Gluing resource nets: inhabitation and inverting the Taylor expansion

Joint work with Luc Pellissier and Lorenzo Tortora de Falco

Giulio Guerrieri

LIS, Aix-Marseille Université, France

SCALP working group days, CIRM Marseille (France), 17 February 2023

Outline

1 Introduction: linear logic in a nutshell

2 Differential linear logic and the Taylor expansion

3 First contribution: The inverse Taylor expansion problem and its solution

4 Second contribution: Inhabitation for MELL nets

Outline

1 Introduction: linear logic in a nutshell

2 Differential linear logic and the Taylor expansion

3) First contribution: The inverse Taylor expansion problem and its solution

4 Second contribution: Inhabitation for MELL nets

Linear Logic (LL, Girard [1987])

The new exponential connectives ! and ? give a logical status to structural rules.

- linear proofs = proof that uses its hypotheses exactly once;
- exponential proofs = proof that uses its hypotheses (potentially) at will.

For lack of unrestricted structural rules, connectives and units are split.

MELL = multiplicative and exponential (?, !) fragment of LL (no additives)

From the sequent calculus to proof-nets

A more parallel and geometric representation of proofs in MELL \Rightarrow graphs.

↓

Not all graphs correspond to proofs \rightsquigarrow geometric criterion to identify the "correct" ones. N.B. In this talk, when talking of proof-nets, we do not care if they are correct or not.

From the sequent calculus to proof-nets

A more parallel and geometric representation of proofs in MELL \Rightarrow graphs.

$$\frac{\overline{\vdash A, A^{\perp}} \stackrel{ax}{\vdash B, B^{\perp}} \stackrel{ax}{\Leftrightarrow} \frac{}{\vdash B, B^{\perp}} \stackrel{ax}{\otimes} \frac{}{\vdash A \otimes B, A^{\perp}, B^{\perp}} \stackrel{\gamma}{\to} \stackrel{ax}{\vdash A \otimes B, A^{\perp} \stackrel{\gamma}{\to} B^{\perp}} \stackrel{\gamma}{\to} \frac{}{\vdash C, C^{\perp}} \stackrel{ax}{\otimes} \frac{}{\vdash (A \otimes B) \otimes C, A^{\perp} \stackrel{\gamma}{\to} B^{\perp}, C^{\perp}} \quad \otimes$$

↓

Not all graphs correspond to proofs \rightsquigarrow geometric criterion to identify the "correct" ones. N.B. In this talk, when talking of proof-nets, we do not care if they are correct or not.

From the sequent calculus to proof-nets

A more parallel and geometric representation of proofs in MELL \Rightarrow graphs.

$$\frac{\overline{\vdash A, A^{\perp}} \quad ax \quad \overline{\vdash B, B^{\perp}}}{\stackrel{\vdash A \otimes B, A^{\perp}, B^{\perp}}{\vdash A \otimes B, A^{\perp} \ \mathfrak{N} B^{\perp}} \quad \mathfrak{N}} \stackrel{ax}{\stackrel{\leftarrow}{} \underbrace{\vdash C, C^{\perp}} \quad ax} \\
\frac{\vdash A \otimes B, A^{\perp} \ \mathfrak{N} B^{\perp}}{\vdash (A \otimes B) \otimes C, A^{\perp} \ \mathfrak{N} B^{\perp}, C^{\perp}} \quad \mathfrak{N}$$

↓

Not all graphs correspond to proofs \rightsquigarrow geometric criterion to identify the "correct" ones. N.B. In this talk, when talking of proof-nets, we do not care if they are correct or not.

MELL proof-nets (1 of 3)

The translations of multiplicative rules (from sequent calculus into proof-nets):

MELL proof-nets (1 of 3)

The translations of multiplicative rules (from sequent calculus into proof-nets):

MELL proof-nets (2 of 3)

The translations of structural rules (from sequent calculus into proof-nets):

• contraction (?c)
$$\begin{array}{c} \pi \\ \vdots \\ +\Gamma,?A,?A \\ \hline \\ +\Gamma,?A \end{array} \end{array} \Rightarrow \begin{array}{c} \pi \\ \hline \\ \Gamma ?A ?A \\ \hline \\ ?c \end{array} \end{array}$$

• weakening (?w)
$$\stackrel{\pi}{\stackrel{\scriptstyle \square}{\stackrel{\scriptstyle \prod}{\stackrel{\scriptstyle \prod}}{\stackrel{\scriptstyle \prod}}}}}}}}}}}}}}}}}}}}} } } } } } }$$
 }

MELL proof-nets (3 of 3)

The translations of exponential rules (from sequent calculus into proof-nets):

Exponential cut-elimination steps

contraction/promotion: duplication of a resource

 $\sim \rightarrow$

 $\sim \rightarrow$

Exponential cut-elimination steps

weakening/promotion: erasure of a resource

(?w) ↓ ₽

dereliction/promotion: access to a resource

Exponential cut-elimination steps

weakening/promotion: erasure of a resource

dereliction/promotion: access to a resource

Curry-Howard correspondence from a LL viewpoint

Computer Science

- Programs
- Single use resources
- Evaluation

Logic

- Proofs
- O structural rules
- Out-elimination

- Power series
- 2 Linear functions
- Equalities

J.-Y. Girard. Normal functors, power series and λ -calculus. APAL, 1988.

Outline

1 Introduction: linear logic in a nutshell

2 Differential linear logic and the Taylor expansion

3 First contribution: The inverse Taylor expansion problem and its solution

4 Second contribution: Inhabitation for MELL nets

Differential Linear Logic: In addition to promotion, three more rules introduce the modality ! (perfectly symmetric to structural rules) \Rightarrow DiLL extends MELL.

