
Modular operational nominal game semantics

Guilhem Jaber (Univ. Nantes)

Scalp Meeting

1 / 51

Deduction

Computation Interaction

2 / 51

Deduction
System

Computational
Model

Environmental
Interaction

3 / 51

In this talk

Type
System

Operational
Semantics

Interactive
Semantics

How to define interactive models of programming languages that are:

abstract with respect to computation

weakly coupled with the type system

Modularity

4 / 51

In this talk

Type
System

Operational
Semantics

Interactive
Semantics

How to define interactive models of programming languages that are:

abstract with respect to computation

weakly coupled with the type system

Modularity

4 / 51

Structuring

Type
System

Typing judgment
Derivation trees

Operational
Semantics

Rewriting systems
λ-calculus

Interactive
Semantics

Labelled transition systems
Traces

5 / 51

What is a good interactive model ?

A model that captures the observational power of the programming
language.

In a closed world:

 captured via contextual equivalence;
 Full abstraction.

6 / 51

How to define the observational power of a programming
language ?

Via polarization:

interact with negative () values;

observe positive (⊕) values.

7 / 51

Operational Languages

Lop = (Terms, 7→op) with operational reduction relation:

M 7→op N

Example for Lcbv the pure λ-calculus in call-by-value

Values V ,W , x | n | λx .N
Terms M,N , V | MN

ECxts E ,E ′ , • | EM | VE

E [(λx .M)V] 7→op E [M{x := V }]

Names n are atoms used to represent the interaction with the outside
world.

Lemma

A closed term of Lcbv in normal form is either a value V or a head normal
form E [nV].

8 / 51

Contextual Equivalence

Definition

Two closed terms M,N are said to be contextually equivalent written
Γ ` M 'ctx N : θ, when for all closed typed evaluation context
∅ ` E : θ Unit and substitution ∅ ` γ : Γ ⇀ Values, we have
E [M{γ}]⇓ if and only if E [N{γ}]⇓.

Termination as observation

restricted to non-binding contexts as with ciu-equivalence (Mason &
Talcott);

Contextual equivalence is the greatest adequate congruence (for
evaluation contexts here).

9 / 51

Positive Types
We consider Ltycbv that extends Lcbv with:

unit () for the type Unit;
pairs 〈M,N〉 for positive products type θ × θ′;
injections inj1(M), inj2(M) for positive sum type θ + θ′.

Positive values A,B , n | 〈A,B〉 | inj1(A) | inj2(A)

Polarization process V 7→⊕ (A, γ):

f 7→⊕ (g , [f 7→ g]) λx .M 7→⊕ (f , [f 7→ λx .M]) () 7→⊕ ((), ε)

V 7→⊕ (A, γ) W 7→⊕ (B, γ′)

〈V ,W 〉 7→⊕ (〈A,B〉, γ · γ′)
V 7→⊕ (A, γ)

inji (V) 7→⊕ (inji (A), γ)

Lemma

If V 7→⊕ (A, γ) then A{γ} = V .

10 / 51

Positive Types
We consider Ltycbv that extends Lcbv with:

unit () for the type Unit;
pairs 〈M,N〉 for positive products type θ × θ′;
injections inj1(M), inj2(M) for positive sum type θ + θ′.

Positive values A,B , n | 〈A,B〉 | inj1(A) | inj2(A)

Polarization process V 7→⊕ (A, γ):

f 7→⊕ (g , [f 7→ g]) λx .M 7→⊕ (f , [f 7→ λx .M]) () 7→⊕ ((), ε)

V 7→⊕ (A, γ) W 7→⊕ (B, γ′)

〈V ,W 〉 7→⊕ (〈A,B〉, γ · γ′)
V 7→⊕ (A, γ)

inji (V) 7→⊕ (inji (A), γ)

Lemma

If V 7→⊕ (A, γ) then A{γ} = V .

10 / 51

Positive Types
We consider Ltycbv that extends Lcbv with:

unit () for the type Unit;
pairs 〈M,N〉 for positive products type θ × θ′;
injections inj1(M), inj2(M) for positive sum type θ + θ′.

