Call-by-value in Bicategories of Games

Hugo Paquet
LiPN

joint work with Philip Saville
Resources and effects

Models of Linear Logic

! - \otimes, \oplus

exponential Comonad
Resources and effects

Models of Linear Logic

\[! \]

Exponential Comonad

\[\otimes, \circ \]

Linear/non-linear adjunction

\[\otimes, \circ \]
Resources and effects

Models of effectful languages

Strong monad

\(T \)

\(X \Rightarrow \)
Resources and effects

Models of effectful languages

Strong monad

Strong adjunction
Resources and effects

Models of effectful languages

\[(CBV)\] (strong \text{monad})

\[(CBPV)\] (strong \text{adjunction})
Resources and effects

- Can combine the two viewpoints ("Linear CBPV")

\[
M \uparrow \quad S \downarrow
\]

linear/non-linear adjunction

Strong adjunction

- Several canonical examples.
Resources and effects

- Can combine the two viewpoints ("Linear CBPV")
- e.g.

\[M \xrightarrow{\times} C \xleftarrow{\otimes} C^\text{op} \]

linear/non-linear adjunction
Resources and effects

- Can combine the two viewpoints ("Linear CBPV")
- e.g.

\[\text{linear/non-linear adjunction} \]
Resources and effects

Game Semantics:

\[
\begin{align*}
 & M \\
 & \downarrow \\
 & \times \\
 & \downarrow \\
 & e \\
 & \downarrow \\
 & \circ^0
\end{align*}
\]
Resources and effects

Game Semantics:

\[M \rightarrow E \rightarrow M \]

\[\times \rightarrow \times \rightarrow \]
Game Semantics

Two players

- **player**
- **opponent**

A simple game:
Game Semantics

Two players

- player
- opponent

A simple game:

Strategies over the game:
Game Semantics

Two players

- Player
- Opponent

A simple game:

Strategies over the game:
Game Semantics

Two players

- ○ player
- ○ opponent

A simple game:

A

Strategies over the game:

\begin{align*}
&\bigcirc_1 & \bigcirc_1 \\
&\bigcirc_2 & \bigcirc_2 \\
\end{align*}

\begin{align*}
&\bigcirc_4 \\
&\bigcirc_2 \\
\end{align*}

Use event structures [Winskel, Clairambault, Castellan, ...]
Strategies $\mathbb{N} \rightarrow \mathbb{N}$

Distinguish between values & computations to make sense of $(\forall x. M) V = M[V/x]$ in CBV
Strategies $\mathbb{N} \rightarrow \mathbb{N}$

Distinguish between values & computations to make sense of $(\forall x.M)V = M[V/x]$ in CBV
Strategies $\mathbb{N} \rightarrow \mathbb{N}$

Distinguish between values & computations to make sense of $(\forall x. M)\, V = M[\forall x]$ in CBV

arbitrary strategy

```
N ----> N
```

“value” strategy

```
N ----> N
```

(total, deterministic)
Strategies \(N \rightarrow N \)
Strategies \(N \rightarrow N \)

\[
\begin{array}{c}
\text{Prop:} \\
\text{strategy } A \rightarrow B \\
\text{value strategy } A \rightarrow \omega \omega B
\end{array}
\]
This talk

I. A bicategory of games

II. Strong pseudomonads

III. Resources and symmetries
Objects: games A, B, C, \ldots

Morphisms $A \rightarrow B$: Strategies

σ

$A \otimes B$
Composition of strategies

\[A \xrightarrow{\sigma} \xrightarrow{\tau} \]

\[\text{Composition of strategies} \]
Composition of strategies

\(A \rightarrow \sigma \rightarrow B \rightarrow \tau \rightarrow C \)

\(A \mathbin{\otimes} B \)
Composition of strategies

At

$A \circ \sigma$ \rightarrow A

$B \circ \tau$ \rightarrow B

$B \circ C$

$A^\perp \circ B$

σ

τ
Composition of strategies
Composition of strategies
Composition of strategies
Composition of strategies

in the category of event structures:

1. \(\tau \land \sigma \)

2. \(\sigma \circ C \)

3. \(A \circ \tau \)