Co-dereliction !d expresses in the syntax the semantical derivative: it releases inputs of type !A that can be called exactly once.

A cut of a proof π with a "coderelicted" input $x \Leftrightarrow$ calculating the derivative of π at x, i.e. the best linear approximation of π at x.

"Non-deterministic" choice: if π asks for several copies of x, there are different executions of π on x, depending on which demand is fed with the only copy of x.

Differential Linear Logic: In addition to promotion, three more rules introduce the modality ! (perfectly symmetric to structural rules) \Rightarrow DiLL extends MELL.

Co-dereliction !d expresses in the syntax the semantical derivative: it releases inputs of type !A that can be called exactly once.

A cut of a proof π with a "coderelicted" input $x \Leftrightarrow$ calculating the derivative of π at x, i.e. the best linear approximation of π at x.

"Non-deterministic" choice: if π asks for several copies of x, there are different executions of π on x, depending on which demand is fed with the only copy of x.

Differential Linear Logic: In addition to promotion, three more rules introduce the modality ! (perfectly symmetric to structural rules) \Rightarrow DiLL extends MELL.

Co-dereliction !d expresses in the syntax the semantical derivative: it releases inputs of type !A that can be called exactly once.

A cut of a proof π with a "coderelicted" input $x \Leftrightarrow$ calculating the derivative of π at x, i.e. the best linear approximation of π at x.

"Non-deterministic" choice: if π asks for several copies of x, there are different executions of π on x, depending on which demand is fed with the only copy of x.

Differential Linear Logic: In addition to promotion, three more rules introduce the modality ! (perfectly symmetric to structural rules) \Rightarrow DiLL extends MELL.

Co-dereliction !d expresses in the syntax the semantical derivative: it releases inputs of type !A that can be called exactly once.

A cut of a proof π with a "coderelicted" input $x \Leftrightarrow$ calculating the derivative of π at x, i.e. the best linear approximation of π at x.

"Non-deterministic" choice: if π asks for several copies of x, there are different executions of π on x, depending on which demand is fed with the only copy of x.

Differential nets (diff-nets or DiLL₀-nets or resource nets) DiLL₀ = DiLL \setminus {promotion rule} (no boxes)

Example of a co-structural reduction

• All resources must be used linearly: exactly once, neither duplicated nor erased

• If an argument must be called *n* times, there are *n* copies of it.

G. Guerrieri (AMU)

Inverting the Taylor expansion

Differential nets (diff-nets or DiLL₀-nets or resource nets)

 $DiLL_0 = DiLL \setminus \{promotion \ rule\}$ (no boxes)

Example of a co-structural reduction

All resources must be used linearly: exactly once, neither duplicated nor erased
If an argument must be called *n* times, there are *n* copies of it.

Curry-Howard correspondence from a DiLL viewpoint

Computer Science

- Programs
- Single use resources
- Taylor expansion (sum of infinitely many diff-programs)

Evaluation

Logic

Proofs

- O structural rules
- Taylor expansion (sum of infinitely many diff-proofs)
- Out-elimination

Mathematical Analysis (denotational semantics)

- Analytical functions
- 2 Linear functions
- O Taylor expansion (power series)
- Equalities

Taylor expansion of a MELL proof-net

Taylor expansion \mathcal{T} : MELL $\rightarrow \mathcal{P}(\text{DiLL}_0)$ $\pi \mapsto \mathcal{T}(\pi)$

Idea: each box is replaced by *n* copies of its content, recursively (\forall box, \forall *n* \in \mathbb{N}).

Each element of $\mathcal{T}(\pi)$ has the same conclusions as π

Idea: $T(\pi)$ is the (possibly infinite) set of approximants of π .

Taylor expansion of a MELL proof-net

 $\begin{array}{rcl} \text{Taylor expansion } \mathcal{T}: & \mathsf{MELL} & \to & \mathcal{P}(\mathsf{DiLL}_0) \\ & \pi & \mapsto & \mathcal{T}(\pi) \end{array}$

Idea: each box is replaced by *n* copies of its content, recursively (\forall box, \forall *n* \in \mathbb{N}).

Taylor expansion of a MELL proof-net Taylor expansion \mathcal{T} : MELL $\rightarrow \mathcal{P}(\text{DiLL}_0)$ $\pi \mapsto \mathcal{T}(\pi)$

Idea: each box is replaced by *n* copies of its content, recursively (\forall box, \forall *n* \in \mathbb{N}).

Example: ax ax A [?d <u>|</u> |<u>d</u> ?d $!A^{\perp}$?A <u>?</u>d \?d ?d $\langle |c|$??A ??A ??A ?c ??A

Outline

1 Introduction: linear logic in a nutshell

2 Differential linear logic and the Taylor expansion

3 First contribution: The inverse Taylor expansion problem and its solution

4 Second contribution: Inhabitation for MELL nets

Question: Given a set Π of DiLL₀ nets, is there a MELL net π s.t. $\Pi \subseteq \mathcal{T}(\pi)$?

The question is difficult to answer. Let us see an example (due to Pagani-Tasson).

For any $i \neq j$, ρ_i and ρ_j are in the Taylor expansion of the MELL net R_{ij} . But there is no MELL net R such that $\{\rho_1, \rho_2, \rho_3\} \subseteq \mathcal{T}(R)$.

Question: Given a set Π of DiLL₀ nets, is there a MELL net π s.t. $\Pi \subseteq \mathcal{T}(\pi)$?

The question is difficult to answer. Let us see an example (due to Pagani-Tasson).

