Adding boolean extensionality to intensional dependent type theory... a tentative

Kenji Maillard

Inria Nantes, team Gallinette

GdT Scalp Wednesday the 15th of February, 2023

A question from M. Shulman

Martin-Löf logical framework
$$+$$
 type formers $(\Box, \Pi, \Sigma, x =_A y, \ldots)$
$$\Gamma \vdash \qquad \Gamma \vdash A \qquad \Gamma \vdash A \equiv B$$

$$\Gamma \vdash t : A \qquad \Gamma \vdash t \equiv u : A$$

Idealized metatheory of various proofs assistants:

Practical implementation → algorithms deciding each judgements

When can we add an extensionality principle for some type former?

Type formers	Dec. of conv.	Reference
Functions $\Pi(x:A)B$	✓	[Coquand 96]
(Negative) records $\Sigma(x:A)B$	\checkmark	[Norell 07]
Unit 1	\checkmark	[Norell 07]
Identity $x =_{\mathcal{A}} y$	×	[Castellan et al. 17]
Natural numbers $\mathbb N$	×	
Well-founded trees $\mathbb{W}(x:A)B$	×	
Streams, M-types	×	[McBride]
$Empty\ \mathbb{O}$	×	[McBride]
Booleans $\mathbb B$???	

Introductions

$$\overline{\Gamma \vdash \mathbb{B}} \qquad \overline{\Gamma \vdash \mathsf{tt} : \mathbb{B}} \qquad \overline{\Gamma \vdash \mathsf{ff} : \mathbb{B}}$$

Simple elimination

$$\frac{\Gamma \vdash b : \mathbb{B} \qquad \Gamma \vdash t : C \qquad \Gamma \vdash u : C}{\Gamma \vdash \text{if } b \text{ then } t \text{ else } u : C}$$

Introductions

$$\frac{}{\Gamma \vdash \mathbb{B}} \qquad \frac{}{\Gamma \vdash \mathsf{tt} : \mathbb{B}} \qquad \frac{}{\Gamma \vdash \mathsf{ff} : \mathbb{B}}$$

Simple elimination

$$\frac{\Gamma \vdash b : \mathbb{B} \qquad \Gamma \vdash t : C \qquad \Gamma \vdash u : C}{\Gamma \vdash \text{if } b \text{ then } t \text{ else } u : C}$$

if tt then t else $u \longrightarrow t$ if ff then t else $u \longrightarrow u$

Introductions

$$\frac{}{\Gamma \vdash \mathbb{B}} \qquad \frac{}{\Gamma \vdash \mathsf{tt} : \mathbb{B}} \qquad \frac{}{\Gamma \vdash \mathsf{ff} : \mathbb{B}}$$

Simple elimination

$$\frac{\Gamma \vdash b : \mathbb{B} \qquad \Gamma \vdash t : C \qquad \Gamma \vdash u : C}{\Gamma \vdash \text{if } b \text{ then } t \text{ else } u : C}$$

if tt then
$$t$$
 else $u \longrightarrow t$ if ff then t else $u \longrightarrow u$

Dependent elimination

$$\frac{\Gamma \vdash b : \mathbb{B} \qquad \Gamma, x : \mathbb{B} \vdash P}{\Gamma \vdash t : P[\mathsf{tt}/x] \qquad \Gamma \vdash u : P[\mathsf{ff}/x]}$$

$$\frac{\Gamma \vdash \mathsf{match} \, b \, \mathsf{as} \, x \, \mathsf{return} \, P \, \mathsf{with} \, \mathsf{tt} \, \Rightarrow t \mid \mathsf{ff} \, \Rightarrow u \, \mathsf{end} \, : P[b/x]}{\Gamma \vdash \mathsf{match} \, b \, \mathsf{as} \, x \, \mathsf{return} \, P \, \mathsf{with} \, \mathsf{tt} \, \Rightarrow t \mid \mathsf{ff} \, \Rightarrow u \, \mathsf{end} \, : P[b/x]}$$

