot University, 2017. $\Box \rightarrow \langle \Box \rangle + \langle \Box \rangle +$

Current and future work

- Working on a polarized calculus which corresponds µLL, and its categorical semantic.
- Categorical semantic of μLL_{∞} .
- Comparing the interpretation of proofs in different models such as coherence spaces, coherence spaces with totality, finiteness space, NUTS, REL,
- Connections between type theory with (co)inductive definitions and µLL.

There are basically following styles for the fixpoints rules in the literature:

- General fixpoint with the guarded conditions.
- The elimination rule community.
- The Park's rule (maybe the sequent calculus version of the elimination rule for the propositional part?).