For any $i \neq j$, ρ_i and ρ_j are in the Taylor expansion of the MELL net R_{ij} . But there is no MELL net R such that $\{\rho_1, \rho_2, \rho_3\} \subseteq \mathcal{T}(R)$.

Question: Given a set Π of DiLL₀ nets, is there a MELL net π s.t. $\Pi \subseteq \mathcal{T}(\pi)$?

The question is difficult to answer. Let us see an example (due to Pagani-Tasson).

For any $i \neq j$, ρ_i and ρ_j are in the Taylor expansion of the MELL net R_{ij} . But there is no MELL net R such that $\{\rho_1, \rho_2, \rho_3\} \subseteq \mathcal{T}(R)$.

Question: Given a set Π of DiLL₀ nets, is there a MELL net π s.t. $\Pi \subseteq \mathcal{T}(\pi)$?

The question is difficult to answer. Let us see an example (due to Pagani-Tasson).

For any $i \neq j$, ρ_i and ρ_j are in the Taylor expansion of the MELL net R_{ij} . But there is no MELL net R such that $\{\rho_1, \rho_2, \rho_3\} \subseteq \mathcal{T}(R)$.

Question: Given a set Π of DiLL₀ nets, is there a MELL net π s.t. $\Pi \subseteq \mathcal{T}(\pi)$?

The question is difficult to answer. Let us see an example (due to Pagani-Tasson).

For any $i \neq j$, ρ_i and ρ_j are in the Taylor expansion of the MELL net R_{ij} . But there is no MELL net R such that $\{\rho_1, \rho_2, \rho_3\} \subseteq \mathcal{T}(R)$.

Question: Given a set Π of DiLL₀ nets, is there a MELL net π s.t. $\Pi \subseteq \mathcal{T}(\pi)$?

The question is difficult to answer. Let us see an example (due to Pagani-Tasson).

For any $i \neq j$, ρ_i and ρ_j are in the Taylor expansion of the MELL net R_{ij} . But there is no MELL net R such that $\{\rho_1, \rho_2, \rho_3\} \subseteq \mathcal{T}(R)$.

Goal: characterize the sets Π of DiLL₀ nets s.t. $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Idea 0: The previous example shows that we have to consider Π as a whole.

Idea 1: For the empty net ε , we have $\mathcal{T}(\varepsilon) = \{\varepsilon\}$.

Idea 2: Suppose we can define rewritings $\stackrel{a}{\rightarrow}$ on MELL and $\mathcal{P}(\text{DiLL}_0)$ such that $\begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \\ & & & \\ \tau_{\Gamma} & & & \\ R & \stackrel{a}{\longrightarrow} & R' & \\ \end{array} \xrightarrow{(1)} & & \\ & & & \\ R & \stackrel{a}{\longrightarrow} & R' & \\ \end{array} \xrightarrow{(1)} & & \\ & & \\ & & \\ & & \\ R & \stackrel{a}{\longrightarrow} & R' & \\ \end{array} \xrightarrow{(1)} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \xrightarrow{(1)} & & \\$

(the Taylor expansion is a natural transformation between the functors induced by $\stackrel{a}{\rightarrow}$)

Conjecture (glueability criterion)

Let $\Pi \neq \emptyset$ be a set of DiLL₀ nets: $\Pi \xrightarrow{a_1 \dots a_n} \{\varepsilon\}$ iff $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Goal: characterize the sets Π of DiLL₀ nets s.t. $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Idea 0: The previous example shows that we have to consider Π as a whole.

Idea 1: For the empty net ε , we have $\mathcal{T}(\varepsilon) = \{\varepsilon\}$.

Idea 2: Suppose we can define rewritings $\stackrel{a}{\rightarrow}$ on MELL and $\mathcal{P}(\text{DiLL}_{0})$ such that $\begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \\ \hline & & \\ \tau_{\Gamma} & & \\ R & \stackrel{a}{\longrightarrow} & R' & \\ \end{array} \begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \\ \tau_{\Gamma} & & \\ R & \stackrel{a}{\longrightarrow} & R' & \\ \end{array} \begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \\ \tau_{\Gamma'} & \\ R & \stackrel{a}{\longrightarrow} & R' & \\ \end{array} \begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \\ \Pi & \stackrel{a}{\longrightarrow} & \\ \Pi' & \\ \Pi' & \\ \Pi' & \\ \tau_{\Gamma'} & \\ R' & \\ \end{array} \begin{array}{cccc} \Pi & R & \\ \Pi' &$

(the Taylor expansion is a natural transformation between the functors induced by $\stackrel{a}{\rightarrow}$)

Conjecture (glueability criterion)

Let $\Pi \neq \emptyset$ be a set of DiLL₀ nets: $\Pi \xrightarrow{a_1 \dots a_n} \{\varepsilon\}$ iff $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Goal: characterize the sets Π of DiLL₀ nets s.t. $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Idea 0: The previous example shows that we have to consider Π as a whole.

Idea 1: For the empty net ε , we have $\mathcal{T}(\varepsilon) = \{\varepsilon\}$.

