
Propositional Quantifiers and Uniform Interpolation

Sam van Gool

GT SCALP, 16 February 2023

IRIF, Université Paris Cité



Interpolation

Interpolation is the problem that asks, given a deduction

A ⊢ B

to find C such that

A ⊢ C ⊢ B

and C only uses symbols that are in both A and B.

▶ What are A,B,C? Which symbols? What is ⊢?

We will look at propositional logics, and take symbols to mean

propositional variables.

2/19



Interpolation

Interpolation is the problem that asks, given a deduction

A ⊢ B

to find C such that

A ⊢ C ⊢ B

and C only uses symbols that are in both A and B.

▶ What are A,B,C? Which symbols? What is ⊢?

We will look at propositional logics, and take symbols to mean

propositional variables.

2/19



Interpolation

Interpolation is the problem that asks, given a deduction

A ⊢ B

to find C such that

A ⊢ C ⊢ B

and C only uses symbols that are in both A and B.

▶ What are A,B,C? Which symbols? What is ⊢?

We will look at propositional logics, and take symbols to mean

propositional variables.

2/19



The Classical Case

Suppose that

A(p, q) ⊢ B(p, r)

for propositional formulas A and B.

If ⊢ is classical entailment, then the formula

C (p) := A(p,⊥) ∨ A(p,⊤)

is an interpolant:

A(p, q) ⊢ C (p) ⊢ B(p, r).

So is

C ′(p) := B(p,⊥) ∧ B(p,⊤).

3/19



The Classical Case

Suppose that

A(p, q) ⊢ B(p, r)

for propositional formulas A and B.

If ⊢ is classical entailment, then the formula

C (p) := A(p,⊥) ∨ A(p,⊤)

is an interpolant:

A(p, q) ⊢ C (p) ⊢ B(p, r).

So is

C ′(p) := B(p,⊥) ∧ B(p,⊤).

3/19



The Classical Case

Suppose that

A(p, q) ⊢ B(p, r)

for propositional formulas A and B.

If ⊢ is classical entailment, then the formula

C (p) := A(p,⊥) ∨ A(p,⊤)

is an interpolant:

A(p, q) ⊢ C (p) ⊢ B(p, r).

So is

C ′(p) := B(p,⊥) ∧ B(p,⊤).

3/19



Uniform Interpolants

Note that each of the interpolants

C (p) := A(p,⊥) ∨ A(p,⊤) and C ′(p) := B(p,⊥) ∧ B(p,⊤)

only depends on one of the formulas in the entailment A ⊢ B.

These uniform interpolants encode propositional quantifiers:

C (p) ≡ ∃q. A(p, q) and C ′(p) ≡ ∀q. B(p, q) .

The simple encoding works because classical logic is locally finite.

4/19



Uniform Interpolants

Note that each of the interpolants

C (p) := A(p,⊥) ∨ A(p,⊤) and C ′(p) := B(p,⊥) ∧ B(p,⊤)

only depends on one of the formulas in the entailment A ⊢ B.

These uniform interpolants encode propositional quantifiers:

C (p) ≡ ∃q. A(p, q) and C ′(p) ≡ ∀q. B(p, q) .

The simple encoding works because classical logic is locally finite.

4/19



Uniform Interpolants

Note that each of the interpolants

C (p) := A(p,⊥) ∨ A(p,⊤) and C ′(p) := B(p,⊥) ∧ B(p,⊤)

only depends on one of the formulas in the entailment A ⊢ B.

These uniform interpolants encode propositional quantifiers:

C (p) ≡ ∃q. A(p, q) and C ′(p) ≡ ∀q. B(p, q) .

The simple encoding works because classical logic is locally finite.

4/19



The Intuitionistic Case

Intuitionistic Propositional Logic is not locally finite.

p,¬p,¬¬p,¬¬p → p, . . .

Surprisingly, we still have:

Theorem. (Pitts 1992) There is an effective interpretation of

propositional quantifiers in intuitionistic propositional logic.

5/19



The Intuitionistic Case

Intuitionistic Propositional Logic is not locally finite.

p,¬p,¬¬p,¬¬p → p, . . .

