Adding boolean extensionality to intensional
dependent type theory... a tentative

Kenji Maillard

Inria Nantes, team Gallinette

GdT Scalp
Wednesday the 15th of February, 2023

A question from M. Shulman

Proof Assistants Beta

Home Strong eta-rules for functions on sum types RE%
PUBLIC Asked 2 months ago Modified 2 months ago Viewed 145 times
@ Questions |
I am wondering whether a rule like the following is consistent with decidable conversion
Tags and type-checking for dependent type theory:
8
Users fg:(z:bool) = Cax ftt=gtt fff=gff
Unanswered f =9
That is, if two functions with domain bool agree definitionally on tt and ff, then they are
TEAMS X

convertible. An analogous rule for functions on general inductive types like N is certainly

Martin-Lof Type Theory and its implementations 2

Martin-Lof logical framework + type formers (L, M, X, x =4 y,...)
I+ MN-=A I'FA=B

MN=t: A N-t=u:A

Idealized metatheory of various proofs assistants:

& ada YIdris LN

THEORE OVER

Practical implementation ~ algorithms deciding each judgements

Extensional principles in intensional type theory 3

When can we add an extensionality principle for some type former ?

Type formers Dec. of conv. Reference
Functions M(x : A)B v [Coquanp 96]
(Negative) records X(x : A)B v [NoReLL 07]
Unit 1 v [NORELL 07]
Identity x =4 y X [CASTELLAN BT AL. 17]
Natural numbers N X
Well-founded trees W(x : A)B X
Streams, M-types X [McBrip]
Empty O X [McBRIDE]

Booleans B 77

Booleans 101

Introductions

=B N-tt:B N-£ff:B
Simple elimination

-b:B M-t:C MN-u:C

+if bthentelseu: C

Booleans 101

Introductions

Mr-B ltt:B

Simple elimination

r-ff:B

-b:B M-t:C MN-u:C

+if bthentelseu: C

ifttthentelseu —t

ifffthentelseu — u

Booleans 101 N

Introductions

=B N-tt:B N-£ff:B
Simple elimination

l-b:B Frt:C N-u:C
+if bthentelseu: C

ifttthentelseu —t ifffthentelseu — u

Dependent elimination

-b:B Mx:BFP
M=t Pltt/x] [u: P[ff/x]

I matchbasxreturn Pwithtt = t |ff = vend : P[b/x]

What's boolean extensionality ?

Returning to the categorical universal property of B>~ 1+ 1

1 ¢

What's boolean extensionality ?

Returning to the categorical universal property of B>~ 1+ 1

1 ¢

What's boolean extensionality ?

Returning to the categorical universal property of B>~ 1+ 1

1 ¢

Unicity part:

lrN-p=gq:C

What's boolean extensionality ?

Returning to the categorical universal property of B>~ 1+ 1

1 t
Y
B --—--- L5 C
P
1 u
Unicity part:
r-b:B

lrN-p=gq:C

What's boolean extensionality 7 .5

Returning to the categorical universal property of B>~ 1+ 1

1 ¢

Unicity part:

-b:B
I p[tt/b] = q[tt/b] : C[tt/b]

lrN-p=gq:C

What's boolean extensionality ?

Returning to the categorical universal property of B>~ 1+ 1

1 ¢

Unicity part:

-b:B
I p[tt/b] = q[tt/b] : C[tt/b]
[+ p[ff/b] = q[ff/b] : C[££/b]
lrN-p=gq:C

With type dependency, substitution is not enough

Assuming « : N — B, consider

match o« 42 as breturnVn, an =b — N with
| tt = Aneq=20

| ff = Aneq=0

end 42 (refl : a 42 = a 42)

With type dependency, substitution is not enough

Assuming « : N — B, consider
match o 42 as breturnVn, an=>b — N with
| tt =Aneq=0
| ff = Aneq=20
end 42 (refl : a 42 = a 42)

Morally convertible to 0 by boolean extensionality.

With type dependency, substitution is not enough

Assuming « : N — B, consider
match o 42 as breturnVn, an=>b — N with
| tt =Aneq=0
| ff = Aneq=20
end 42 (refl : a 42 = a 42)

Morally convertible to 0 by boolean extensionality.

But substituting a 42 by tt is ill-typed:

match tt as b returnVn, an=b — N with
| tt = Aneq=0

| ff = Aneq=20

end 42 (refl : a 42 = tt)

Need to keep track of convertibility relations at B !

Reflecting conversion at B

Add boolean constraints (cf. Altenkirch 2011 Shonan talk)

M- N-e:B be {tt,ff}
Le=bF

e atomic neutral

Reflecting conversion at B 7

Add boolean constraints (cf. Altenkirch 2011 Shonan talk)

M- l-e:B be {tt,ff}
Le=bF

e atomic neutral

Extend conversion

REFLECTION EXPLOSION

(e=b)erl (e=tt),(e=ff) el N-tu: C
l'Fe=b:B lrN-t=u:C
COVER

N-e:B Ne=ttkt=u:C Ne=ffr-t=u:C
Fr-t=u:C

With BoolExt, If is enough !

if b then t elseu

VS.

match b as x return P with
| tt =t

| ff = u

end

N\

{8
\ J

N

With BoolExt, If is enough ! (8

e

match b as x return P with
| tt =t

| ff = u

end

if b then t else u VS.