Idea 2: Suppose we can define rewritings $\stackrel{a}{\rightarrow}$ on MELL and $\mathcal{P}(\text{DiLL}_0)$ such that $\begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \text{diagrams (1) and (2) commute, where} \\ \tau_{\Gamma} & & \tau_{\Gamma'} & (1) & & \tau_{\Gamma} & & \tau_{\Gamma'} & (2) & & (\Pi, R) \in \mathcal{T}_{\Gamma} \text{ means that } \Pi \subseteq \mathcal{T}(R) \\ R & \stackrel{a}{\longrightarrow} & R' & & R & \stackrel{a}{\longrightarrow} & R' & \text{and the conclusion of } R \text{ is } \Gamma. \end{array}$

(the Taylor expansion is a natural transformation between the functors induced by $\stackrel{a}{\rightarrow}$)

Conjecture (glueability criterion)

Let $\Pi \neq \emptyset$ be a set of DiLL₀ nets: $\Pi \xrightarrow{a_1 \dots a_n} \{\varepsilon\}$ iff $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Goal: characterize the sets Π of DiLL₀ nets s.t. $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Idea 0: The previous example shows that we have to consider Π as a whole.

Idea 1: For the empty net ε , we have $\mathcal{T}(\varepsilon) = \{\varepsilon\}$.

Idea 2: Suppose we can define rewritings $\stackrel{a}{\rightarrow}$ on MELL and $\mathcal{P}(\text{DiLL}_0)$ such that $\begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \text{diagrams (1) and (2) commute, where} \\ \tau_{\Gamma} & & \tau_{\Gamma'} & (1) & & \tau_{\Gamma} & & \tau_{\Gamma'} & (2) & & (\Pi, R) \in \mathcal{T}_{\Gamma} \text{ means that } \Pi \subseteq \mathcal{T}(R) \\ R & \stackrel{a}{\longrightarrow} & R' & & R & \stackrel{a}{\longrightarrow} & R' & \text{and the conclusion of } R \text{ is } \Gamma. \end{array}$

(the Taylor expansion is a natural transformation between the functors induced by $\stackrel{a}{\rightarrow}$)

Conjecture (glueability criterion)

Let $\Pi \neq \emptyset$ be a set of DiLL₀ nets: $\Pi \xrightarrow{a_1...a_n} \{\varepsilon\}$ iff $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.

Idea: The rewriting rules erase a MELL net node-by-node. Each step is labeled by the conclusion where it is applied.

Idea: The rewriting rules erase a MELL net node-by-node. Each step is labeled by the conclusion where it is applied.

Idea: The rewriting rules erase a MELL net node-by-node. Each step is labeled by the conclusion where it is applied.

Idea: The rewriting rules erase a MELL net node-by-node. Each step is labeled by the conclusion where it is applied.

Idea: The rewriting rules for $\mathcal{P}(\text{DiLL}_0)$ mimic the rewriting rules for MELL. The only difference is the rule *box*: (because there is no box in DiLL₀).

 $\stackrel{a}{\Rightarrow} \subseteq \text{DiLL}_0 \times \mathcal{P}(\text{DiLL}_0) \text{ extends to } \stackrel{a}{\Rightarrow} \subseteq \mathcal{P}(\text{DiLL}_0) \times \mathcal{P}(\text{DiLL}_0): \Pi \stackrel{a}{\Rightarrow} \Pi' \text{ means}$ $\Pi' = \bigcup \{ \rho' \subseteq \text{DiLL}_0 \mid \exists \rho \stackrel{a}{\Rightarrow} \rho' \} \text{ (same rule applied to same conclusion of all } \rho \in \Pi)$

G. Guerrieri (AMU)

Inverting the Taylor expansion

Idea: The rewriting rules for $\mathcal{P}(\text{DiLL}_0)$ mimic the rewriting rules for MELL. The only difference is the rule *box_i* (because there is no box in DiLL₀).

 $\stackrel{a}{\to} \subseteq \text{DiLL}_0 \times \mathcal{P}(\text{DiLL}_0)$ extends to $\stackrel{a}{\to} \subseteq \mathcal{P}(\text{DiLL}_0) \times \mathcal{P}(\text{DiLL}_0)$: $\Pi \stackrel{a}{\to} \Pi'$ means $\Pi' = \bigcup \{ \rho' \subseteq \text{DiLL}_0 \mid \exists \rho \stackrel{a}{\to} \rho' \}$ (same rule applied to same conclusion of all $\rho \in \Pi$)

G. Guerrieri (AMU)

Inverting the Taylor expansion

Idea: The rewriting rules for $\mathcal{P}(\text{DiLL}_0)$ mimic the rewriting rules for MELL. The only difference is the rule *box_i* (because there is no box in DiLL₀).

 $\stackrel{a}{\to} \subseteq \text{DiLL}_0 \times \mathcal{P}(\text{DiLL}_0)$ extends to $\stackrel{a}{\to} \subseteq \mathcal{P}(\text{DiLL}_0) \times \mathcal{P}(\text{DiLL}_0)$: $\Pi \stackrel{a}{\to} \Pi'$ means $\Pi' = \bigcup \{ \rho' \subseteq \text{DiLL}_0 \mid \exists \rho \stackrel{a}{\to} \rho' \}$ (same rule applied to same conclusion of all $\rho \in \Pi$)

G. Guerrieri (AMU)

Inverting the Taylor expansion

Idea: The rewriting rules for $\mathcal{P}(\text{DiLL}_0)$ mimic the rewriting rules for MELL. The only difference is the rule *box_i* (because there is no box in DiLL₀).

 $\stackrel{a}{\rightarrow} \subseteq \text{DiLL}_0 \times \mathcal{P}(\text{DiLL}_0) \text{ extends to } \stackrel{a}{\rightarrow} \subseteq \mathcal{P}(\text{DiLL}_0) \times \mathcal{P}(\text{DiLL}_0): \Pi \stackrel{a}{\rightarrow} \Pi' \text{ means} \\ \Pi' = \bigcup \{ \rho' \subseteq \text{DiLL}_0 \mid \exists \rho \stackrel{a}{\rightarrow} \rho' \} \text{ (same rule applied to same conclusion of all } \rho \in \Pi \text{)}.$

G. Guerrieri (AMU)

The importance of being daimon

A daimon $A_1 \dots A_n$ is a placeholder for any DiLL₀ net of conclusion A_1, \dots, A_n .

