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Overview

Non-uniform totality spaces

Finitary linear logic with fiexed points (µLL)

Infinitary linear logic with fixed-points (µLL∞)

A denotational model of µLL∞



Non-uniform totality spaces

Given a set E , and let us take U ⊆ P(E ).
We define:

U⊥ = {u′ ⊆ E | ∀u ∈ U(u ∩ u′ ̸= ∅)}

NUTS X : A pair (|X |, T X ) such that

▶ |X | is a set, (the web of X ), and

▶ (T X )⊥⊥ = T X (totality candidate) wehre T X ⊆ P(|X |)

Notation: Tot(X ) = {T ⊆ P(X ) | (T )⊥⊥ = T}



Non-uniform totality spaces

Given a set E , and let us take U ⊆ P(E ).
We define:

U⊥ = {u′ ⊆ E | ∀u ∈ U(u ∩ u′ ̸= ∅)}

NUTS X : A pair (|X |, T X ) such that

▶ |X | is a set, (the web of X ), and

▶ (T X )⊥⊥ = T X (totality candidate) wehre T X ⊆ P(|X |)

An example: N = (N,U) where U is set of all infinite subsets of N.

U⊥ = {u ⊆ N | N\u is finite}



Characterization of bi-orthogonality

Let U ⊆ P(E ), then (U)⊥⊥ =↑ U = {v ⊆ E | ∃u ∈ U (u ⊆ v)}



Tensor product of two NUTS

Given two NUTS Ai = (|Ai |, T Ai )
A1 ⊗ A2 := (|A1 ⊗ A2|, T (A1 ⊗ A2)) where

|A1 ⊗ A2| = |A1| × |A2|

T (A1 ⊗ A2) =↑ {u1 ⊗ u2 | ui ∈ T Ai}



Tensor product of two NUTS

Given two NUTS Ai = (|Ai |, T Ai )
A1 ⊗ A2 := (|A1 ⊗ A2|, T (A1 ⊗ A2)) where

|A1 ⊗ A2| = |A1| × |A2|

T (A1 ⊗ A2) =↑ {u1 ⊗ u2 | ui ∈ T Ai}

Unit of tensor product:

1 = ({∗}, {{∗}})



Cartesian product of two NUTS

Given two NUTS Ai = (|Ai |, T Ai )
A1 & A2 = (|A1 & A2|, T (A1 & A2)) where

|A1 & A2| = {1} × |A1| ∪ {2} × |A2|

T (A1 & A2) = {u ⊆ |A1 & A2| | πi (u) ∈ T Ai}



Cartesian product of two NUTS

Given two NUTS Ai = (|Ai |, T Ai )
A1 & A2 = (|A1 & A2|, T (A1 & A2)) where

|A1 & A2| = {1} × |A1| ∪ {2} × |A2|

T (A1 & A2) = {u ⊆ |A1 & A2| | πi (u) ∈ T Ai}

Unit of cartesian product:

T = (∅, {∅})



Exponentials

Given a NUTS A = (|A|, T A)
!A = (|!A|, T (!A)) where

|!A| = Mfin(|A|)

T (!A) =↑ {Mfin(u) | u ∈ T A}



Dual of a NUTS

Given a NUTS A = (|A|, T A)
A⊥ = (|A⊥|, T (A⊥)) where

|A⊥| = |A|

T (A⊥) = (T A)⊥



Dual of a NUTS

Given a NUTS A = (|A|, T A) A⊥ = (|A⊥|, T (A⊥)) where

|A⊥| = |A|

T (A⊥) = (T A)⊥

So, one can define:
dual of ⊗ “=” `
dual of & “=” ⊕



The category NUTS

Object: NUTS

Morphism:

NUTS(A,B) = {f ⊆ |A| × |B| | ∀u ∈ T A (f .u ∈ T B)}

where f .u = {y ∈ |B| | ∃x ∈ u (x , y) ∈ f }



The category NUTS

Object: NUTS

Morphism:

NUTS(A,B) = {f ⊆ |A| × |B| | ∀u ∈ T A (f .u ∈ T B)}

where f .u = {y ∈ |B| | ∃x ∈ u (x , y) ∈ f }

Example: N = (N,U) where

U = {v ⊆ N | u ̸= ∅}

Then

NUTS(N,N) = {f ⊆ N× N | ∀u ⊆ N (u ̸= ∅ ⇒ f .u ̸= ∅)}
= {f ⊆ N× N | ∀n ∃m s.t (n,m) ∈ f }



Variable non-uniform totality spaces (VNUTS)

A VNUTS E is a pair (|E|, T E) such that

▶ |E| : REL → REL is a functor such that it is monotonic and
continuous (both on objects and on morphisms)
(REL is the category of sets and relations)

▶ T E is an operation on NUTS such that

T E((|X |, T X )) ∈ Tot(|E|(|X |))

▶ For any f ∈ NUTS(A,B),

|E|(f ) ∈ NUTS((|E|(|A|), T E(A)), (|E|(|B|), T E(B)))

Fact: Any VNUTS induces a functor NUTS → NUTS.
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Fixed points of VNUTS

Let us say E : NUTS → NUTS is the induced functor from
VNUTS E : E : NUTS → NUTS.
µE = (|µE|, T (µE)) where

µE = The initial algebra of the functor E

The existence of initial/final algebra is derived form a result in 1

1M. Wand, Fixed-Point Constructions in Order-Enriched Categories.
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Formulas and Inference rules of µLL based on 2

A,B, . . . := 1 | 0 | ⊥ | ⊤ | A⊕ B | A⊗ B | A& B | A` B | ?A | !B
| X | µX .F | νX .F

(µX .F )⊥ = νX .(F⊥)

2D. Baelde, Least and Greatest Fixed Points in Linear Logic.



