Modular operational nominal game semantics
Guilhem Jaber (Univ. Nantes)

Scalp Meeting

1/51



[ Computation ] Interaction

2/51



Deduction

System

Model Interaction

\/’

[ Computational ] [ Environmental ]

3/51



In this talk

Type
System

Interactive
Semantics

Operational
Semantics

4/51



In this talk

Type
System

Interactive
Semantics

Operational
Semantics

How to define interactive models of programming languages that are:
@ abstract with respect to computation
@ weakly coupled with the type system

Modularity

4/51



Structuring

Type
System
Typing judgment
Derivation trees

Operational Interactive
Semantics Semantics
Rewriting systems Labelled transition systems
A-calculus Traces

N~

5/51



What is a good interactive model 7

@ A model that captures the observational power of the programming
language.

@ In a closed world:

~> captured via contextual equivalence;
~+ Full abstraction.

6/51



How to define the observational power of a programming
language 7

Via polarization:
e interact with negative (&) values;

@ observe positive () values.

7/51



Operational Languages

Lop = (Terms, —op) with operational reduction relation:
M o, N

Example for Ly the pure A-calculus in call-by-value

Values V,W £ x|n|x.N
Terms M,N 2 V|MN
ECxts E,E' = e|EM]|VE

E[(Ax-M)V] —op E[M{x = V}]

Names n are atoms used to represent the interaction with the outside
world.

Lemma

A closed term of L, in normal form is either a value V' or a head normal
form E[nV].

8/51



Contextual Equivalence

Definition
Two closed terms M, N are said to be contextually equivalent written
=M >~ N : 60, when for all closed typed evaluation context

@+ E : 0~ Unit and substitution @ =~ : I — Values, we have
E[M{~}]{ if and only if E[N{~}]{.

@ Termination as observation

@ restricted to non-binding contexts as with ciu-equivalence (Mason &
Talcott);

o Contextual equivalence is the greatest adequate congruence (for
evaluation contexts here).

9/51



Positive Types
We consider LY that extends Lep, with:
@ unit () for the type Unit;
@ pairs (M, N) for positive products type 6 x 6';
@ injections inj; (M), inj,(M) for positive sum type 6 + 6’

10/51



Positive Types
We consider LY that extends Lep, with:
@ unit () for the type Unit;
@ pairs (M, N) for positive products type 6 x 6';
@ injections inj; (M), inj,(M) for positive sum type 6 + 6’

Positive values A B2 n| (A B)|inj;(A) | inj,(A)

10/51



Positive Types

We consider LY that extends Lep, with:
@ unit () for the type Unit;
@ pairs (M, N) for positive products type 6 x 6';
@ injections inj; (M), inj,(M) for positive sum type 6 + 6’

Positive values A B2 n| (A B)|inj;(A) | inj,(A)

Polarization process V ¢ (A,7):

f e (8 [f — gl) MM =g (,[f = Ax.M]) 0 e ()¢

Vimg (AW) W =g (877,) Ve (Ava)
(V. W) —a ((A,B),7-7) inj;(V) —e (in;(A),7)
Lemma
If V=g (A,7v) then A{v} = V. J

10/51



Operational Nominal Game Semantics

@ provides trace-based abstractions to represent the interaction with the
environment;

@ introduces general reasoning principles to prove connections with the
operational semantics and the type system;

@ uses Labelled Transition Systems (LTS) as the basic blocs;

@ inherits a sequential structure and a composition from game
semantics;

@ provides nominal resource usage control.

11/51



Traces

@ The two players exchange moves, which are in one of four forms:

Move kind

P-question

P-answer

O-question

O-answer

Move form

f(A)

Tet(A)

f(A)

ret(A)

@ Tracest are sequences of moves.

@ positive values A are the observable terms.

12/51



The Operational Game Semantics Recipe

Start with a Program (Proponent)

© Compute its normal form via —qp;

Polarize the normal form via —q;

Check the correctness of the polarization via the type system (Fg);
Perform the action p from the polarized normal form;

Let the Environment (Opponent) performs back an action o;
Check the correctness of the polarization of o via g;

Trigger the computation associated by this action;

© ©¢ 6 6 6 0 ©o

Repeat to point 1.