4. \(A \circ B \circ C \)

Synchronization
Composition of strategies

in the category of event structures:

1. Synchronization

2. Hiding
Composition of strategies (not strictly associative)
in the category of event structures:

(1) $\tau \land \sigma$

\[\sigma \circ C \quad \tau \circ \theta \tau \quad \vartheta \circ \sigma \circ C \]

synchronization

(2) $\tau \land \sigma$

\[\tau \circ \sigma \quad \vartheta \circ \sigma \circ C \]

hiding
Bicategories

- objects $A, B, ...$
- morphisms $f: A \rightarrow B, ...$ (with identity and composition)
- 2-cells

```
\[ A \xrightarrow{f} \downarrow \xleftarrow{g} B \]
```

- associativity
 \[a_{f,g,h}: (h \circ g) \circ f \Rightarrow h \circ (g \circ f) \]

- identity
 \[r_f: f \circ \text{id} \Rightarrow f \]
 \[l_f: \text{id} \circ f \Rightarrow f \]

- coherence axioms
Composition of strategies

universal property of $\tau \circ \sigma$?

\[\begin{array}{ccc}
A & \xrightarrow{\sigma} & B \\
\downarrow & & \downarrow \tau \\
\gamma & \rightarrow & C \\
\end{array} \]

idea: send synchronized pair (x_σ, x_C) to x_γ.

Composition of strategies

universal property of $\tau \circ \sigma$?

![Diagram]

idea: send synchronized pair (x_σ, x_τ) to x_γ.

Prop: There is a universal multimap

$$\sigma, \tau \rightarrow \tau \circ \sigma$$

c \& bilinear maps
Virtual 2-categories

- objects $A, B, ...$
- morphisms $f: A \rightarrow B, ...$ (no composition)
- multi-2-cells $f_1:A_1 \rightarrow A_2 \rightarrow \ldots \rightarrow A_n$
Virtual 2-categories

- objects A, B, \ldots
- morphisms $f: A \to B, \ldots$ (no composition)
- multi-2-cells

$$\begin{array}{c}
f_1 \Rightarrow A_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} A_n \\
A_1 \downarrow \quad \Downarrow g \quad \downarrow \\
A_1 \end{array}$$

A virtual 2-cat. is representable if there is always a universal cell:

$$\begin{array}{c}
f_1 \Rightarrow A_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} A_n \\
A_1 \downarrow \quad \Downarrow f_1 \\
A_1 \end{array}$$
Virtual 2-categories

- objects $A, B, ...$
- morphisms $f: A \rightarrow B, ...$ (no composition)
- multi-2-cells $f_1: A_1 \rightarrow A_2 \rightarrow ... \rightarrow A_n$

A virtual 2-cat. is **representable** if there is always a universal cell:

and the universal cells are closed under composition.
representable virtual 2-categories \simeq bicategories

↑

no structural 2-cells

(Coherence is automatic)
Thm. The virtual 2-category of games, strategies, and multimaps is representable.

So the binary composition \(\tau \circ \tau \) gives a bicategory.
Thm. The virtual 2-category of games, strategies, and multimaps is representable.

So the binary composition $\circ \circ$ gives a bicategory.

Not well-understood for bicategories.
Summary of bicategory theory

Everything holds up to coherent invertible 2-cells

pseudofunctor $F : B \to C$

- acts on objects, morphisms, 2-cells
- functor up to iso:

 $F(f) \Rightarrow F(g)$
 $F(g \circ f) \Rightarrow F(g) \circ F(f)$
 $F(id_a) \Rightarrow id_{F(a)}$

+ coherence axioms: Ψ, Ψ compatible with $\alpha, \phi, \rho, \lambda$.
Summary of bicategory theory

monoidal bicategory (B, \otimes, I):

\[\alpha: (A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C) \]
\[\rho: A \otimes I \rightarrow A \]
\[\tau: I \otimes A \rightarrow A \]

\[((AB)C)D \rightarrow (AB)(CD) \]
\[(A(BC))D \rightarrow A(B(CD)) \]

\[(A\otimes B) \rightarrow A(\otimes B) \]

\[\alpha \]

\[\rho \]

\[\tau \]

\[\Rightarrow \]
• Similar notions of symmetric monoidal bicats, pseudomonads, etc.