$$\Gamma \vdash b : \mathbb{B}$$

$$\Gamma \vdash p \equiv q : C$$

$$\frac{\Gamma \vdash b : \mathbb{B}}{\Gamma \vdash p[\mathsf{tt}/b] \equiv q[\mathsf{tt}/b] : C[\mathsf{tt}/b]}$$

$$\frac{\Gamma \vdash p \equiv q : C}{\Gamma \vdash p \equiv q : C}$$

$$\begin{aligned} & \Gamma \vdash b : \mathbb{B} \\ & \Gamma \vdash p[\mathtt{tt}/b] \equiv q[\mathtt{tt}/b] : C[\mathtt{tt}/b] \\ & \frac{\Gamma \vdash p[\mathtt{ff}/b] \equiv q[\mathtt{ff}/b] : C[\mathtt{ff}/b]}{\Gamma \vdash p \equiv q : C} \end{aligned}$$

```
Assuming \alpha: \mathbb{N} \to \mathbb{B}, consider match \alpha 42 as b return \forall n, \alpha n = b \to \mathbb{N} with \mid tt \Rightarrow \lambda n eq \Rightarrow 0 \mid ff \Rightarrow \lambda n eq \Rightarrow 0 end 42 (refl: \alpha 42 = \alpha 42)
```

```
Assuming \alpha: \mathbb{N} \to \mathbb{B}, consider match \alpha 42 as b return \forall n, \alpha n = b \to \mathbb{N} with \mid tt \Rightarrow \lambda n eq \Rightarrow 0 \mid ff \Rightarrow \lambda n eq \Rightarrow 0 end 42 (refl: \alpha 42 = \alpha 42)
```

Morally convertible to 0 by boolean extensionality.

```
Assuming \alpha: \mathbb{N} \to \mathbb{B}, consider match \alpha 42 as b return \forall n, \alpha n = b \to \mathbb{N} with | tt \Rightarrow \lambda n eq \Rightarrow 0 | ff \Rightarrow \lambda n eq \Rightarrow 0 end 42 (refl: \alpha 42 = \alpha 42)
```

Morally convertible to 0 by boolean extensionality.

But substituting α 42 by tt is ill-typed:

```
\label{eq:match tt as b return $\forall$ n, $\alpha$ n = b$ $\to $\mathbb{N}$ with } | \ \mathsf{tt} \Rightarrow \lambda \ \mathsf{n} \ \mathsf{eq} \Rightarrow 0 \\ | \ \mathsf{ff} \Rightarrow \lambda \ \mathsf{n} \ \mathsf{eq} \Rightarrow 0 \\ \mathsf{end} \ \mathsf{42} \ \mathsf{(refl: $\alpha$ 42 = tt)} \\
```

Need to keep track of convertibility relations at \mathbb{B} !

Add boolean constraints (cf. Altenkirch 2011 Shonan talk)

$$\frac{\Gamma \vdash \qquad \Gamma \vdash e : \mathbb{B} \qquad b \in \{\mathtt{tt}, \mathtt{ff}\}}{\Gamma, e \equiv b \vdash} \qquad \text{e atomic neutral}$$

Add boolean constraints (cf. Altenkirch 2011 Shonan talk)

$$\frac{\Gamma \vdash \qquad \Gamma \vdash e : \mathbb{B} \qquad b \in \{\mathtt{tt}, \mathtt{ff}\}}{\Gamma, e \equiv b \vdash} \qquad \textit{e atomic neutral}$$

Extend conversion

REFLECTION
$$(e \equiv b) \in \Gamma$$
 $(e \equiv t), (e \equiv t) \in \Gamma$ $\Gamma \vdash t, u : C$ $\Gamma \vdash t \equiv u : C$

$$\Gamma \vdash e : \mathbb{B} \qquad \Gamma, e \equiv \mathsf{tt} \vdash t \equiv u : C \qquad \Gamma, e \equiv \mathsf{ff} \vdash t \equiv u : C$$

$$\Gamma \vdash t \equiv u : C$$

```
if b then t else u $\sf VS.$ watch b as x return P with |\ \ {\sf tt} \Rightarrow {\sf t} \ | ff \Rightarrow {\sf u} end
```

```
if b then t else u $\sf vs.$ $\sf match\;b\;as\;x\;return\;P\;with\;}$ | tt \Rightarrow t | ff \Rightarrow u | end |
```