Positive values A,B , n | 〈A,B〉 | inj1(A) | inj2(A)

Polarization process V 7→⊕ (A, γ):

f 7→⊕ (g , [f 7→ g]) λx .M 7→⊕ (f , [f 7→ λx .M]) () 7→⊕ ((), ε)

V 7→⊕ (A, γ) W 7→⊕ (B, γ′)

〈V ,W 〉 7→⊕ (〈A,B〉, γ · γ′)
V 7→⊕ (A, γ)

inji (V) 7→⊕ (inji (A), γ)

Lemma

If V 7→⊕ (A, γ) then A{γ} = V .

10 / 51

Operational Nominal Game Semantics

provides trace-based abstractions to represent the interaction with the
environment;

introduces general reasoning principles to prove connections with the
operational semantics and the type system;

uses Labelled Transition Systems (LTS) as the basic blocs;

inherits a sequential structure and a composition from game
semantics;

provides nominal resource usage control.

11 / 51

Traces

The two players exchange moves, which are in one of four forms:

Move kind P-question P-answer O-question O-answer

Move form f (A) ret(A) f (A) ret(A)

Traces t are sequences of moves.

positive values A are the observable terms.

12 / 51

The Operational Game Semantics Recipe

Start with a Program (Proponent)

1 Compute its normal form via 7→op;

2 Polarize the normal form via 7→⊕;

3 Check the correctness of the polarization via the type system (`⊕);

4 Perform the action p from the polarized normal form;

5 Let the Environment (Opponent) performs back an action o;

6 Check the correctness of the polarization of o via `⊕;

7 Trigger the computation associated by this action;

8 Repeat to point 1.

13 / 51

Introducing the OGS LTS

Logs = (Confsogs,
a7−→ogs, a ∈ Moves ∪ {op})

is the product LI n LTy of:

Interactive LTS LI (with I ∈ ConfsI);

Type LTS LTy (with S ∈ ConfsTy).

They share the same actions a;

Typing relation I . S
Configurations G ∈ Confsogs such that G = (I;S) with I . S.

I . S I a−→I J S a−→Ty T J . T
(I; S)

a7−→ogs (J;T)

14 / 51

Interactive LTS for Lcbv

”Abstract machines for Interaction”

LI = (ConfsI,
a−→I, a ∈ Moves ∪ {op})

7→op is embedded into
op−→I

visible actions are moves;

configurations I are either active 〈M;σ; γ〉 or passive 〈σ; γ〉;
γ is a list of substitutions from names to values;

σ is a stack of evaluation contexts;

15 / 51

The Interactive LTS for Lcbv

op 〈M;σ; γ〉 op−→I 〈N;σ; γ〉 when M 7→op N

PQ 〈E [fV];σ; γ〉 f (g)−−→I 〈E :: σ; γ · [g 7→ V]〉

PA 〈V ;σ; γ〉 ret(f)−−−→I 〈σ; γ · [f 7→ V]]〉
OQ 〈σ; γ〉 f (g)−−→I 〈γ(f)g ;σ; γ〉
OA 〈E :: σ; γ〉 ret(f)−−−→I 〈E [f];σ; γ〉

16 / 51

The Interactive LTS for Ltycbv

op 〈M;σ; γ〉 op−→I 〈N;σ; γ〉 when M 7→op N

PQ 〈E [fV];σ; γ〉 f (A)−−−→I 〈E :: σ; γ · γ′〉 when V 7→⊕ (A, γ′)

PA 〈V ;σ; γ〉 ret(A)−−−→I 〈σ; γ · γ′]〉 when V 7→⊕ (A, γ′)

OQ 〈σ; γ〉 f (A)−−−→I 〈γ(f)A;σ; γ〉
OA 〈E :: σ; γ〉 ret(A)−−−→I 〈E [A];σ; γ〉

17 / 51

Typing LTS

LTy = (ConfsTy,
a−→Ty, a ∈ Moves ∪ {op})

configurations S keep tracks of typing of names;

transition checks typing constraints on positive values exchanged
using `⊕;

mainly to control Opponent behavior;

but also to guide Proponent polarization 7→⊕ in presence of
polymorphism.

