Cyclic Implicit Complexity

SCALP 2021

Fontainebleau

Gianluca Curzi

University of Birmingham

joint work with Anupam Das (University of Birmingham)

What is this presentation about?

(Axiom) .
L]

(Axiom) (Axiom)

(Axiom)

L]
(Inference) (Inference)

Figure: From “Introduction to cyclic proofs” (Brotherston 2008).
» Goal: cyclic proof systems to capture complexity classes in the style of ICC.

» Some motivations:
e cyclic proofs subsume various recursion schemes;

o relatively new topic, not much about complexity-theoretic aspects of cyclic
proofs;

e hard to tame complexity, criteria to weaken loop structure.

1/12

@ Cyclic proofs

Non-wellfounded proofs

» Inductive vs non-wellfounded proofs:

r’ = A
Vs

> Non-wellfounded proofs to reason about p-calculus (e.g. [Dax, Hofmann and
Lange 06], [Niwinski and Walukiewicz 96]), (co)induction (e.g. [Brotherston
and Simpson 11]), Kleene algebra (e.g. [Das and Pous 17, 18]), linear logic
(e.g. [Baelde, Doumane and Saurin 16]), continuous cut-elimination
(e.g. [Mints 75] and [Fortier and Santocanale 13]).

» Problem. Any formula is derivable!

id

= A A=A

cut id
= A A=A

cut

/12

» Problem. Any formula is derivable!

id
= A A=A
cut id

= A A=A

cut

» Progressiveness criterion = global criterion to guarantee consistency.

/12

Cyclic proofs

» Cyclic proofs = only finitely many distinct subproofs.

» Cycle normal form = finite, “circular” presentation of a cyclic proof.

. r

r= A
A =B
r
r=A

—

A =B

L] r

r=A
A= B

r
r=A

4/12

© ICC and safe recursion

|CC and safe recursion on notation

» Function algebra B characterizing FPTIME [Bellantoni and Cook 92].

5/12

|CC and safe recursion on notation

» Function algebra B characterizing FPTIME [Bellantoni and Cook 92].

» Two successors: sox = 2x and s;x = 2x + 1.

5/12

|CC and safe recursion on notation

» Function algebra B characterizing FPTIME [Bellantoni and Cook 92].

» Two successors: sox = 2x and s;x = 2x + 1.

» Function arguments partitioned into normal and safe:

f(X17"~7Xn; yla"'aym)

5/12

|CC and safe recursion on notation

» Function algebra B characterizing FPTIME [Bellantoni and Cook 92].

» Two successors: sox = 2x and s;x = 2x + 1.

» Function arguments partitioned into normal and safe:

f(X17"~7Xn; yla"'aym)

» Safe recursion on notation:
f(0,%;y) = g(X;)
f(sox, X; ¥) = ho(x, X; ¥, f(x, X, ¥))
f(six, X, y) = h(x, %, ¥, f(x, X, ¥))

X1

Idea. Recursive calls only in the safe zone:
5/12

© A cyclic proof system based on safe recursion

Non-wellfounded version of B

» Formulas A, B, C € {N,JN} and contexts [, A = Ay,... A,

» Non-wellfounded proofs generated by the following rules:

=B =B A BT =C
‘NoN "Tn=B ""ONT=B TBAI=C
LN = A ON,...,ON = N
"ONTSA DN . .ONSON ‘SN “NanN Now
Fr=N LN=B r=0ON 0N, =B

cuty cutm

=B =B
[=N IN=N I,N=>N =N ONT =N 0ONT =N

condy cond

N =N ON,T = N

6/12

Semantics of non-wellfounded proofs for B

0:>N fp(;):=0

vy fo(; x) = six

(% 7) 1= Fo, (%1 7 Fog (53 7))

=N ITN=A
[= A

fo(557) = Fios (g (5 7), %1 7)

F=0N ON,IT=A
[= A
fD(Oa)_(’;y) = fDo()?;)_/')
fo(s0x. 51 7) = i, (x, %,
F=N ONT,=N ONT =N D(s0%, X1 7) Dl(j;

cond(y fD(S].Xa)?1 }7) = sz()
ON,T = N

cut

cut)

7/12

Cyclicity

» Cyclic proof = finitely many distinct subproofs.

» Idea. Cyclicity = computability.

» Example. A cyclic proof D:

So cuty o
N= N ON,N = N
cuty []

ON,N = N

fo(x;y) = fp(x;soy)

8/12

Progressiveness

» Progressive proof = every infinite branch contains a [JN-thread with infinitely

many principal formulas of the rule condp.

