
Programme for a rational
reconstruction of ownership in PLs

Guillaume Munch-Maccagnoni

SCALP meeting, Marseille, February 15th 2023

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Introduction

• How to gain further understanding of ownership in programming
languages via models in denotational semantics

• About my incursion in programming languages after this discovery
• Challenges (technical, methodological)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Introduction

Goals
• Present a set of research questions motivated by language design

problems
• Locate this effort within an approach to research in PLs that mixes

data-gathering from the real world, and a critical view of the relationship
between semantics and programming

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Ownership/Uniqueness
Control of aliasing

let m = Array.make 4 (Array.make 4 0);;
val m : int array array =
[|[|0; 0; 0; 0|];
[|0; 0; 0; 0|];
[|0; 0; 0; 0|];
[|0; 0; 0; 0|]|]

m.(0).(0) <- 128;;
- : unit = ()
m;;
- : int array array =
[|[|128; 0; 0; 0|];
[|128; 0; 0; 0|];
[|128; 0; 0; 0|];
[|128; 0; 0; 0|]|]

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Ownership/Uniqueness
Control of aliasing

Control of aliasing:
• Reasoning about state
• Concurrent programming
• Optimizations (a lot more of valid program transformations)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Ownership/Uniqueness
Resource management (bytecomp/bytelink.ml (Nov. 1996))

Note: example found by systematic audit of patterns of resource-management
in the OCaml compiler implementation

Ownership/Uniqueness
Resource management (bytecomp/bytelink.ml (July 2018))

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Ownership/Uniqueness
Resource management

Resource management
• Memory management in languages without GC
• Usage of a value respects a protocol (e.g. file, network connection)
• Interoperability between languages
• Fault tolerance (exception handling)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Ownership/Uniqueness
Elephant in the room

The Rust programming language represents a breakthrough for all these
questions

• Resource-management inspired by C++11
• Type system for ownership & borrowing

(Matsakis and Klock II, 2014; Anderson et al., 2016)
Did it have to arise outside of academia? Why?

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Ownership/Uniqueness
Approaches in this area

• Linear type systems: type systems that count how many times a variable
appears
(Wadler, 1991, and others)

• Program logics, e.g. separation logic: quite successful in verifying non-toy
systems including Rust
(Reynolds, 1978; O’Hearn et al., 1999, and others)

• Ownership type systems (OOP & systems communities): greater focus on
language design, more clearly a source of inspiration for Rust
(Clarke and Wrigstad, 2003; Jim et al., 2002, and others)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Ownership/Uniqueness
Approaches in this area

In Rust/C++, linearity and ownership are emergent phenomena of types with
destructors (resource types/ownership types).
Other notions follow intuitively from them in Rust:
1. Region typing (“borrows”),
2. Uniqueness (“linear borrows”),
3. External uniqueness/linear abstract data types (“interior mutability”).

What does semantics have to say about ownership?
Can this intuitive hierarchy be explained in semantics?

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions

Rational reconstructions
• Build an understanding via a refined, simplistic models where features

stand by themselves
• Connect with existing bodies of knowledge (e.g. λ-calculus and its

semantics as a bridge between intuitionistic logic and functional
programming)

• Opinionated theories (not some program logics that you could apply to
any programming language good or bad)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
Example: continuations

Continuations: Historically lots of different approaches
• Semantics: categorical (monad, comonad), translations (CPS,

Gödel-Gentzen, into linear logic)
• Many (!) different formalisms
• Many different questions: programming (control operators), logic

(classical translations)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
Example: continuations

Rational reconstructions:
• Girard (1991), Danos et al. (1997): a logic that generalizes all (many)

approaches
• Thielecke (1997), Levy (1999) connecting with the study of effects
• Curien and Herbelin (2000): idem for syntaxes/calculi
• Melliès: building blocks that one composes

(Melliès and Tabareau, 2010)

C

L
%%

⊥dd
M

L

op
''

⊥ee
op

Lop

M
((

⊥ff
L

Cop

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
Linear call-by-push-value

C

L
%%

⊥dd
M

L

op
''

⊥ee
op

Lop

M
((

⊥ff
L

Cop

• Linear call-by-push-value (2016): how to combine resource modalities and
effect modalities

• Girard: Logic of Unity (1993). Mix linear & non-linear continuations
(Discussed recently: when can we duplicate continuations in OCaml?)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
A resource modality for RAII

• Combette & M. (2018). Connection between types with destructors and
ordered logic.