- We extend the syntax of DiLL₀ nets to allow "surface" daimons.
- We extend the Taylor expansion to $\mathcal{T}^{\bigstar}(R)$ to allow "surface" daimons.
- The rewrite rules for daimons mimic the rewrite rules for MELL.

Lemma (naturality)

The extended Taylor expansion $\mathcal{T}^{\Phi}(R)$ is a natural transformation, that is,

 $\begin{array}{c|c} \Pi & \stackrel{}{\xrightarrow{}} & \Pi' & \text{diagrams (3) and (4) commute, v} \\ \hline & & \\ T_{\Gamma'}^{\mathfrak{B}} & & \\ \hline & & \\ R & & \\ \end{array}$ (4) $\begin{array}{c} (\Pi, R) \in \mathcal{T}_{\Gamma}^{\mathfrak{B}} \text{ means that } \Pi \subseteq \mathcal{T} \\ \text{ and the conclusion of } R \text{ is } \Gamma. \end{array}$

The importance of being daimon

A daimon $A_1 \dots A_n$ is a placeholder for any DiLL₀ net of conclusion A_1, \dots, A_n .

- \bullet We extend the syntax of DiLL_0 nets to allow "surface" daimons.
- We extend the Taylor expansion to $\mathcal{T}^{\mathbf{F}}(R)$ to allow "surface" daimons.
- The rewrite rules for daimons mimic the rewrite rules for MELL.

Lemma (naturality)

The extended Taylor expansion $\mathcal{T}^{ar{}}(R)$ is a natural transformation, that is,

diagrams (3) and (4) commute, where (Π, R) $\in \mathcal{T}_{\Gamma}^{\bigstar}$ means that $\Pi \subseteq \mathcal{T}^{\bigstar}(R)$ and the conclusion of R is Γ .

The importance of being daimon

A daimon $A_1 \dots A_n$ is a placeholder for any DiLL₀ net of conclusion A_1, \dots, A_n .

- \bullet We extend the syntax of DiLL_0 nets to allow "surface" daimons.
- We extend the Taylor expansion to $\mathcal{T}^{\mathbf{F}}(R)$ to allow "surface" daimons.
- The rewrite rules for daimons mimic the rewrite rules for MELL.

Lemma (naturality)

The extended Taylor expansion $\mathcal{T}^{\mathbf{H}}(R)$ is a natural transformation, that is,

$$\begin{array}{cccc} \Pi & \stackrel{a}{\longrightarrow} & \Pi' & \Pi & \stackrel{a}{\longrightarrow} & \Pi' \\ \tau_{\Gamma}^{\underline{x}} \downarrow & \tau_{\Gamma'}^{\underline{x}} \downarrow & (3) & \tau_{\Gamma}^{\underline{x}} \downarrow & \tau_{\Gamma'}^{\underline{x}} \downarrow & (4) \\ R & \stackrel{a}{\longrightarrow} & R' & R & \stackrel{a}{\longrightarrow} & R' \end{array}$$

diagrams (3) and (4) commute, where $(\Pi, R) \in \mathcal{T}_{\Gamma}^{\mathfrak{P}}$ means that $\Pi \subseteq \mathcal{T}^{\mathfrak{P}}(R)$ and the conclusion of R is Γ .

Our solution to the inverse Taylor expansion problem

Lemma (termination)

For any MELL net R there is a rewriting $R \xrightarrow{a_1 \dots a_n}{\cdots} \varepsilon$.

Def. A set Π of DiLL₀ nets is glueable if there is a rewriting $\Pi \xrightarrow{a_1...a_n} \{\varepsilon\}$. Π is cut-free glueable if it is glueable and $a_i \neq cut_j$ for all $1 \leq i \leq n$.

Theorem (glueability criterion; G., Pellissier, Tortora de Falco [2020])

Let $\Pi \neq \emptyset$ be a set of DiLL₀ nets without daimons.

- **I** is glueable if and only if $\Pi \subseteq \mathcal{T}(R)$ for some MELL net *R*.
- ⓐ Π is cut-free glueable if and only if $\Pi \subseteq \mathcal{T}(R)$ for some cut-free MELL net *R*.

Proof. If Π is glueable, then the diagram commutes for some MELL net R s.t. $\Pi \subseteq \mathcal{T}(R)$ as Π is without daimons.

 $\Pi \xrightarrow{a_1 \dots a_n} \{\varepsilon\}$ MELL net R, R $\xrightarrow{a_1...a_n} \varepsilon$ by termination, and the $\mathcal{T}_{\Gamma}^{\mathbf{A}}$

Our solution to the inverse Taylor expansion problem

Lemma (termination)

For any MELL net R there is a rewriting $R \xrightarrow{a_1 \dots a_n} \varepsilon$.

Def. A set Π of DiLL₀ nets is glueable if there is a rewriting $\Pi \xrightarrow{a_1...a_n} \{\varepsilon\}$. Π is cut-free glueable if it is glueable and $a_i \neq cut_j$ for all $1 \leq i \leq n$.

Theorem (glueability criterion; G., Pellissier, Tortora de Falco [2020])

Let $\Pi \neq \emptyset$ be a set of DiLL₀ nets without daimons.