In general, we cannot synthetize $x : \mathbb{B} \vdash P$ from $t : P_t$ and $u : P_u$.

```
if b then t else u \quad vs. \label{eq:vs.} \begin{array}{l} \text{match b as x return $P$ with} \\ \mid \text{ tt} \Rightarrow \text{t} \\ \mid \text{ ff} \Rightarrow u \\ \text{end} \end{array}
```

In general, we cannot synthetize $x : \mathbb{B} \vdash P$ from $t : P_t$ and $u : P_u$.

However with boolean extensionality, for an arbitrary P : $\mathbb{B} \to \square$ if b then P tt else P ff \equiv P b

if b then t else u
$$$\sf vs.$$$
 was a match b as x return P with $|$ tt \Rightarrow t $|$ ff \Rightarrow u ${\sf end}$

In general, we cannot synthetize $x : \mathbb{B} \vdash P$ from $t : P_t$ and $u : P_u$.

However with boolean extensionality, for an arbitrary $P\,:\,\mathbb{B}\to\square$

if b then P tt else P ff
$$\equiv$$
 P b

 \sim no need for a motive P!

$$P(x) := \text{if } x \text{ then } P_t \text{ else } P_u$$

$$\frac{\mathbb{O}\text{-Ext}}{\Gamma \vdash e : \mathbb{O} \qquad \Gamma \vdash t, u : C}$$
$$\frac{\Gamma \vdash t \equiv u : C}{\Gamma \vdash t \equiv u : C}$$

$$\frac{\mathbb{O}\text{-Ext}}{\Gamma \vdash e : \mathbb{O} \qquad \Gamma \vdash t, u : C}$$
$$\frac{\Gamma \vdash t \equiv u : C}{\Gamma \vdash t \equiv u : C}$$

Let F_n be the type of triples $\Sigma(x, y, z : \mathbb{N}^3)x^n + y^n = z^n$, then $x : F_{42} \vdash_{\mathbb{O}\text{-Ext}} 7 : \mathbb{B}$.

$$\frac{\mathbb{O}\text{-Ext}}{\Gamma \vdash e : \mathbb{O} \qquad \Gamma \vdash t, u : C}$$
$$\frac{\Gamma \vdash t \equiv u : C}{\Gamma \vdash t \equiv u : C}$$

Let F_n be the type of triples $\Sigma(x, y, z : \mathbb{N}^3)x^n + y^n = z^n$, then $x : F_{42} \vdash_{\mathbb{O}\text{-Ext}} 7 : \mathbb{B}$.

Indeed, by Fermat's last theorem F_{42} is empty, so using \mathbb{O} -ext $x: F_{42} \vdash_{\mathbb{O}\text{-}\mathrm{Ext}} \mathbb{N} \equiv \mathbb{B}: \square$, and $\vdash_{\mathbb{O}\text{-}\mathrm{Ext}} 7: \mathbb{N}$

$$\frac{\mathbb{O}\text{-Ext}}{\Gamma \vdash e : \mathbb{O} \qquad \Gamma \vdash t, u : C}$$
$$\frac{\Gamma \vdash t \equiv u : C}{\Gamma \vdash t \equiv u : C}$$

Let F_n be the type of triples $\Sigma(x, y, z : \mathbb{N}^3)x^n + y^n = z^n$, then $x : F_{42} \vdash_{\mathbb{O}\text{-Ext}} 7 : \mathbb{B}$.

Indeed, by Fermat's last theorem F_{42} is empty, so using \mathbb{O} -ext $x: F_{42} \vdash_{\mathbb{O}-\mathrm{Ext}} \mathbb{N} \equiv \mathbb{B}: \square$, and $\vdash_{\mathbb{O}-\mathrm{Ext}} 7: \mathbb{N}$

 $\mathbb{O} ext{-extensionality can impact typing without leaving a trace }!$

Algorithmic aspects of conversion

How do we decide $\Gamma \vdash t \stackrel{?}{=} u : A$ in general ?