18 / 51

The Typing LTS for Ltycbv

op 〈∆O ` θ; Σ; ∆P〉
op−−−−→I 〈∆O ` θ; Σ; ∆P〉

PQ 〈∆O ` θ; Σ; ∆P〉
f (A)−−−→I 〈∆O ` Σ′; ∆P ·∆′P〉

when ∆′P `⊕ A : θ1 with ∆O(f) = θ1 → θ2 and Σ′ = (θ2 θ) :: Σ

PA 〈∆O ` θ; Σ; ∆P〉
ret(A)−−−→I 〈∆O ` Σ; ∆P ·∆′P〉,

when ∆′P `⊕ A : θ

OQ 〈∆O ` Σ; ∆P〉
f (A)−−−→I 〈∆O ·∆′O ` θ′; Σ; ∆P〉

when ∆′O `⊕ A : θ with ∆P(f) = θ → θ′

OA 〈∆O ` Σ; ∆P〉
ret(A)−−−→I 〈∆O ·∆′O ` θ′; Σ′; ∆P〉

when ∆′O `⊕ A : θ and Σ′ = (θ θ′) :: Σ

19 / 51

Scaling to rich languages

Higher-order references;

Control operators;

Parametric polymorphism;

Private/disclosed nominal resources;

Dynamic sealing.

20 / 51

Teasing

Fully-abstract compilation from System F to the untyped
cryptographic λ-calculus

(j.w.w. N. Tzevelekos)

Correcting the compiler proposed by Sumii & Pierce (2000)

via a freshness check

designed from a double polarization interpretation of System F

avoiding the counter-example provided by Devriese, Patrignani &
Piessens (2018)

21 / 51

I need help finding my way through polarization...

Type
System

Operational
Semantics

Interactive
Semantics

22 / 51

Parametric polymorphism
Logical Relations:

On denotational models (Reynolds; Plotkin);

Logical systems (Plotkin-Abadi; Abadi, Curien & Cardelli)

Dependent types (Berardi; Keller & Lasson)

Operational logical relations (Pitts)

Type system (Harper & Sterling).

Operational equivalence

Strachey-Equivalence: type-erased terms are βη-equivalent

Contextual equivalence

Interactive equivalence

Fully-abstract compilation (Sumii & Pierce)

Bisimulation (Lassen & Levy)

Game models (Laird; J. & Tzevelekos)
23 / 51

Second-order typing

Γ,X : Type ` M : θ

Γ ` ΛX .M : ∀X .θ
Γ ` M : ∀X .θ

Γ ` Mθ : θ′{X := θ}

Γ ` M : θ{X := θ′}
Γ ` 〈θ′;M〉 : ∃X .θ

Γ ` M : ∃X .θ Γ,X : Type, x : θ ` N : θ′

Γ ` match M with (X , x)⇒ N : θ′

24 / 51

Polarization of type variables

X⊕ when Proponent choose the type associated to X ;

X	 when Opponent choose the type associated to X .

Formally, a type translation polη(·)κ : Types→ Types, for κ ∈ {⊕,	},
defined as

polη(θ → θ′)κ , polη(θ)κ
⊥ → polη(θ′)κ

polη(θ × θ′)κ , polη(θ)κ × polη(θ′)κ

polη(θ + θ′)κ , polη(θ)κ + polη(θ′)κ

polη(∀X .θ)κ , ∀X .polη·[X 7→κ⊥](θ)κ

polη(∃X .θ)κ , ∃X .polη·[X 7→κ](θ)κ

polη(X)κ , η(X)

25 / 51

Positive Typing for Polymorphism

Typing judgment `X⊕ indexed by player X ∈ {P,O}.
Splitted typing contexts ∆O|∆P.