13/51



Introducing the OGS LTS

Logs = (Confsegs, »i>ogs, a € Moves U {op})
is the product £; x Ly of:
o Interactive LTS L, (with I € Confs));
Type LTS L+, (with S € ConfsTy).

They share the same actions a;

Typing relation I>S
Configurations G € Confsegs such that G = (I; S) with I > S.

IS I3J S3¢T JoT
(I;S) rogs (J; T)

14 /51



Interactive LTS for Ly,

" Abstract machines for Interaction”

L) = (Confs|, 2,a € Moves U {op})

—op IS embedded into iﬂ

visible actions are moves;

°
°
e configurations I are either active (M; o;~) or passive (o;7);
@ v is a list of substitutions from names to values;

°

o is a stack of evaluation contexts;

15/51



The Interactive LTS for Lg,

op | (N;o;v) when M =g, N
PQ | ( M (Eaiy g V)
PA | (V;0;7) — Aoy - [f=V]])
0Q | ( <7(f)g'0'7>

( (

OA E[f];o:7)

16/51



The Interactive LTS for chv

op

PQ
PA
0oQ
OA

(N; o;7) when M =g, N

(E::o;v-+) when V=g (AY)
(o;7-9']) when V —g (A7)
(
(

Y(FA ;)
E[A];;7)

17/51



Typing LTS

L1y = (Confsty, Z1y,a € Moves U {op})

@ configurations S keep tracks of typing of names;

@ transition checks typing constraints on positive values exchanged
using Fg;

@ mainly to control Opponent behavior;

@ but also to guide Proponent polarization ¢ in presence of
polymorphism.

18/51



The Typing LTS for LY

cbv

op | (AoF 0;T;Ap) —2 (Aot 60;%; Ap)

PQ | (Ao k65 0p) “D (Ao TiAp-AL)

when Al b A 6y with Ao(f) =61 — 02 and ¥/ = (6, ~ 6) = &

PA | (Ao k05 0p) O (Ao F T Ap- AL,

when AL g Az 6

0Q| (or5inp) U (Ap-ALF 0T AR

when Al Fg A 6 with Ap(f) =60 — ¢

OA | (Do 5inp) 2N (Ag-ALF 0T Ap)

when Ay Fg A:fand X' = (0~ 6¢') = X

19/51



Scaling to rich languages

Higher-order references;

Control operators;

Parametric polymorphism;

Private/disclosed nominal resources;

@ Dynamic sealing.

20/51



Teasing

Fully-abstract compilation from System F to the untyped
cryptographic A-calculus
(j-w.w. N. Tzevelekos)

o Correcting the compiler proposed by Sumii & Pierce (2000)
@ via a freshness check
@ designed from a double polarization interpretation of System F

@ avoiding the counter-example provided by Devriese, Patrignani &
Piessens (2018)

21/51



| need help finding my way through polarization...

Type
System

Semantics

Operational Interactive
Semantics

22/51



Parametric polymorphism
Logical Relations:
@ On denotational models (Reynolds; Plotkin);
o Logical systems (Plotkin-Abadi; Abadi, Curien & Cardelli)
Dependent types (Berardi; Keller & Lasson)
Operational logical relations (Pitts)
Type system (Harper & Sterling).

Operational equivalence
@ Strachey-Equivalence: type-erased terms are Brn-equivalent
@ Contextual equivalence

Interactive equivalence
o Fully-abstract compilation (Sumii & Pierce)
e Bisimulation (Lassen & Levy)
e Game models (Laird; J. & Tzevelekos)

23/51



Second-order typing

X :Type-M:0 Mr=M:vX.0
MEAX.M:vX.0 FMO:0'{X =0}

FTEM:0{X:=0}
r=(@;M:3X.0

MN=m™m:3X.0 M,X:Type,x:0FN:¢
[+ match M with (X,x) = N: ¢

24 /51



Polarization of type variables

@ X® when Proponent choose the type associated to X;

@ X© when Opponent choose the type associated to X.