- **1** If is glueable if and only if $\Pi \subseteq \mathcal{T}(R)$ for some MELL net R.
- ⓐ Π is cut-free glueable if and only if $\Pi \subseteq \mathcal{T}(R)$ for some cut-free MELL net *R*.

Proof. If Π is glueable, then the diagram commutes for some MELL $\mathcal{T}_{\Gamma}^{\mathfrak{B}}$ net R s.t. $\Pi \subseteq \mathcal{T}(R)$ as Π is without daimons.

 $\Pi \xrightarrow{a_1 \dots a_n} \{\varepsilon\}$ MELL net R, R $\xrightarrow{a_1...a_n} \varepsilon$ by termination, and the $\mathcal{T}_{\Gamma}^{\clubsuit}$

Our solution to the inverse Taylor expansion problem

Lemma (termination)

For any MELL net R there is a rewriting $R \xrightarrow{a_1 \dots a_n}{\cdots} \varepsilon$.

Def. A set Π of DiLL₀ nets is glueable if there is a rewriting $\Pi \xrightarrow{a_1...a_n} \{\varepsilon\}$. Π is cut-free glueable if it is glueable and $a_i \neq cut_j$ for all $1 \leq i \leq n$.

Theorem (glueability criterion; G., Pellissier, Tortora de Falco [2020])

Let $\Pi\!\neq\!\emptyset$ be a set of DiLL_0 nets without daimons.

- **③** Π is glueable if and only if $\Pi \subseteq \mathcal{T}(R)$ for some MELL net *R*.
- **2** Π is cut-free glueable if and only if $\Pi \subseteq \mathcal{T}(R)$ for some cut-free MELL net R.

Proof. If Π is glueable, then the diagram commutes for some MELL net R s.t. $\Pi \subseteq \mathcal{T}(R)$ as Π is without daimons.

If $\Pi \subseteq \mathcal{T}(R)$ for some MELL net $R, R \xrightarrow{a_1...a_n} \varepsilon$ by termination, and the $\tau_{\Gamma^{s_1}} \downarrow \qquad \tau_{\varepsilon} \xrightarrow{a_1...a_n} \varepsilon$ diagram commutes. $R \xrightarrow{a_1...a_n} \varepsilon$

Let Π be an infinite set of DiLL_0 nets s.t. every finite subset of Π is glueable.

Question: Is Π itself glueable too? Not necessarily. There are two cases.

Infinite in width: Π is glueable and so Π ⊆ T(R) for some MELL net R (infinity is related to the number of copies chosen for the boxes of R). Ex.:

$$\Pi = \left\{ \begin{array}{c} \Psi & \Psi \\ \downarrow & \ddots & \downarrow \\ \Psi \\ \downarrow & \downarrow \\ 11 \end{array} \middle| n \in \mathbb{N} \right\} \xrightarrow{box_1} \left\{ \begin{array}{c} \Psi \\ \downarrow \\ 1 \end{array} \right\} \xrightarrow{\mathbf{1}} \left\{ \varepsilon \right\} \qquad R = \left[\begin{array}{c} \Psi \\ \downarrow \\ \downarrow \\ \downarrow \\ \Psi \\ \downarrow \\ 11 \end{array} \right]$$

Infinite in depth: Π is not glueable (Π would be in the Taylor expansion of a "infinite" MELL net with infinitely nested boxes). Ex.:

Let Π be an infinite set of DiLL₀ nets s.t. every finite subset of Π is glueable.

Question: Is Π itself glueable too? Not necessarily. There are two cases.

Infinite in width: Π is glueable and so Π ⊆ T(R) for some MELL net R (infinity is related to the number of copies chosen for the boxes of R). Ex.:

Infinite in depth: Π is not glueable (Π would be in the Taylor expansion of a "infinite" MELL net with infinitely nested boxes). Ex.:

Let Π be an infinite set of DiLL₀ nets s.t. every finite subset of Π is glueable.

Question: Is Π itself glueable too? Not necessarily. There are two cases.

 Infinite in width: П is glueable and so П ⊆ T(R) for some MELL net R (infinity is related to the number of copies chosen for the boxes of R). Ex.:

$$\Pi = \left\{ \begin{array}{c} \Psi & \Psi \\ 1 & \ddots & 1 \\ \Psi \\ 1 & \ddots & 1 \\ 1 & 1 \end{array} \middle| n \in \mathbb{N} \right\} \xrightarrow{box_1} \left\{ \begin{array}{c} \Psi \\ 1 \\ 1 \end{array} \right\} \xrightarrow{\mathbf{1}} \left\{ \varepsilon \right\} \qquad R = \left[\begin{array}{c} \Psi \\ 1 \\ 1 \\ \Psi \\ 1 \\ 1 \end{array} \right]$$

Infinite in depth: Π is not glueable (Π would be in the Taylor expansion of a "infinite" MELL net with infinitely nested boxes). Ex.:

Let Π be an infinite set of DiLL₀ nets s.t. every finite subset of Π is glueable.

Question: Is Π itself glueable too? Not necessarily. There are two cases.

 Infinite in width: П is glueable and so П ⊆ T(R) for some MELL net R (infinity is related to the number of copies chosen for the boxes of R). Ex.:

$$\Pi = \left\{ \begin{array}{c} \Psi & \Psi \\ 1 & \ddots & 1 \\ \Psi \\ 1 & \ddots & 1 \\ 1 & 1 \end{array} \middle| n \in \mathbb{N} \right\} \xrightarrow{box_1} \left\{ \begin{array}{c} \Psi \\ 1 \\ 1 \end{array} \right\} \xrightarrow{1_1} \left\{ \varepsilon \right\} \qquad R = \left[\begin{array}{c} \Psi \\ 1 \\ 1 \\ \Psi \\ 1 \end{array} \right]$$

Infinite in depth: Π is not glueable (Π would be in the Taylor expansion of a "infinite" MELL net with infinitely nested boxes). Ex.:

Deciding the finite inverse Taylor expansion problem

Glueability criterion characterizes the existence of something with the existence of something else \rightsquigarrow Not very satisfying...