∆O(p) = α

∆O|∆P `P⊕ p : α	
∆P(p) = α

∆O|∆P `O⊕ p : α⊕

p ∈ PNames\dom(∆O ·∆P)

∆O|∆P `P⊕ νp : α⊕
p ∈ PNames\dom(∆O ·∆P)

∆O|∆P `O⊕ νp : α	

∆O|∆P, α : Type `P⊕ A : θ′{X := α}
∆O|∆P `P⊕ 〈να;A〉 : ∃X .θ′

∆O, α : Type|∆P `O⊕ A : θ′{X := α}
∆O|∆P `O⊕ 〈να;A〉 : ∃X .θ′

26 / 51

Memoryful programs

Lop = (Terms,Stores, 7→op) with operational reduction relation:

(M, ξ) 7→op (N, ζ)

Example for the ν-calculus, with dynamic creation of atoms an stored in
the set S :

(E [(λx .M)V], S) 7→op (E [M{x := V }], S)
(E [if true then N1 else N2], S) 7→op (N1, ,S)
(E [if false then N1 else N2], S) 7→op (N2, S)
(E [a = a],S) 7→op (E [true],S)
(E [a = a′],S) 7→op (E [false], S)
(E [new x in M], S) 7→op (E [M{x := a}], S] {a})

27 / 51

A taxonomy of resource usage

We consider the following properties on named resources:

calleable (with/without well-bracketed discipline);

disclosable / scoped (visible) / storeable;

affine / duplicable / persistent;

readable / sealed / writeable;

internally bindable;

internally allocatable/disallocable

distinguishable;

typed.

28 / 51

History LTS

LH = (ConfsH,
a7−→H, a ∈ Moves ∪ {op})

configurations keep track of the usage of names:
disclosed(set),well-bracketed(stack) or scoped(tree) discipline;

transitions check that they are respected by Opponent.

29 / 51

Ressource LTS for atom generation
S is the set of atoms known by P;
D is the set of atoms known by both P and O.

op 〈M; S ;σ; γ〉 . 〈D〉 op−−−−→I 〈N;S ′;σ; γ〉 . 〈D〉
when (M,S) 7→op (N,S ′)

PQ 〈E [xV];S ;σ; γ〉 . 〈D〉 f (A)−−−→I 〈S ;E :: σ; γ · γ′〉 . 〈D ∪ D ′〉
when V 7→⊕ (A, γ′)

PA 〈V ; S ;σ; γ〉 . 〈D〉 ret(A)−−−→I 〈S ;σ; γ · γ′〉 . 〈D ∪ D ′〉,
when V 7→⊕ (A, γ′)

OQ 〈S ;σ; γ〉 . 〈D〉 f (A)−−−→I 〈VA;S ∪ D ′;σ; γ〉 . 〈D ∪ D ′〉
when γ(f) = V

OA 〈S ;E :: σ; γ〉 . 〈D〉 ret(A)−−−→I 〈E [A];S ∪ D ′;σ; γ〉 . 〈D ∪ D ′〉
With D ′ the set of atoms of A not in D. In the Opponent transitions, we
suppose the following Non-omniscient condition:

D ′ ∩ S = ∅
30 / 51

1 Proving Full-Abstraction

2 Sumii & Pierce compilation for polymorphism

31 / 51

Composition/Interaction operational reduction

a CIO reduction relation 7→cio extend −→I into parallel composition
plus hiding.

configurations D,D′ ∈ Confscio , {ν
(
G||H

)
| G⊥H}

7→cio defined by the following rules:

G m−→I G′ H m⊥−−→I H′

ν
(
G||H

)
7→cio ν

(
G′||H′

)

32 / 51

Adequacy via abstract machines

Introduce an operational reduction reduction

(Confsbop, 7→bop)

together with two functional bisimulation
κbop : Confsbop → Terms× Stores and κcio : Confscio → Confsbop.
In Lcbv:

configurations are of the shape (M;σ; δ)

7→bop defined by the following rules:

V 7→⊕ (A, δ′)

(E [fV];σ; δ) 7→bop (δ(f)A;E :: σ; δ · δ′)

V 7→⊕ (A, δ′)

(V ;E :: σ; δ) 7→bop (E [A];σ; δ · δ′)
M 7→op N

(M;σ; δ) 7→bop (N;σ; δ)

33 / 51

Soundness of trace equivalence
Suppose we observe only booleans.

Definition

We write (G,H) ∈ ⊥⊥ when there exists a complete traces t such that
t ∈ CTr(G) and t⊥ · ret(b) ∈ CTr(H) with b ∈ {true, false}.