Surprisingly, we still have:

Theorem. (Pitts 1992) There is an effective interpretation of

propositional quantifiers in intuitionistic propositional logic.

5/19



Detailed Statement of Pitts’ Theorem

For every propositional formula ϕ(p̄, q), there effectively exist

propositional formalas

Eq(ϕ) and Aq(ϕ)

with variables in p̄, and such that, for any formula ψ(p̄),

if ϕ ⊢ ψ then ϕ ⊢ Eqϕ ⊢ ψ ,

and

if ψ ⊢ ϕ then ψ ⊢ Aqϕ ⊢ ϕ ,

where ϕ ⊢ ψ means intuitionistic entailment (provability).

6/19



Intuitionistic Propositional Quantifiers

We no longer have the simple encoding of ∃q. A.

For example, when

A = (¬p → q) ∧ (q → r)

we have

A[⊥/q] ≡ ¬¬p, A[⊤/q] ≡ r

but

A ̸⊢ ¬¬p ∨ r .

In this example, it turns out that ∃q. A can be encoded as

¬p → r ,

which is equivalent to A[¬p/q].

7/19



Intuitionistic Propositional Quantifiers

We no longer have the simple encoding of ∃q. A.

For example, when

A = (¬p → q) ∧ (q → r)

we have

A[⊥/q] ≡ ¬¬p, A[⊤/q] ≡ r

but

A ̸⊢ ¬¬p ∨ r .

In this example, it turns out that ∃q. A can be encoded as

¬p → r ,

which is equivalent to A[¬p/q].

7/19



Intuitionistic Propositional Quantifiers

We no longer have the simple encoding of ∃q. A.

For example, when

A = (¬p → q) ∧ (q → r)

we have

A[⊥/q] ≡ ¬¬p, A[⊤/q] ≡ r

but

A ̸⊢ ¬¬p ∨ r .

In this example, it turns out that ∃q. A can be encoded as

¬p → r ,

which is equivalent to A[¬p/q]. 7/19



A Glimpse At Pitts’ Proof

Given a formula A(p̄, q), we have

A(p̄, q) ⊢
∧

{B(p̄) | A ⊢ B}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by ∧
Eq(A)

where Eq(A) is a finite set of formulas that is a basis.

The encoding of ∀q. A is similar, using a disjunction of Aq(A).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(A′) and Aq(A
′) for smaller formulas A′.

8/19



A Glimpse At Pitts’ Proof

Given a formula A(p̄, q), we have

A(p̄, q) ⊢
∧

{B(p̄) | A ⊢ B}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by ∧
Eq(A)

where Eq(A) is a finite set of formulas that is a basis.

The encoding of ∀q. A is similar, using a disjunction of Aq(A).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(A′) and Aq(A
′) for smaller formulas A′.

8/19



A Glimpse At Pitts’ Proof

Given a formula A(p̄, q), we have

A(p̄, q) ⊢
∧

{B(p̄) | A ⊢ B}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by ∧
Eq(A)

where Eq(A) is a finite set of formulas that is a basis.

The encoding of ∀q. A is similar, using a disjunction of Aq(A).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(A′) and Aq(A
′) for smaller formulas A′.

8/19



A Glimpse At Pitts’ Proof

Given a formula A(p̄, q), we have

A(p̄, q) ⊢
∧

{B(p̄) | A ⊢ B}.

The expression on the right is q-free, but not a formula.

The idea is to replace it by ∧
Eq(A)

where Eq(A) is a finite set of formulas that is a basis.

The encoding of ∀q. A is similar, using a disjunction of Aq(A).

Pitts’ definition recurses on the shape of the formula A, using

already computed sets Eq(A′) and Aq(A
′) for smaller formulas A′.

8/19



A Glimpse At Pitts’ Proof

9/19



Computing Intuitionistic Propositional Quantifiers

Pitts proves correctness by an induction on proofs of A ⊢ B.

▶ What proof calculus to use?