Formally, a type translation pol, (-)* : Types — Types, for k € {®, O},
defined as

pol, (6 — )" % pol, (6)"" — pol, (")
pol, (0 x &)~ = pol,,(6)" x pol, (8')"
pol, (6 +0)% = pol, (6)" + pol, (¢')"
poln(VXQ)“ = VX.pO|77,[X,_>,{J_](9)H
pol, (3X.0)" f 3X.pol,, [xis1 (0)"

pol, (X)" n(X)

25 /51



Positive Typing for Polymorphism
o Typing judgment % indexed by player X € {P,O}.
e Splitted typing contexts Ag|Ap.

Ao(p) = o Ap(p) =
Ap|Ap I—ePap:oz6 Ao |Ap }—%p:oﬂ9

p € PNames\dom(Ag - Ap) p € PNames\dom(Ag - Ap)
DolAp FE vp:a® DolAp FQ vp: a®

Ap|Ap, « : Type l—g A:0{X:=a}
Do|Ap FE (va; A) 1 3X.0

Ao, « : Type|Ap I—% A:0{X:=a}
Do|Ap FQ (v A) 1 3X.0

26 /51



Me

moryful programs

Lop = (Terms, Stores, —op) with operational reduction relation:

(M, &) —op (N, ()

Example for the v-calculus, with dynamic creation of atoms an stored in

the

(
(
(
(
(
(

set S:

E[(Ax.M)V],S)

E[if true then N; else N;],S)
E[if false then N; else N|,S)
Ela=a],5)

E[la=2],5)

E[new x in M|, S)

—op

(E[M{x = V}],5)
(le )

(N2’ )

(E[true], S)
(E[false],S)

(E[M{x = a}], 5w {a})

27 /51



A taxonomy of resource usage

We consider the following properties on named resources:

® 6 6 o6 o o

calleable (with/without well-bracketed discipline);
disclosable / scoped (visible) / storeable;

affine / duplicable / persistent;

readable / sealed / writeable;

internally bindable;

internally allocatable/disallocable

distinguishable;

typed.

28/51



History LTS

Ly = (Confsy, 2y, a € Moves U {op})

o configurations keep track of the usage of names:
disclosed(set),well-bracketed(stack) or scoped(tree) discipline;

@ transitions check that they are respected by Opponent.

29/51



Ressource LTS for atom generation

@ S is the set of atoms known by P;
@ D is the set of atoms known by both P and O.

op (M;S;077) (D) —2—, (N;S";0;7) > (D)
when (M, S) —qp (NLS/)

PQ | (E[xV]; S;o;v)> (D) ﬂn (S;E:o;v-+) p(DUD)

when V =4 (A7)

PA (V;S;0;v) (D) Mﬂ (S;o;v-9") ©(DUD),

when V —g (A, ')

0Q| (Sioiy) »(D) M VA SUD o) b (DUD)
when v(f) =V

OA | (S;E:o;vy) >(D) ﬂn (E[A; SUD';0;v)> (DU D')
With D’ the set of atoms of A not in D. In the Opponent transitions, we
suppose the following Non-omniscient condition:

DNnS=o

30/51



@ Proving Full-Abstraction

© Sumii & Pierce compilation for polymorphism

31/51



Composition /Interaction operational reduction

@ a ClO reduction relation o extend — into parallel composition
plus hiding.

e configurations D, D' € Confsc, = {v(G||H) | GLH}
@ o defined by the following rules:

GM G HMS ®H
I/(GHH) cio V(G'HH/)

32/51



Adequacy via abstract machines

Introduce an operational reduction reduction

(Confspop, —*bop)

together with two functional bisimulation

Kbop : Confspep — Terms x Stores and ko : Confscjo — Confspgp.
In Lepy:

e configurations are of the shape (M;o;0)

@ —pop defined by the following rules:

4 —o (A, 51)
(E[fV];0;6) —bop (6(F)AE 2 0;6-8")

V =g (A, ) M —op N
(VS E ::0;0) —bop (E[A]; ;6 - 0') (M;0;0) —pop (N;0;9)

33/51



Soundness of trace equivalence

Suppose we observe only booleans.