V/TI
&&

⊥ff

□
V

♢
))

⊥ff VT(−⊕E)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
Co-slice category O= V/TI

• T strong monad on V

• Objects: (A,δ) where δ ∈ V(A,TI). (Interpretation: to any type and any
effectful destruction action δ : A → TI, one associates a new type (A,δ)).

• Morphisms: f : (A,δ)→ (B,δ′) iff f ∈ V(A,B) and δ= δ′ ◦ f .
• Algebras of the comonad −×TI on V.
• Fact: Any monoid structure on M ∈ V induces a monoidal structure on
O= V/M.

TI ⊗TI → TI

I → TI

Concretely, (A,δ)⊗ (B,δ′)= (A⊗B,λ(x, y).δx;δ′ y).

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
A resource modality for RAII

• A type-based abstraction. Attach a destructor to a type, to create a new
type.

• Ordered data types (rather than linear or affine)

A⊗B ≇B⊗ A

• Still affine at the level of provability!

A⊗B ↔ B⊗ A

• Solves open question of combining linearity and control effects (with lots
of thanks to the inspiration from C++ RAII)

♢A →□(A →♢B)→♢B

“One needs to know how to discard a computation in order to propagate an
exception”

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
A resource modality for RAII

“Are types in Rust linear or affine?”
Our model is clear:

• Linear at the level of values
• Ordered at the level of types
• Affine at the level of provability

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
A resource modality for RAII

List(A)=µX .(1⊕ (A⊗ X))

Tsil(A)=µX .(1⊕ (X ⊗ A))

• The stack overflow issue
• Open problem in C++, Rust, Swift...
• Typed pointer reversal: solution using tools from functional programming

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Rational reconstructions
A resource modality for RAII

List(A)=µX .(1⊕ (A⊗ X))

Tsil(A)=µX .(1⊕ (X ⊗ A))

• The stack overflow issue
• Open problem in C++, Rust, Swift...
• Typed pointer reversal: solution using tools from functional programming

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Research questions
MLwith resources?

How to add first-class resources to ML?
Mix several resources and effects in the same language

O
&

��⊥WW
V

%%
⊥dd C

M

--

⊥
mm

type t = Res u with destructor f
&t

(Note: & is meant to denote borrowing (Rust), not cartesian product.)
e.g. Kind system inspired by polarities (Girard, 1991, 1993).

• Qualitative linearity (traits in Rust), as opposed to quantitative linearity
(counting how many times variables are used)

• Nevertheless expected to be compatible with lessons from affine type
systems

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Research questions
Types of closures

Reconstruct what we already know
Example: types of closures

A →p B def= □p(A _ B) (p ∈ {M,O})

• The kind of a function does not depend on inputs and outputs
• Distinction between functions and closures
• Different kinds of closures (depending on what is in the closure)
• In Rust: Fn, FnOnce, FnMut

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Research questions
Types of closures II

Making predictions
Tov and Pucella (2011): practical affine types (kind system with principal
kinds)

t →〈α〉 u (〈α〉 ∈ {A,U})

• We do not reconstruct such a refined type system. . .
• . . . but, they have noticed that currified functions tend to accumulate

annotations in a predictable manner

∀αβ(α→β→〈α〉 t →〈α〉+〈β〉 u)

The model predicts a way by which by introducing explicitly a primitive
(“call-by-push-value”) arrow, one can remove superfluous annotations

∀αβ(α_β_ t _ u)

(see also the treatment of currying in F#)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Research questions
Borrowing

Challenges to test the model
What is borrowing? How does it appear?