But in the finite case, it induces a decision procedure!

Theorem (G., Pellissier, Tortora de Falco [2022])

The finite inverse Taylor expansion problem (see below) is decidable. **Data:** A finite set Π of DiLL₀ net without \mathbf{A} ; **Question:** Does there exist a MELL net R such that $\Pi \subseteq \mathcal{T}(R)$?

Proof (sketch).

Challenge: restrict the search space for rewritings to guarantee termination.

- As Π is finite, Π is not infinite in depth (its rewriting would not terminate).
- Standardization lemma for rewriting (any rewriting to {ε} can be rearranged in a particular form) → It excludes infinite rewritings for "silly reasons".

Deciding the finite inverse Taylor expansion problem

Glueability criterion characterizes the existence of something with the existence of something else \rightsquigarrow Not very satisfying...

But in the finite case, it induces a decision procedure!

Theorem (G., Pellissier, Tortora de Falco [2022])

The finite inverse Taylor expansion problem (see below) is decidable. **Data:** A finite set Π of DiLL₀ net without \mathbf{A} ; **Question:** Does there exist a MELL net R such that $\Pi \subseteq \mathcal{T}(R)$?

Proof (sketch).

Challenge: restrict the search space for rewritings to guarantee termination.

- As Π is finite, Π is not infinite in depth (its rewriting would not terminate).
- Standardization lemma for rewriting (any rewriting to {ε} can be rearranged in a particular form) → It excludes infinite rewritings for "silly reasons".

Deciding the finite inverse Taylor expansion problem

Glueability criterion characterizes the existence of something with the existence of something else \rightsquigarrow Not very satisfying. . .

But in the finite case, it induces a decision procedure!

Theorem (G., Pellissier, Tortora de Falco [2022])

The finite inverse Taylor expansion problem (see below) is decidable. **Data:** A finite set Π of DiLL₀ net without \mathbf{A} ; **Question:** Does there exist a MELL net R such that $\Pi \subseteq \mathcal{T}(R)$?

Proof (sketch).

Challenge: restrict the search space for rewritings to guarantee termination.

- **3** As Π is finite, Π is not infinite in depth (its rewriting would not terminate).
- Standardization lemma for rewriting (any rewriting to {ε} can be rearranged in a particular form) → It excludes infinite rewritings for "silly reasons".

Outline

1 Introduction: linear logic in a nutshell

2 Differential linear logic and the Taylor expansion

3 First contribution: The inverse Taylor expansion problem and its solution

4 Second contribution: Inhabitation for MELL nets

The type inhabitation problem for (cut-free) MELL nets

Let Γ be a list of MELL formulas.

Question: Is there a MELL net R with conclusion Γ ?

If R is with cuts, the answer is trivially yes. Indeed, for any MELL formula A:

True question: Is there a cut-free MELL net R with conclusion Γ ? Not trivial.

Idea: $R \xrightarrow{a_1,...,a_n} \varepsilon$ (by termination); the rewriting $\xrightarrow{a_1,...,a_n}$ "encodes" a way to build R and can be transferred to DiLL₀, in particular to daimons (by naturality).

The type inhabitation problem for (cut-free) MELL nets

Let Γ be a list of MELL formulas.

Question: Is there a MELL net R with conclusion Γ ?

If R is with cuts, the answer is trivially yes. Indeed, for any MELL formula A:

True question: Is there a cut-free MELL net R with conclusion Γ ? Not trivial.

Idea: $R \xrightarrow{a_1,...,a_n} \varepsilon$ (by termination); the rewriting $\xrightarrow{a_1,...,a_n}$ "encodes" a way to build R and can be transferred to DiLL₀, in particular to daimons (by naturality).

The type inhabitation problem for (cut-free) MELL nets

Let Γ be a list of MELL formulas.

Question: Is there a MELL net R with conclusion Γ ?

If R is with cuts, the answer is trivially yes. Indeed, for any MELL formula A:

True question: Is there a cut-free MELL net R with conclusion Γ ? Not trivial.

Idea: $R \xrightarrow{a_1,...,a_n} \varepsilon$ (by termination); the rewriting $\xrightarrow{a_1,...,a_n}$ "encodes" a way to build R and can be transferred to DiLL₀, in particular to daimons (by naturality).

G. Guerrieri (AMU)

Characterizing type inhabitation in cut-free MELL nets

For any list A_1, \ldots, A_n of MELL formulas, we set $\mathbf{\Psi}_{A_1, \ldots, A_n} = A_1 \cdots A_n$.

Theorem (type inhabitation; G., Pellissier Tortora de Falco [2020]

Let Γ be a list of MELL formulas. There is a cut-free MELL net of conclusion Γ if and only if $\{{\bf H}_{\Gamma}\}$ is cut-free glueable.

Given a list Γ of formulas, consider the following procedure:

G for all n > 0, consider all cut-free rewritings from {\mathbf{H}_{\Gamma}} with at most n steps;
as soon as {ε} is reached, accept.

As only the rewrite rule $\stackrel{\scriptscriptstyle (C_i}{\leadsto}$ can create infinite rewriting, this procedure

- semidecides the type inhabitation problem for cut-free MELL nets;
- decides the type inhabitation problem for cut-free contraction-free MELL nets

Characterizing type inhabitation in cut-free MELL nets

For any list A_1, \ldots, A_n of MELL formulas, we set $\mathfrak{P}_{A_1, \ldots, A_n} = A_1 \cdots A_n$.