• Main difficulty is to find the “right” axioms

• We give a definition of strong pseudomonads, axioms are justified by a correspondence theorem:

 strengths \cong actions on the Kleisli bicat.
This talk

I. A bicategory of games

II. Strong pseudomonads

III. Resources and symmetries
Monads and computation

Distinguish between:

Values: $A \rightarrow B$

Computations: $A \rightarrow TB$

(If we can make sense of $(\lambda x. M) V = M[\nu x] \text{ in CBV}$)
Monads and computation

Distinguish between:
- Values: $A \rightarrow B$
- Computations: $A \rightarrow TB$

(So we can make sense of $(\lambda x. M) V = M[V/x]$ in CBV)

Can compose computations:

\[
\Gamma \vdash M : B \quad B \vdash N : C
\]

\[
\Gamma \vdash M \rightarrow TB \quad B \vdash N \rightarrow TC
\]

\[
\Gamma \vdash TB \xrightarrow{TN} TC \xrightarrow{\alpha} TC
\]
Monads and computation

Distinguish between:
- Values $A \to B$
- Computations $A \to TB$

(So we can make sense of $(\forall x. M) V = M[V/x]$ in CBV)

Can compose computations:
\[
\Gamma \vdash M : B \quad B \vdash N : C
\]
\[
\begin{array}{c}
\Gamma \\ M \\
\xrightarrow{T B} \\
\xrightarrow{T N} \\
\xrightarrow{T^2 C} \\
\xrightarrow{\mu} \\
\xrightarrow{T C}
\end{array}
\]

need strength in general:
\[
\Delta \otimes \Gamma \ construed \Rightarrow \Delta \otimes TB \\
\xrightarrow{t} T(\Delta \otimes B) \\
\xrightarrow{T N} T^2 C \\
\xrightarrow{\mu} T C
\]
Definition: A strength for a pseudomonad $T : B \to B$ on a monoidal bicategory (B, \otimes, I) is a pseudo-natural transformation $t_{A,B} : A \otimes TB \longrightarrow T(A \otimes B)$ equipped with 2-cells:

\[
\begin{align*}
I \otimes TA & \xrightarrow{t} T(I \otimes A) \\
& \cong (A \otimes TA) \\
& \xrightarrow{\lambda} TA \\
A \otimes B & \xrightarrow{\eta} A \otimes TB \\
& \cong T(A \otimes B)
\end{align*}
\]

\[
\begin{align*}
(A \otimes B) \otimes TC & \xrightarrow{\alpha} A \otimes (B \otimes TC) \\
& \cong T((A \otimes B) \otimes C) \\
& \xrightarrow{T(\alpha)} T(A \otimes (B \otimes C)) \\
T((A \otimes B) \otimes C) & \cong T(A \otimes (B \otimes C)) \\
& \xrightarrow{Tt} T(A \otimes (B \otimes C)) \\
T(A \otimes (B \otimes C)) & \cong T(A \otimes (B \otimes C)) \\
& \xrightarrow{T^2(B \otimes C)} T(A \otimes (B \otimes C))
\end{align*}
\]

\[+ \text{ axioms}\]
Another view: strengths as actions of $(\mathfrak{g}, \mathfrak{h})$ on \mathfrak{h}.
Another view: strengths as actions of (\mathcal{B}, \otimes) on \mathcal{B}_T

\[\mathcal{B} \times \mathcal{B}_T \rightarrow \mathcal{B}_T\]

\[A, B \rightarrow A \otimes B\]
Another view: strengths as actions of (B, \emptyset) on B_T.
Another view: strengths as actions of \((B, \otimes)\) on \(B_T\)

\[
\begin{align*}
B \times B_T & \longrightarrow B_T \\
A, B \quad & \mapsto A \otimes B \\
A' \quad & \mapsto A' \otimes B'
\end{align*}
\]

Theorem:

\[
\text{strengths for } T \quad \Rightarrow \quad \text{actions \(*:* B \times B_T \longrightarrow B_T\)}
\]

s.t.