Step 1: Weak-head reduce

$$t \longrightarrow_{wh}^* t' \stackrel{?}{\equiv} u' \stackrel{*}{wh} \longleftarrow u$$

Step 2: Apply congruences for canonical introduction forms.

Step 3: Once we get to neutrals, use extensionality rules potentially directed by the (weak-head reduced) type A, e.g.

$$\Gamma, x : \mathbb{1}, y : \mathbb{1} \vdash x \equiv y : \mathbb{1}$$

Step 4: Recurse on arbitrary subterms.

Idea: Hoist-away all atomic neutrals, and split them.

Idea: Hoist-away all atomic neutrals, and split them.

$$f: \mathbb{B} \to \mathbb{B}, x: \mathbb{B} \vdash f(f(fx)) \stackrel{?}{\equiv} fx: \mathbb{B}$$

Idea: Hoist-away all atomic neutrals, and split them.

$$f: \mathbb{B} \to \mathbb{B}, x: \mathbb{B}, x \equiv \mathsf{tt} \vdash f(f(f\mathsf{tt})) \stackrel{?}{\equiv} f\mathsf{tt}: \mathbb{B}$$

 $f: \mathbb{B} \to \mathbb{B}, x: \mathbb{B}, x \equiv \mathsf{ff} \vdash f(f(f\mathsf{ff})) \stackrel{?}{\equiv} f\mathsf{ff}: \mathbb{B}$

Split on the unique atomic neutral x.

Idea: Hoist-away all atomic neutrals, and split them.

$$f: \mathbb{B} \to \mathbb{B}, x: \mathbb{B}, x \equiv \mathsf{tt} \vdash f(f(f\mathsf{tt})) \stackrel{?}{\equiv} f\mathsf{tt}: \mathbb{B}$$

 $f: \mathbb{B} \to \mathbb{B}, x: \mathbb{B}, x \equiv \mathsf{ff} \vdash f(f(f\mathsf{ff})) \stackrel{?}{\equiv} f\mathsf{ff}: \mathbb{B}$

Remark: Some atomic neutral (f tt, fff) may appear when splitting another neutral (x).

Idea: Hoist-away all atomic neutrals, and split them.

$$f: \mathbb{B} \to \mathbb{B}, f \text{ tt} \equiv \text{ff}, x: \mathbb{B}, x \equiv \text{tt} \vdash f(f \text{ ff}) \stackrel{?}{=} \text{ff}: \mathbb{B}$$
(Keeping only one case)

Split on the atomic neutral f tt.

Remark: There is a canonical location to split atomic neutrals.

Idea: Hoist-away all atomic neutrals, and split them.

$$f: \mathbb{B} \to \mathbb{B}, f \text{ tt} \equiv \text{ff}, f \text{ ff} \equiv \text{tt}, x: \mathbb{B}, x \equiv \text{tt} \vdash f \text{ tt} \stackrel{?}{\equiv} \text{ff}: \mathbb{B}$$
(Keeping only one case)

Split on the atomic neutral f ff.

Remark: There is a canonical location to split atomic neutrals up to some permutations.

Goal: Implement a correct and complete decision procedure for MLTT + boolean extensionality.

Following ${\tiny [ABEL\ ET\ AL.\ 18]},$ build a logical relation based on reducibility inside a proof-assistant.

Concretely, develop on top of Meven Bertrand and Loic Pujet's version in Coq.

Categorically, a variation of the sheaf model of simply typed theory from $[ALTENKIRCH\ ET\ AL.\ 01]$: context-indexed families stable by renamings and satisfying the Cover rule.

Main obstacle: How to deal constructively with the universe?

Future steps

- ► Finish the proof of normalization for MLTTin Coq
- Implement the conversion algorithm on top of it

Further directions

▶ Martin Baillon: application to (external) continuity of functions $(\mathbb{N} \to \mathbb{B}) \to \mathbb{N}$