Theorem (type inhabitation; G., Pellissier Tortora de Falco [2020]

Let Γ be a list of MELL formulas. There is a cut-free MELL net of conclusion Γ if and only if $\{\mathbf{H}_{\Gamma}\}$ is cut-free glueable.

Given a list Γ of formulas, consider the following procedure:

Gor all n > 0, consider all cut-free rewritings from {Ψ_Γ} with at most n steps;
 Gos as soon as {ε} is reached, accept.

As only the rewrite rule $\stackrel{\scriptscriptstyle (C_i}{\leadsto}$ can create infinite rewriting, this procedure

- semidecides the type inhabitation problem for cut-free MELL nets;
- decides the type inhabitation problem for cut-free contraction-free MELL nets

Characterizing type inhabitation in cut-free MELL nets

For any list A_1, \ldots, A_n of MELL formulas, we set $\mathbf{A}_{A_1, \ldots, A_n} = A_1 \cdots A_n$.

Theorem (type inhabitation; G., Pellissier Tortora de Falco [2020]

Let Γ be a list of MELL formulas. There is a cut-free MELL net of conclusion Γ if and only if $\{\mathbf{H}_{\Gamma}\}$ is cut-free glueable.

Given a list Γ of formulas, consider the following procedure:

of all n > 0, consider all cut-free rewritings from {Ψ_Γ} with at most n steps;
 of as soon as {ε} is reached, accept.

As only the rewrite rule $\xrightarrow{?c_i}$ can create infinite rewriting, this procedure

- semidecides the type inhabitation problem for cut-free MELL nets;
- decides the type inhabitation problem for cut-free contraction-free MELL nets

A longstanding open problem is whether provability in MELL is decidable or not.

Given a list Γ of formulas, consider the following procedure:

• for all n > 0, consider all cut-free rewritings from $\{\mathbf{\Psi}_{\Gamma}\}$ with at most n steps;

If { ε } is reached, build the cut-free MELL net R from the rewriting;

- I check if R is correct for a suitable correctness criterion for MELL (decidable);
- (a) as soon as a correct (cut-free) MELL proof-structure is found, accept.

As only the rewrite rule $\xrightarrow{?c_i}$ can create infinite rewriting, this procedure

- semidecides the provability on MELL;
- decides the provability on MELL without contractions.

Disclaimer: This is not a new result (use MELL sequent calculus)! What is new? The analogy between the type inhabitation problem for cut-free MELL nets and the provability problem in MELL: no role for correctness.

Question: Can be reduce decidability of provability in MELL to type inhabitation?

A longstanding open problem is whether provability in MELL is decidable or not.

Given a list Γ of formulas, consider the following procedure:

- for all n > 0, consider all cut-free rewritings from $\{\mathbf{\Psi}_{\Gamma}\}$ with at most n steps;
- **3** if $\{\varepsilon\}$ is reached, build the cut-free MELL net *R* from the rewriting;
- So check if R is correct for a suitable correctness criterion for MELL (decidable);
- as soon as a correct (cut-free) MELL proof-structure is found, accept.

As only the rewrite rule $\stackrel{(C_i)}{\longleftrightarrow}$ can create infinite rewriting, this procedure

- semidecides the provability on MELL;
- decides the provability on MELL without contractions.

Disclaimer: This is not a new result (use MELL sequent calculus)! What is new? The analogy between the type inhabitation problem for cut-free MELL nets and the provability problem in MELL: no role for correctness.

Question: Can be reduce decidability of provability in MELL to type inhabitation?

A longstanding open problem is whether provability in MELL is decidable or not.

Given a list Γ of formulas, consider the following procedure:

- **(**) for all n > 0, consider all cut-free rewritings from $\{\mathbf{M}_{\Gamma}\}$ with at most n steps;
- **3** if $\{\varepsilon\}$ is reached, build the cut-free MELL net *R* from the rewriting;
- So check if R is correct for a suitable correctness criterion for MELL (decidable);
- **o** as soon as a correct (cut-free) MELL proof-structure is found, accept.

As only the rewrite rule $\xrightarrow{?c_i}$ can create infinite rewriting, this procedure

- semidecides the provability on MELL;
- decides the provability on MELL without contractions.

Disclaimer: This is not a new result (use MELL sequent calculus)! What is new? The analogy between the type inhabitation problem for cut-free MELL nets and the provability problem in MELL: no role for correctness.

Question: Can be reduce decidability of provability in MELL to type inhabitation?

A longstanding open problem is whether provability in MELL is decidable or not.

Given a list Γ of formulas, consider the following procedure:

- **(**) for all n > 0, consider all cut-free rewritings from $\{\mathbf{\mathfrak{B}}_{\Gamma}\}$ with at most n steps;
- **2** if $\{\varepsilon\}$ is reached, build the cut-free MELL net *R* from the rewriting;
- check if R is correct for a suitable correctness criterion for MELL (decidable);
- **o** as soon as a correct (cut-free) MELL proof-structure is found, accept.

As only the rewrite rule $\xrightarrow{?c_i}$ can create infinite rewriting, this procedure

- semidecides the provability on MELL;
- decides the provability on MELL without contractions.

Disclaimer: This is not a new result (use MELL sequent calculus)! What is new? The analogy between the type inhabitation problem for cut-free MELL nets and the provability problem in MELL: no role for correctness.

Question: Can be reduce decidability of provability in MELL to type inhabitation?