Definition

We write (G, H) € 1L when there exists a complete traces t such that
t € CTr(G) and t* - ret(b) € CTr(H) with b € {true, false}.

Lemma

(G,H) € 1L if and only if v(G||H) {.

Lemma

If (G,H) € 1L and G ~;, G’ then (G',H) € 1L.

Theorem

Taking two terms M, N such that T = M, N : 0, if
(TEM:0) =y o(TEN:O) thenT = M e N: 6.

34/51



Full-abstraction of trace equivalence

Theorem

Taking two terms M, N such that T = M, N : 0, if T = M >~ N : 0 then
(TEM:0)~g o(THN:0).

@ Need a definability result to transform a trace t into a term that
generates this trace;

@ Holds only in presence of some memory (one integer mutable memory
cell).

@ Need to relax the notion of trace equivalence to complete trace
equivalence ~;, when contexts are control operators free.

35/51



Fully-abstract compilation

Definition
(-) : Ly — Ly is fully abstract if for all terms M, N of Lj, we have
M~ N iff (M) ~2 (N).

—ctx

Suppose Ly-contexts are more powerful than Li-contexts:
° r—% is contained in »—)éB: L,-contexts can observe more.
° I—éB is contained in l—é: Ly-contexts can interact more.

The compilation () embeds some runtime checks at the interaction points
(normal forms) to:

@ perform on Proponent interactions the extra opacification steps
needed that '—%9 does but not b—>é;

@ reject on Opponent interactions the positive values validated by l—é
but not by I—%e.

36/51



Proving full-abstraction results for compilers

Theorem

() : Ly — Lo is fully abstract When:

~L1

~ s fully abstract wrt ~=

~L2 ~L
o2 is sound wrt >~

@ () induces a bisimulation between Logs(L1) and Logs(L2).

37/51



@ Proving Full-Abstraction

© Sumii & Pierce compilation for polymorphism

38/51



Presentation of the context

In 2000, Sumii & Pierce proposed a compilation scheme () : F — L
between:

@ the (second-order) polymorphic A-calculus F;

@ the cryptographic A-calculus L., a simply-typed A-calculus equipped
with some dynamic sealing properties

The compilation scheme inserts some runtime to enforce dynamically the
parametricity properties provided by the polymorphic type system.

Sumii & Pierce conjectured () to be fully-abstract.

39/51



Cryptographic A-calculus

o Sealed values {V}, with a seal ¢
@ Dynamic seal creation newseal o in M

@ Unsealing:

match {V}, with [(¢/,x) = M {M{X =V} when 0 = o’
op

\wrong = N N otherwise

@ Type Sealy for seals that can be used only on values of type 6
~> needed to ensure type soundness.

40/51



Embedding F into L.

Type Erasure - {: F — L.

@ on terms: remove type annotations (from Church to Curry-style);

@ on types: remove second-order types:

vX.6§
13X.65
10— 0
XS
XS

(> 1> 1> > 1>

Unit — 1 6f
Unitx {6f
16516
Bytes
Bytes

41/51



Sumii & Pierce compilation scheme (I/Ill)

(") : F — L. embeds some runtime checks at the interaction points:
o for Player transition:

» at type X?: it seals using ox the value exchanged
» at type X©: it does nothing.

@ for Opponent transition:

» at type X¥: it unseals using ox the value provided
> at type X©: it does nothing.