• Hypothesis: “&” (borrowing) as forgetful functor from ownership types to
the base category (linear/copiable)

&(A⊗B)=&A⊗&B

How does it prevent use-after-free if the result of a borrow is a copiable type?
• Related to a programming problem: how can I define resources starting

from types all copiable?
• Hypothesis: mix of kind system + destructors + borrowing + linear

abstract data types
⇒ Methodological limits to the “toy system” approach

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Research questions
Andmore

Other open problems interesting to look at from this angle
• Interrupts & failure recovery (← experience from personal contributions

in the implementation in OCaml, 2018-2023)
• Limitations of Rust borrow checker (← experience from implementing an

interface between Rust & OCaml, 2020-2023)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Elephant in the room
“Why did Rust have to appear outside of academia?”

Ownership in Rust =
• Heritage from C++11. Destructors let emerge a notion of linearity through

which all other notions follow.
• Type system for ownership (from systems programming & OOP + a

special ingredient: linear borrows).
A “reboot” of C++ with better static type-checking (though not initially
conceived in this way).

• and more (e.g. mixing the C++ and Erlang exception-safety models)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Elephant in the room
“Why did Rust have to appear outside of academia?”

• A LNCS book on exception-handling in the series “State-of-the-Art
Survey” (Dony et al., 2006) never mentions the C++ papers on exception
safety, and almost never the C++ destructors

• Visionary papers by Baker (1994; 1995) proposed a link between
resources (incl. C++ destructors) and linear logic. . . yet were never cited
in the functional programming community

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Elephant in the room
“Why did Rust have to appear outside of academia?”

“It is not the ultimate purpose of a programming language to get
publications in POPL—I’ve done one of those by mistake. The purpose
is the applications I showed you. Feedback is really important, you
have to talk and listen, talk and listen. Otherwise you just design the
perfect solution to the wrong problem.”

Stroustrup, University of Cambridge Churchill College Annual Computer
Science Lecture, 2016

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Challenges in language design

• “Toy language” approach: good or bad?
• Some phenomena appear when mixing (too) many features at once

(e.g. Tov & Pucella’s affine calculus + destructors + borrowing + linear
abstract types)

• Too complex for semantics and too simple for programming practice
• Creates experts in implementing type systems and using proof assistants

(cf. drift towards type theory in PL research)
• Considerations ranging from logic to computer architecture,

• e.g. ML: polymorphism from lambda-calculus, cache locality of minor heap.

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Challenges in language design

• Requires lots of knowledge about the diverse problems faced by
programmers.

• Emergent code patterns: Is it possible to separate formal methods from
language design?

• Diminishing returns of the experience of writing compilers for the PL
researcher?

• C++ as a 40-year-long experiment?
• Difference between programs written by users, and what the language

implementor imagines the programs should look like.

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Challenges in language design

• Low scientific standards in some communities
• Narrative-based papers vs. evidence-based
• Poor bibliographical effort (e.g. laundry list of papers at the end)
• There is more to science than making a falsifiable claim (e.g. type safety)

Stefik & Hanenberg, “Methodological Irregularities in Programming
Language Research” (2017)

• What standards of evidence?
Should evidence-based mean randomized control trials (Stefik &
Hanenberg)? (!)

• “it is perverse to criticize conferences such as ICFP for a “lack [of] empirical
foundation”, when the papers published there mostly do not make empirical
claims” (Gibbons, 2018) (!)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Possible solutions

Draw lessons from good examples of practical experiments
Personal favourites: Tofte et al. (2004); Tov and Pucella (2011)

• Toy languages that pretend to be a model and a mini-language at the
same time (successful or not) are also non-reusable.

• Must practical experiments in language design be a multi-collaborator
effort spanning many years?

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Possible solutions

To allow more distance between model/toy formalism and actual language
proposal, there must be a rational (not necessarily technical) discourse to
connect to programming languages

• Dare talking about empirical language design criteria (lots of wisdom
remains unsaid due to the fear of unsufficient technicity)

• e.g. ML “sweet spot”
• Be sceptical of naive match between a mathematical (e.g. categorical)

structure and a proposed new feature, without empirical input
(see also “the romance of mathematics” about monads in Petricek, 2018)

• Responsibility for the “owners” of the means of production of knowledge
(e.g. languages with critical mass to gather user feedback and experience)

This community is already well-armed on the mathematical side (and shows
that it can have high standards).