Lemma

(G,H) ∈ ⊥⊥ if and only if ν
(
G||H

)
⇓.

Lemma

If (G,H) ∈ ⊥⊥ and G 'tr G′ then (G′,H) ∈ ⊥⊥.

Theorem

Taking two terms M,N such that Γ ` M,N : θ, if
ι(Γ ` M : θ) 'tr ι(Γ ` N : θ) then Γ ` M 'ctx N : θ.

34 / 51

Full-abstraction of trace equivalence

Theorem

Taking two terms M,N such that Γ ` M,N : θ, if Γ ` M 'ctx N : θ then
ι(Γ ` M : θ) 'ctr ι(Γ ` N : θ).

Need a definability result to transform a trace t into a term that
generates this trace;

Holds only in presence of some memory (one integer mutable memory
cell).

Need to relax the notion of trace equivalence to complete trace
equivalence 'ctr when contexts are control operators free.

35 / 51

Fully-abstract compilation

Definition

L·M : L1 → L2 is fully abstract if for all terms M,N of L1, we have
M 'L1

ctx N iff LMM 'L2
ctx LNM.

Suppose L2-contexts are more powerful than L1-contexts:

7→2
⊕ is contained in 7→1

⊕: L2-contexts can observe more.

`1⊕ is contained in `2⊕: L2-contexts can interact more.

The compilation L·M embeds some runtime checks at the interaction points
(normal forms) to:

perform on Proponent interactions the extra opacification steps
needed that 7→1

⊕ does but not 7→2
⊕;

reject on Opponent interactions the positive values validated by `2⊕
but not by `1⊕.

36 / 51

Proving full-abstraction results for compilers

Theorem

L·M : L1 → L2 is fully abstract when:

'L1
tr is fully abstract wrt 'L1

ctx

'L2
tr is sound wrt 'L2

ctx

L·M induces a bisimulation between LOGS(L1) and LOGS(L2).

37 / 51

1 Proving Full-Abstraction

2 Sumii & Pierce compilation for polymorphism

38 / 51

Presentation of the context

In 2000, Sumii & Pierce proposed a compilation scheme L·M : F→ Lc
between:

the (second-order) polymorphic λ-calculus F;

the cryptographic λ-calculus Lc, a simply-typed λ-calculus equipped
with some dynamic sealing properties

The compilation scheme inserts some runtime to enforce dynamically the
parametricity properties provided by the polymorphic type system.

Sumii & Pierce conjectured L·M to be fully-abstract.

39 / 51

Cryptographic λ-calculus

Sealed values {V }σ with a seal σ

Dynamic seal creation newseal σ in M

Unsealing:

match {V }σ with |(σ′, x) ⇒ M
|wrong ⇒ N

7→op

{
M{x := V } when σ = σ′

N otherwise

Type Sealθ for seals that can be used only on values of type θ

 needed to ensure type soundness.

40 / 51

Embedding F into Lc

Type Erasure * · + : F→ Lc

on terms: remove type annotations (from Church to Curry-style);

on types: remove second-order types:

*∀X .θ+ , Unit→ * θ+
*∃X .θ+ , Unit× * θ+
*θ → θ′+ , *θ +→ * θ′+
*X⊕+ , Bytes

*X	+ , Bytes

41 / 51

Sumii & Pierce compilation scheme (I/III)

L·M : F→ Lc embeds some runtime checks at the interaction points:

for Player transition:
I at type X⊕: it seals using σX the value exchanged
I at type X	: it does nothing.

for Opponent transition:
I at type X⊕: it unseals using σX the value provided
I at type X	: it does nothing.