42 /51



Sumii & Pierce compilation scheme (I1/III)

protectSE"‘?"nlt X = x
Seal .y _ : _ : Seal Seal
protect, g, X = let x1 = m1(x) inlet xo = ma(x) in  protect; %) x1, protect, %,
protectge(j’LQ, x = )\y. letz = x(conﬁnef]ega' y)in protectse;,’ z
protectgev"”)lwx _lety =x()in protectge;{lx —o-}
Seal A
protect;%x o x = lety = ma(x) inva.((), protectnw{a}ye{x::m} y)
protect;?“;jéa x £ seal,x
protectsea’ £ x

43/51



Sumii & Pierce compilation scheme (I11/111)

confinegf“f’]lmt X=X
confine>® , x £ let x; = m1(x) inlet xp = mo(x) in <confinesealx confine>¢!
7761>(92 - 1— 1 2 — 2 0 1 77702

confinegej’gg, x & \y.letz= x(protectge;’y) in confinege(;’/ z
- oSeal SN Seal

confine;Tx g x = A_.lety = x() inva. confine)S¥ s yrx._qey ¥
- Seal A - Seal

confine;Ex g x = lety = ma(x)in (), confine, Frx._ -y ¥)

Seal
conflne?7 o X

unseal,x

B Ay
conﬁnegeale X=X

44 /51



Fully-abstract compilation 7

In 2018, Devriese, Patrignani & Piessens provide a counterexample to the
fully-abstract conjecture based on the universal type:

Y VX(XE = Y®) x (Y& = X9)

The pair (), A_.{A\x.x, Ax.x)) can fake the runtime check to pretend to be
of this type.

45 /51



Sumii & Pierce compilation scheme

(") : F — L. embeds some runtime checks at the interaction points:
o for Player transition:

» at type X?: it seales using ox the value exchanged
» at type X©: it does nothing.

@ for Opponent transition:

» at type X¥: it unseales using ox the value provided
» at type X©: it does nothing.

46 /51



Fully-abstract compilation

Theorem

(:) : F — Lc is fully abstract if for all terms M, N of F, we have M ~F N
iff (M) =~ (N).

—tr

L.-contexts are more powerful than F-contexts:
° »—>Igb? is embedded in »—>g: F-contexts can observe more.
° I—g is embedded in I—Igg: L.-contexts can interact more.

The compilation () embeds some runtime checks at the interaction points
(normal forms) to:

@ perform on Proponent interactions the extra abstraction steps needed
that '—>6F9 does but not »—>{“D“

@ reject on Opponent interactions the abstract values validated
by I but not by +F.

47 /51



Sumii & Pierce compilation scheme fixed

(") : F — L. embeds some runtime checks at the interaction points:

o for Player transition:

» at type X?: it seales using ox the value exchanged
» at type X©: it does nothing.

@ for Opponent transition:

» at type X¥: it unseales using ox the value provided
> at type X©: it checks for freshness of the value provided.

48 /51



Polarizing the cryptographic A-calculus

e \7%/©: Add polarization annotations Bytes®, Bytes® to L.
~> positive when we can unseal the value;
~> negative when we cannnot.

Polarization may evolve from & to © durlng the interaction !
Use polarity information to define 3
Type Erasure - | : F — \79/©:

XS
XS

Bytes?
Bytes®

49/51



Fully-abstract compilation

We consider the extension F, and )\g@/e with integer mutable store of F

and \79/©.
Theorem

The polarized compilation scheme () from F, to )\Z@/ S s fully abstract. J

@ Integer store is needed to prove a key definability result for the trace
semantics of F,.

o Implement the freshness test of polarization in A”®/€ by storing seals.

50 /51



Conclusion

A broader setting
@ Coinductive reasoning: bisimulations, up-to techniques;
@ Presheaves reasoning on resources: Kripke semantics;

@ Automated reasoning: symbolic evaluation engine (Higher-Order
Constrained Horn Clauses, CAVOC project).

Richer types:

@ GADT, Indexed datatypes, disclosable polymorphic references: type
constraints in the Type LTS;

@ higher-order polymorphism F“: computing in the Type LTS;

e Dependent types: (intentional) synchronization between the
Interactive and the Type LTS?

51/51



	Proving Full-Abstraction
	Sumii & Pierce compilation for polymorphism