Inference rules of µLL are the one for LL plus

⊢ Γ,A[µX .A/X ]
µ

⊢ Γ, µX .A

⊢ ?Γ,B⊥,A[B/X ]
ν − rec

⊢ ?Γ,B⊥, νX .A

An instance of ν − rec when νX .A = nat⊥ where
nat = µX .(1⊕ X ):

⊢ ?Γ,B ⊢ ?Γ,B,B⊥

⊢ ?Γ,B,⊥& B⊥
ν − rec

⊢ ?Γ,B, nat⊥

The ? context of the ν − rec rule has not appeared in the original
system 3.

3D. Baelde, Least and Greatest Fixed Points in Linear Logic.
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µLL∞ syntax based on 4

A,B, . . . := 1 | 0 | ⊥ | ⊤ | A⊕ B | A⊗ B | A& B | A` B | ?A | !B
| X | µX .F | νX .F

A possibly infinite tree, generated by LL rules plus two following
rules:

⊢ Γ,A[µX .A/X ]
µ

⊢ Γ, µX .A

⊢ Γ,A[νX .A/X ]
ν⊢ Γ, νX .A

Example: nat = µX .(1⊕ X ) (nat⊥ = νX .(⊥& X )):

⊢ 1 ⊕⊢ 1⊕ nat µ
⊢ nat ⊥⊢ ⊥, nat

⋆

⊢ nat⊥, nat
&

⊢ ⊥& nat⊥,nat
ν

⋆ ⊢ nat⊥,nat
4David Baelde, Amina Doumane, Alexis Saurin: Infinitary Proof Theory: the

Multiplicative Additive Case.



But...

...
⊢ µX .A

µ
⊢ µX .A

...
⊢ νX .A ν⊢ νX .A

cut⊢



Validity criteria based on 5:

There is a validity criteria to distinguish valid proof from the
ordinary ones.

5David Baelde, Amina Doumane, Alexis Saurin: Infinitary Proof Theory: the
Multiplicative Additive Case.
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NUTS as a denotational model of µLL∞

A formula A(X ) 7→ A VNUTS JAKX : NUTS → NUTS.

Interpretation of proofs:
The interpretation of LL inference rules in NUTS is same as their
interpretation in REL.

Let us take π as a possibly infinite proof in µLL∞:
JπK = union of the interpretation of all finite approximation. (More
elegant way in 6)

Theorem: If π and π′ are µLL∞ proofs of Γ and π reduces to π′ by
the cut-elimination rules of µLL∞, then JπK = Jπ′K.

6Denis Kuperberg, Laureline Pinault, Damien Pous. Cyclic Proofs, System T, and
the Power of Contraction



An example

A syntatic-free proof that any term of booleans has a defined
boolean value true or false

Consider 1⊕ 1 (The type of booleans).
J1⊕ 1K = ({(1, ⋆), (2, ⋆)}, T J1⊕ 1K) where

T (J1⊕ 1K) = P(|J1⊕ 1K|)\∅

For any proof π of 1⊕ 1, we have JπK ∈ T J1⊕ 1K.
Hence JπK ̸= ∅.



Validity implies totality

Theorem: If π is a valid proof of the sequent ⊢ Γ, then JπK ∈ T JΓK.



Validity implies totality

Theorem: If π is a valid proof of the sequent ⊢ Γ, then JπK ∈ T JΓK.

The proof is similar to the proof of soundness of LKIDω in 7.
However:
The system is classical logic with inductive definitions
and the proof is for a Tarskian semantic.
We need to adapt the proof in two aspects:
considering µLL∞ instead of LKIDω,
and deal with the denotational semantic instead of Tarskian
semantics.
Adapation for µLL∞: somehow done in 8

So, basically, the main point of this proof is adapting a Tarskian soundness
theorem to a denotational semantic soundness.

7James Brotherston.Sequent Calculus Proof Systems for Inductive Def-initions.
PhD thesis, University of Edinburgh, November 2006.

8Amina Doumane. On the infinitary proof theory of logics with fixedpoints. PhD
thesis, Paris Diderot University, 2017.



Current and future work

▶ Working on a polarized calculus which corresponds µLL, and
its categorical semantic.

▶ Categorical semantic of µLL∞.

▶ Comparing the interpretation of proofs in different models
such as coherence spaces, coherence spaces with totality,
finiteness space, NUTS, REL,

▶ Connections between type theory with (co)inductive
definitions and µLL.
There are basically following styles for the fixpoints rules in
the literature:
▶ General fixpoint with the guarded conditions.
▶ The elimination rule community.
▶ The Park’s rule (maybe the sequent calculus version of the

elimination rule for the propositional part?).
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