\[
\begin{align*}
B \times B_T & \rightarrow B_T \\
\uparrow \equiv \uparrow & \\
B \times B & \rightarrow B
\end{align*}
\]
Premonoidal bicategories

B_T has a tensor product, but no interchange law:

$\Gamma \oplus \Delta : A$
$\Delta \oplus \Gamma : B$
Premonoidal bicategories

\mathcal{B}_T has a tensor product, but no interchange law:

$\Gamma + M \colon A$

$\Delta + N \colon B$
Premonoidal bicategories

A premonoidal bicategory K has $\otimes A$ and $A \otimes -$ for all $A \in K$ + the coherence data for a monoidal bicategory.
Premonoidal bicategories

A premonoidal bicategory K has

1. $A \otimes A$ and $A \otimes -$ for all $A \in K$
2. the coherence data for a monoidal bicategory.

Prop: (B, \otimes) symmetric monoidal bicategory

T strong pseudomonad

$\Rightarrow B_\tau$ is premonoidal.

$B \rightarrow B_\tau$

values Computations
A dialogue bicategory is a symmetric monoidal 2-

an object 1

such that \(B(A \otimes B, 1) = B(A, \neg B) \) for some \(\neg B \).
Dialogue bicategories
(tensor & negation)

A dialogue bicategory is

a symmetric monoidal \mathcal{B}
on an object \bot

such that $\mathcal{B}(A \otimes B, \bot) = \mathcal{B}(A, \neg B)$ for some $\neg B$.

\Rightarrow Synm. monoidal closed, \bot

$\neg A = A \rightarrow \bot$

\subseteq Dialogue
Dialogue bicategories
(tensor & negation)

A dialogue bicategory is
a symmetric monoidal \(\mathcal{B} \)
an object \(\bot \)
such that \(\mathcal{B}(A \otimes B, \bot) \cong \mathcal{B}(A, \neg B) \) for some \(\neg B \).

\[\begin{array}{ccc}
\ast\text{-autonomous} & \cong & \text{Symm. monoidal closed, } \bot \\
(A \to \bot) \to \bot \cong A & \cong & \neg A = A \to \bot \\
\end{array} \]

[Dialogue categories]
[Mellies & Tabareau]
Dialogue bicategories

(tensor & negation)

A dialogue bicategory is

a symmetric monoidal \(B \)

an object \(\bot \)

such that \(B(A \otimes B, \bot) = B(A, \neg B) \) for some \(\neg B \).

Key properties:

- \(\neg \) is a pseudofunctor \(B \rightarrow B^\text{op} \)
- \(\neg \neg \) is a strong pseudomonad on \(B \)
- \(B_{\neg \neg} \) is premonoidal
This talk

I. A bicategory of games

II. Strong pseudomonads

→ III. Resources and symmetries
Adding an exponential modality:

\[G \xrightarrow{!} \quad \xrightarrow{\perp} \quad G^\otimes \]

\[! \circ = \circ_0 \circ_1 \circ_2 \circ_3 \circ_4 \ldots \]

Symmetric copies
Adding an exponential modality:

\[
\begin{align*}
\text{!} \quad 0 &= \{ 0_0, 0_1, 0_2, 0_3, 0_4, \ldots \} \\
\text{Symmetric copies} &\quad \text{(event structures with symmetry)}
\end{align*}
\]

Clairambault, Castellan, Winskel
Strategies playing symmetrically:

\[O_1 \sim O_2 \]

\[q \quad \Rightarrow \quad q' \]

\[A \]
Strategies need to be bi-invariant:
Strategies need to be bi-invariant:

\[x_\sigma \xrightarrow{\text{Symmetry of strategy}} z_{\sigma} \]

\[x_A \xrightarrow{\text{Opponent Symmetry}} y_A \xleftarrow{\text{Player Symmetry}} z_A \]
idea: send synchronized pair \((x_\sigma, x_\tau)\) up to symmetry to \(x_y\).

Thm. The virtual 2-category of games with symmetry, strategies, and multimaps is representable.
Summary

- Generalize the foundations of game semantics from categories to bicategories
- 2-dimensional setting: "proof-relevant" all the time
- Other applications of premonoidal bicategories: graded monads, "PARA" construction