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Possible solutions

Try a way to study a programming language in parts. For instance, analyse
programming languages in 3 layers:

1: Static assurances

2: Language abstractions

3: Computational behaviour

• Suggestion: find a way to focus on one aspect, without losing sight of
others

• Be sceptical of works that cherry-pick without a plan to address others
aspects (e.g. assuming the existence of a magical compiler that does all
the algorithmic thinking)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Possible solutions

Pay attention to emerging code patterns
• Pay attention to non-academic languages & non-academic uses of

programming languages? (caveats)
• Consider programs written by users as a source of knowledge about

programming problems (how awful you find the code is beyond the point)
Avoid creating a religion around a set of design choices.

• State, exceptions... not written in stone
• Be wary of biases and intrinsic conflicts of interest in language design and

evolution
Stefik & Hannenberg, “The Programming Language Wars: Questions and
Responsibilities for the Programming Language Community”, (2014)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Possible solutions

What role for Curry-Howard?
• “Linear types” are one idea that I believe receives more attention than it

deserves
• like trying to invent the notion of side effects by staring at the signature of

monads

Note: I use the terminology “linear values” (linearity of computation also
exists, see strictness or Linear Haskell)

Go back at our roots
• Structured programming (e.g. Dijkstra):

• Correctness should follow from the structure of the program
• The structures provided by the programming language should facilitate

reasoning about the program

Priestley, “The Algol Research Programme” (2011).

Ownership Rational reconstructions Research questions Challenges Natural language evolution

Possible solutions

It is now possible, more than ever, for members of this community to have
access to programming languages problems without PL researcher
intermediaries.

• Accept that a researcher’s role is sometimes “only” to create and
disseminate knowledge about what exists and not necessarily to invent
new language features.
Maybe later one will be able to make modest observations (e.g. propose
that “&” should be a homomorphism)

• Do not underestimate your abilities and legitimacy
(cf. diminishing returns of the experience of writing compilers over the
decades, blind spot of formal methods regarding emergent code patterns)

• Suggestion: linear logicians, take some time to learn Rust!

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
Stroustrup’s theory of natural language evolution

“C++ is built on the idea of incremental growth and the gradual replacement of
older facilities with newer ones where appropriate.” (Stroustrup, 2020)
1. Evolution a language gradually based on emerging needs, come together

to agree on a way forward
2. In turn, new usages found for features

(Also arguably the approach of Rust.)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
Stroustrup’s theory of natural language evolution

1) Evolution a language gradually based on emerging needs, come together to
agree on a way forward

• C++11: Move semantics
• Rust: Linear borrows (cf. INHTPAMA)

While preserving backwards-compatibility
• Distinguish the language specification from the living language

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
Stroustrup’s theory of natural language evolution

2) In turn, new usages found for features
• C++: Smart pointers (getting rid of new and delete, of the “rule of 5”, etc.),

transactions as resources
• Rust: Interior mutability, typestate with borrowing

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
Stroustrup’s theory of natural language evolution

A theory of programming language design and evolution
• rooted in the socio-technological context of programming languages
• rooted both in experience and the research programme of our community

(via structured programming)
• that seeks relative claims (within one language), where one cannot find

evidence for absolute ones (between all languages)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
Seek relative claims, when one cannot find evidence for absolute ones

“Unfortunately, data necessary to resolve “paradigm choices” is
hard to come by and available data is often ambiguous, biased, or
hard to translate into concrete design choices.”

(Stroustrup, 2020)
“I don’t do language comparisons. They are hard to do well.”

Interview with Bjarne Stroustrup, 24th Feb 2020

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
C++ as a 40-year-long experiment

“Resource management based on constructors and destructors was
among the very first features added to C to make C++ [1982]. This
work was followed up by the integration of resource management and
error handling (RAII) [1994], and eventually with Howard Hinnant’s
work on unique_ptr and move semantics for C++11 [2002].”