In general, we cannot synthetize x : B P from t: P; and u : P,.

With BoolExt, If is enough ! .8

match b as x return P with
| tt =t

| ff = u

end

if b then t else u VS.

In general, we cannot synthetize x : B+ P from t: P, and u : P,,.

However with boolean extensionality, for an arbitrary P : B — [

if bthen Ptt elsePff =P D

With BoolExt, If is enough ! .8

match b as x return P with
| tt =t

| ff = u

end

if b then t else u VS.

In general, we cannot synthetize x : B+ P from t: P, and u : P,,.

However with boolean extensionality, for an arbitrary P : B — [
if bthenP tt elsePff =PD

~» no need for a motive P !

P(x) := if x then P; else P,

What's the trouble with O ?

O0-ExT
N-e:0 MN-tu:C

lr-t=u:C

/ N
{9
\ //

N

What's the trouble with 0 7

O0-ExT
N-e:0 MN-tu:C

lr-t=u:C

Let F, be the type of triples X(x,y,z : N3)x" 4+ y" = z", then
X : Fa0 Fo.pxr 7 @ B.

What's the trouble with 0 7

O0-ExT
N-e:0 MN-tu:C

lr~-t=u:C

Let F, be the type of triples X(x,y,z : N3)x" 4+ y" = z", then
X : Fa0 Fo.pxr 7 @ B.

Indeed, by Fermat's last theorem Fj5 is empty, so using 0-ext
X:Fpobopxr N=B: 0O, and Fo.pxr 7 : N

What's the trouble with O ? L9

O0-ExT
N-e:0 MN-tu:C

lr~-t=u:C

Let F, be the type of triples X(x,y,z : N3)x" 4+ y" = z", then
X : Fa0 Fo.pxr 7 @ B.

Indeed, by Fermat's last theorem Fj5 is empty, so using 0-ext
X F42 '_O—EXT N=B: |:|, and l_O—EXT 7:N

O-extensionality can impact typing without leaving a trace !

Algorithmic aspects of conversion 10

How do we decide ' -t L u: Ain general 7
Step 1: Weak-head reduce
t—h t/éu/tvh<—u
Step 2: Apply congruences for canonical introduction forms.

Step 3: Once we get to neutrals, use extensionality rules
potentially directed by the (weak-head reduced) type A, e.g.

Nx:1,y:1kx=y:1

Step 4: Recurse on arbitrary subterms.

Towards an implementation of boolean extensionality\ 11/

Atomic neutral: A boolean neutral in deep normal-form with no
proper boolean sub-neutral.

Idea: Hoist-away all atomic neutrals, and split them.

Towards an implementation of boolean extensionality\ 11/

Atomic neutral: A boolean neutral in deep normal-form with no
proper boolean sub-neutral.

Idea: Hoist-away all atomic neutrals, and split them.

f:B—)B,X:BFf(f(fx))éfx:B

Towards an implementation of boolean extensionality\ 11/

Atomic neutral: A boolean neutral in deep normal-form with no
proper boolean sub-neutral.

Idea: Hoist-away all atomic neutrals, and split them.

(1]~

f:B—=Bx:B,x=tt-f(f(ftt))=ftt:B

[~

f:B—>B,x:Bx=fff(f(fff))=f£ff:B

Split on the unique atomic neutral x.

Towards an implementation of boolean extensionality\ 11/

Atomic neutral: A boolean neutral in deep normal-form with no
proper boolean sub-neutral.

Idea: Hoist-away all atomic neutrals, and split them.

f:B—>B,x:B,XEtth(f(ftt))éftt:B
f:B—>B,x:B,xszl—f(f(fff));fff:B

Remark: Some atomic neutral (f tt, f£f) may appear when splitting
another neutral (x).

Towards an implementation of boolean extensionality\ 11/

Atomic neutral: A boolean neutral in deep normal-form with no
proper boolean sub-neutral.

Idea: Hoist-away all atomic neutrals, and split them.
?
f:B—B,ftt=£ff,x:B,x=ttk- f(fff)=1ff:B
(Keeping only one case)

Split on the atomic neutral f tt.

Remark: There is a canonical location to split atomic neutrals.

Towards an implementation of boolean extensionality\ 11/

Atomic neutral: A boolean neutral in deep normal-form with no
proper boolean sub-neutral.

Idea: Hoist-away all atomic neutrals, and split them.

f:B—>B,fttsz,fff5tt,x:B,XEtthttéff:B

(Keeping only one case)

Split on the atomic neutral f £f.

Remark: There is a canonical location to split atomic neutrals up to
some permutations.

Outline of the roadmap 12

Goal: Implement a correct and complete decision procedure for
MLTT + boolean extensionality.

Following (ase. er ac. 15], build a logical relation based on reducibility
inside a proof-assistant.

Concretely, develop on top of Meven Bertrand and Loic Pujet’s
version in Coq.

Categorically, a variation of the sheaf model of simply typed theory
from [Avreskmon sr ar. 01 context-indexed families stable by renamings
and satisfying the COVER rule.

Main obstacle: How to deal constructively with the universe ?

Conclusion

Future steps
» Finish the proof of normalization for MLTTin Coq

» Implement the conversion algorithm on top of it

Further directions

» Martin Baillon: application to (external) continuity of
functions (N — B) — N

TN
/ N
113}
) /
\\\“’//