» Example. A progressing proof:
cond ® o cond ® s
ON,N = N N= N ON,N = N N= N
id cut cut
N = " ON,N = N N ON,N = N
cond
- ON,N = N *
fp(0;y) =y

fo(sox; y) = so(fo(x; y))
fo(six; y) = si(fo(x;y))

» lIdea. Progressiveness = totality.

9/12

@ Safety and nesting

Safety

» Problem. Modalities are not enough to enforce stratification in an
non-wellfounded setting.

> Example. A cyclic progressing proof D for primitive recursion (on notation):

o 0 N\

_— []
<37 ON,T =N ON,IL,ON= N ON,T =N ON,I,ON= N
CutD

cut
r= N ON,T = N ON,T = N
[

cond
ON,T = N

10/12

Safety

» Problem. Modalities are not enough to enforce stratification in an
non-wellfounded setting.

> Example. A cyclic progressing proof D for primitive recursion (on notation):

o 0 N\

_— []
<37 ON,T =N ON,IL,ON= N ON,T =N ON,I,ON= N
CutD

cut
r= N ON,T = N ON,T = N
[

cond
ON,T = N

» Safe proof = any branch crosses finitely many cut-steps.

» Cyclic proof system NCB = cyclic progressing safe proofs.

10/12

Nesting

» Problem. NCB can express nested recursion.

» Example. A cyclic progressing safe proof for the exponential function
Ix]
exp(x)(y) =22 -y

cond] ——— condp ————— cond] —————— cond] ————— @
DjN,N:>N DDN,N:>N DD/\I,N:>N DEN,N,:>N

S| cut cut,
NS N ON, N = N N ON, N = N
L]

ON,N = N

exp(0; y) = soy
exp(sox; y) = exp(x; exp(x; y))
exp(s1x; y) = exp(x; exp(x; y))

11/12

Nesting

» Problem. NCB can express nested recursion.

» Example. A cyclic progressing safe proof for the exponential function
Ix]
exp(x)(y) =22 -y

cond | ———— o

DEN,N,:>N
ON, N = N
.

condy ONyN = N
cutyy

condp —————
DDN,N:>N

ON,N =N

ON,N = N

cond —————
O ON, N = N
B cutyy

exp(0; y) = soy
exp(sox; y) = exp(x; exp(x; y))
exp(s1x; y) = exp(x; exp(x; y))

» Left-leaning proof = any branch goes right at a cuty-step only finitely often.
» Cyclic proof system CB = cyclic progressing safe left-leaning proofs.

11/12

@ Characterizing FPTIME and FELEMENTARY

Results and perspectives

Characterization results:
» Theorem. NCB captures exactly FELEMENTARY.

» Theorem. CB captures exactly FPTIME.

Conclusions and future directions:
» CB = circular version of B
» NCB = generalization of B to nested safe recursion schemes
» Higher-order version of cyclic proof systems based on Hofmann's SLR?

» Cyclic proof systems to characterize other complexity classes, like FPSPACE,
ALOGTIME, NC?

12/12

Thank you!
Questions?

Appendix

Hofmann's type system SLR

» Two function spaces: JA — B (modal) and A — B (linear).

> Safe linear recursion operator (with A [J-free):

reca: ON — (ON - A—A) - A— A
~—_————

X h g

where f(x) = reca(x, h, g) means:

f(0) = g
f(sox) = h(x,f(x))
f(six) = h(x,f(x))

» SLR captures exactly FPTIME.

Nesting and abstraction complexity

> Nested recursion in SLR if higher-order types are not handled linearly:

A = N—=N
g = So CA
h = M:ONAXu:N— NAy:Nu(uy) :ON—-A—-A— A

exp(x;)/) = reCA(X> h, g)(y)

Nesting and abstraction complexity

> Nested recursion in SLR if higher-order types are not handled linearly:

A= N-=>N
g = So CA
h = M:ONAXu:N— NAy:Nu(uy) :ON—-A—-A— A

exp(X;)/) = reCA(X> h, g)(y)

> Takeaway. Type n cyclic proofs can represent type n+1 recursion [Das 21].

	Cyclic proofs
	ICC and safe recursion
	A cyclic proof system based on safe recursion
	Safety and nesting
	Characterizing FPTIME and FELEMENTARY
	Appendix
	Appendix