42 / 51

Sumii & Pierce compilation scheme (II/III)

protectSealη,Unit x , x

protectSealη,θ1×θ2 x , let x1 = π1(x) in let x2 = π2(x) in 〈 protectSealη,θ1 x1, protectSealη,θ2 x2〉
protectSealη,θ→θ′ x , λy . let z = x(confineSealη,θ y) in protectSealη,θ′ z

protectSealη,∀X .θ x , λ . let y = x() in protectSealη,θ{X :=α−}

protectSealη,∃X .θ x , let y = π2(x) in να.〈(), protectSealη]{α},θ{X :=α+} y〉

protectSealη,α⊕ x , sealαx

protectSealη,α	 x , x

43 / 51

Sumii & Pierce compilation scheme (III/III)

confineSealη,Unit x , x

confineSealη,θ1×θ2 x , let x1 = π1(x) in let x2 = π2(x) in 〈 confineSealη,θ1 x1, confineSealη,θ2 x2〉
confineSealη,θ→θ′ x , λy . let z = x(protectSealη,θ y) in confineSealη,θ′ z

confineSealη,∀X .θ x , λ . let y = x() in να. confineSealη]{α},θ{X :=α⊕} y

confineSealη,∃X .θ x , let y = π2(x) in 〈(), confineSealη,θ{X :=α−} y〉

confineSealη,α⊕ x , unsealαx

confineSealη,α	 x , x

44 / 51

Fully-abstract compilation ?

In 2018, Devriese, Patrignani & Piessens provide a counterexample to the
fully-abstract conjecture based on the universal type:

∃Y .∀X .(X	 → Y⊕)× (Y⊕ → X)

The pair 〈(), λ .〈λx .x , λx .x〉〉 can fake the runtime check to pretend to be
of this type.

45 / 51

Sumii & Pierce compilation scheme

L·M : F→ Lc embeds some runtime checks at the interaction points:

for Player transition:
I at type X⊕: it seales using σX the value exchanged
I at type X	: it does nothing.

for Opponent transition:
I at type X⊕: it unseales using σX the value provided
I at type X	: it does nothing.

46 / 51

Fully-abstract compilation

Theorem

L·M : F→ Lc is fully abstract if for all terms M,N of F, we have M 'F
tr N

iff LMM 'Lc
tr LNM.

Lc-contexts are more powerful than F-contexts:

7→Lc
⊕ is embedded in 7→F

⊕: F-contexts can observe more.

`F⊕ is embedded in `Lc⊕ : Lc-contexts can interact more.

The compilation L·M embeds some runtime checks at the interaction points
(normal forms) to:

perform on Proponent interactions the extra abstraction steps needed
that 7→F

⊕ does but not 7→Lc
⊕

reject on Opponent interactions the abstract values validated
by `Lc⊕ but not by `F⊕.

47 / 51

Sumii & Pierce compilation scheme fixed

L·M : F→ Lc embeds some runtime checks at the interaction points:

for Player transition:
I at type X⊕: it seales using σX the value exchanged
I at type X	: it does nothing.

for Opponent transition:
I at type X⊕: it unseales using σX the value provided
I at type X	: it checks for freshness of the value provided.

48 / 51

Polarizing the cryptographic λ-calculus

λσ⊕/	: Add polarization annotations Bytes⊕, Bytes	 to Lc
 positive when we can unseal the value;
 negative when we cannnot.

Polarization may evolve from ⊕ to 	 during the interaction !

Use polarity information to define `λσ⊕/	⊕

Type Erasure * · + : F→ λσ⊕/	:

*X⊕+ , Bytes⊕

*X	+ , Bytes	

49 / 51

Fully-abstract compilation

We consider the extension Fρ and λ
σ⊕/	
ρ with integer mutable store of F

and λσ⊕/	.

Theorem

The polarized compilation scheme L·M from Fρ to λ
σ⊕/	
ρ is fully abstract.

Integer store is needed to prove a key definability result for the trace
semantics of Fρ.

Implement the freshness test of polarization in λσ⊕/	 by storing seals.

50 / 51

Conclusion

A broader setting

Coinductive reasoning: bisimulations, up-to techniques;

Presheaves reasoning on resources: Kripke semantics;

Automated reasoning: symbolic evaluation engine (Higher-Order
Constrained Horn Clauses, CAVOC project).

Richer types:

GADT, Indexed datatypes, disclosable polymorphic references: type
constraints in the Type LTS;

higher-order polymorphism Fω: computing in the Type LTS;

Dependent types: (intentional) synchronization between the
Interactive and the Type LTS?

51 / 51

	Proving Full-Abstraction
	Sumii & Pierce compilation for polymorphism