Stroustrup, Sutter, and Dos Reis, “A brief introduction to C++’s model for type-
and resource-safety” (2015)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
C++ as a 40-year-long experiment

“The central point in the exception handling design was the man-
agement of resources. [...] I noticed that many resources are released
in the reverse order of their acquisition. This strongly resembles the
behaviour of local objects created by constructors and destroyed by
destructors.”

Stroustrup, “A history of C++: 1979–1991” (1993)
“Thus, the roots of modern C++ resource management lie in the

first version of C with Classes and ultimately in my earlier work on
operating systems.”

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
Structured programming

“This is a systematic approach to resource management with the
important property that correct code is shorter and less complex
than faulty and primitive approaches.

[. . .]
The introduction of exceptions [...] was delayed for about half a year

until I found “resource acquisition is initialization” as a systematic
and less error-prone alternative to the finally approach.”

(Stroustrup, 2007, emphasis mine)

Ownership Rational reconstructions Research questions Challenges Natural language evolution

A possible key?
Structured programming

The emergence of an interesting structure (by logical and categorical
standards) from such programming considerations is striking.

Conclusion

Thank you

References I
Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews, Keegan

McAllister, Jack Moffitt, and Simon Sapin. 2016. Engineering the servo web
browser engine using Rust. In ICSE ’16.
https://doi.org/10.1145/2889160.2889229

Henry G. Baker. 1994. Linear logic and permutation stacks - the Forth shall be
first. SIGARCH Computer Architecture News 22, 1 (1994), 34–43.
https://doi.org/10.1145/181993.181999

Henry G. Baker. 1995. "Use-Once" Variables and Linear Objects - Storage
Management, Reflection and Multi-Threading. SIGPLAN Notices 30, 1
(1995), 45–52. https://doi.org/10.1145/199818.199860

Dave Clarke and Tobias Wrigstad. 2003. External Uniqueness Is Unique
Enough. In ECOOP 2003 - Object-Oriented Programming, 17th European
Conference, Darmstadt, Germany, July 21-25, 2003, Proceedings (Lecture
Notes in Computer Science), Luca Cardelli (Ed.), Vol. 2743. Springer,
176–200. https://doi.org/10.1007/978-3-540-45070-2_9

https://doi.org/10.1145/2889160.2889229
https://doi.org/10.1145/181993.181999
https://doi.org/10.1145/199818.199860
https://doi.org/10.1007/978-3-540-45070-2_9

References II
Guillaume Combette and Guillaume Munch-Maccagnoni. 2018. A resource

modality for RAII (abstract). Technical Report. INRIA.
https://hal.inria.fr/hal-01806634

Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016.
A Theory of Effects and Resources: Adjunction Models and Polarised Calculi.
In Proc. POPL. https://doi.org/10.1145/2837614.2837652

Pierre-Louis Curien and Hugo Herbelin. 2000. The duality of computation.
ACM SIGPLAN Notices 35 (2000), 233–243.

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. 1997. A New
Deconstructive Logic: Linear Logic. Journal of Symbolic Logic 62 (3) (1997),
755–807.

Christophe Dony, Jørgen Lindskov Knudsen, Alexander B. Romanovsky, and
Anand Tripathi (Eds.). 2006. Advanced Topics in Exception Handling
Techniques. Lecture Notes in Computer Science, Vol. 4119. Springer.
https://doi.org/10.1007/11818502

https://hal.inria.fr/hal-01806634
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.1007/11818502

References III

Jeremy Gibbons. 2018. On "Methodological Irregularities in
Programming-Language Research". Computer 51, 4 (2018), 4–7.
https://doi.org/10.1109/MC.2018.2141027

Jean-Yves Girard. 1991. A new constructive logic: Classical logic. Math.
Struct. Comp. Sci. 1, 3 (1991), 255–296.

Jean-Yves Girard. 1993. On the Unity of Logic. Ann. Pure Appl. Logic 59, 3
(1993), 201–217.

Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In
Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, June 10-15, 2002, Monterey, California, USA, Carla Schlatter
Ellis (Ed.). USENIX, 275–288. http://www.usenix.org/publications/
library/proceedings/usenix02/jim.html

Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm. In Proc.
TLCA ’99. 228–242.

https://doi.org/10.1109/MC.2018.2141027
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html

References IV

Nicholas D. Matsakis and Felix S. Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103–104.

Paul-André Melliès and Nicolas Tabareau. 2010. Resource modalities in tensor
logic. Ann. Pure Appl. Logic 161, 5 (2010), 632–653.

Peter W. O’Hearn, John Power, Makoto Takeyama, and Robert D. Tennent.
1999. Syntactic Control of Interference Revisited. Theor. Comput. Sci. 228,
1-2 (1999), 211–252.
https://doi.org/10.1016/S0304-3975(98)00359-4

Tomas Petricek. 2018. What we talk about when we talk about monads. The
Art, Science, and Engineering of Programming (2018).

Mark Priestley. 2011. The Algol Research Programme. Springer London,
225–252. https://doi.org/10.1007/978-1-84882-555-0_9

https://doi.org/10.1016/S0304-3975(98)00359-4
https://doi.org/10.1007/978-1-84882-555-0_9

References V

John C. Reynolds. 1978. Syntactic Control of Interference. In Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, USA, January 1978, Alfred V. Aho, Stephen N.
Zilles, and Thomas G. Szymanski (Eds.). ACM Press, 39–46.
https://doi.org/10.1145/512760.512766

Andreas Stefik and Stefan Hanenberg. 2014. The Programming Language
Wars: Questions and Responsibilities for the Programming Language
Community. In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2014). Association for Computing Machinery, New York, NY, USA,
283–299. https://doi.org/10.1145/2661136.2661156

Andreas Stefik and Stefan Hanenberg. 2017. Methodological Irregularities in
Programming-Language Research. Computer 50, 8 (2017), 60–63.
https://doi.org/10.1109/MC.2017.3001257

https://doi.org/10.1145/512760.512766
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1109/MC.2017.3001257

References VI
Bjarne Stroustrup. 1993. A History of C++: 1979–1991. In The Second ACM

SIGPLAN Conference on History of Programming Languages (HOPL-II).
Association for Computing Machinery, New York, NY, USA, 271–297.
https://doi.org/10.1145/154766.155375

Bjarne Stroustrup. 2007. Evolving a language in and for the real world: C++
1991-2006. In Proceedings of the Third ACM SIGPLAN History of
Programming Languages Conference (HOPL-III), San Diego, California,
USA, 9-10 June 2007. 1–59.
https://doi.org/10.1145/1238844.1238848

Bjarne Stroustrup. 2020. The Evil of Paradigms. (2020).
Bjarne Stroustrup, Herb Sutter, and Gabriel Dos Reis. 2015. A brief

introduction to C++’s model for type- and resource-safety. (2015).
http://www.stroustrup.com/resource-model.pdf

Hayo Thielecke. 1997. Categorical Structure of Continuation Passing Style.
Ph.D. Dissertation. University of Edinburgh.

https://doi.org/10.1145/154766.155375
https://doi.org/10.1145/1238844.1238848
http://www.stroustrup.com/resource-model.pdf

References VII

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004. A
Retrospective on Region-Based Memory Management. Higher-Order and
Symbolic Computation 17, 3 (2004), 245–265.
https://doi.org/10.1023/B:LISP.0000029446.78563.a4

Jesse A. Tov and Riccardo Pucella. 2011. Practical affine types. In Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 447–458.
https://doi.org/10.1145/1926385.1926436

Philip Wadler. 1991. Is there a use for linear logic? ACM SIGPLAN Notices 26,
9 (1991), 255–273.

https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1145/1926385.1926436

	Ownership
	Introduction
	Ownership/Uniqueness

	Rational reconstructions
	Rational reconstructions

	Research questions
	Research questions
	Elephant in the room

	Challenges
	Challenges in language design
	Possible solutions

	Natural language evolution
	A possible key?
	Conclusion

	Appendix
	References