Gentzen calculus LJ has contraction, and the rule:

Γ, ϕ1 → ϕ2 ⊢ ϕ1 Γ, ϕ2 ⊢ ψ
Γ, ϕ1 → ϕ2 ⊢ ψ

which make proof search not obviously terminating.

Using multisets as sequents, and replacing this rule by a finer case

analysis on ϕ1, one obtains the calculus G4ip (aka LJT).

Theorem (Vorob’ev, Hudelmaier, Dyckhoff)

The sequent calculus G4ip is sound and complete for

intuitionistic propositional logic.

10/19



Computing Intuitionistic Propositional Quantifiers

Pitts proves correctness by an induction on proofs of A ⊢ B.

▶ What proof calculus to use?

Gentzen calculus LJ has contraction, and the rule:

Γ, ϕ1 → ϕ2 ⊢ ϕ1 Γ, ϕ2 ⊢ ψ
Γ, ϕ1 → ϕ2 ⊢ ψ

which make proof search not obviously terminating.

Using multisets as sequents, and replacing this rule by a finer case

analysis on ϕ1, one obtains the calculus G4ip (aka LJT).

Theorem (Vorob’ev, Hudelmaier, Dyckhoff)

The sequent calculus G4ip is sound and complete for

intuitionistic propositional logic.

10/19



Computing Intuitionistic Propositional Quantifiers

Pitts proves correctness by an induction on proofs of A ⊢ B.

▶ What proof calculus to use?

Gentzen calculus LJ has contraction, and the rule:

Γ, ϕ1 → ϕ2 ⊢ ϕ1 Γ, ϕ2 ⊢ ψ
Γ, ϕ1 → ϕ2 ⊢ ψ

which make proof search not obviously terminating.

Using multisets as sequents, and replacing this rule by a finer case

analysis on ϕ1, one obtains the calculus G4ip (aka LJT).

Theorem (Vorob’ev, Hudelmaier, Dyckhoff)

The sequent calculus G4ip is sound and complete for

intuitionistic propositional logic.

10/19



Pitts Verified

In recent joint work with H. Férée, we formalized the proof in Coq,

yielding a correct-by-construction program that computes the

encoding of the propositional quantifiers.

https://ipqcoq.github.io

Some take-aways of that work:

• Intricate properties of the proof calculus play a big role

• A usable program (more experimentation to be done)

• Not obviously modular: how to generalize to other logics?

(Linear, modal, . . . )

• A question: what does Pitts’ theorem mean, computationally?

11/19

https://ipqcoq.github.io


Pitts Verified

In recent joint work with H. Férée, we formalized the proof in Coq,

yielding a correct-by-construction program that computes the

encoding of the propositional quantifiers.

https://ipqcoq.github.io

Some take-aways of that work:

• Intricate properties of the proof calculus play a big role

• A usable program (more experimentation to be done)

• Not obviously modular: how to generalize to other logics?

(Linear, modal, . . . )

• A question: what does Pitts’ theorem mean, computationally?

11/19

https://ipqcoq.github.io


Detailed Statement of Pitts’ Theorem, through Curry-Howard

For every type ϕ(p̄, q) we can compute types

Eq(ϕ) and Aq(ϕ)

with variables in p̄, and, for any type ψ(p̄), functions

(ϕ ⊢ ψ) −→ (ϕ ⊢ Eqϕ)× (Eqϕ ⊢ ψ) ,

and

(ψ ⊢ ϕ) −→ (ψ ⊢ Aqϕ)× (Aqϕ ⊢ ϕ) ,

where types are built from variables and ⊥ with ∨,∧,→, and

ϕ ⊢ ψ means the type of G4ip-proofs of ψ in context ϕ.

12/19



The Semantic Approach

Intuitionistic propositional logic is canonically interpreted by

Heyting algebras: structures (H,∨,∧,⊥,⊤,→) satisfying the

axioms of a bounded distributive lattice and, for all a, b, c ∈ H,

a ∧ b ≤ c ⇐⇒ a ≤ b → c .

(For the categorically minded: a Heyting algebra is a cartesian

closed partial order with finite sums.)

13/19



The Semantic Approach

Intuitionistic propositional logic is canonically interpreted by

Heyting algebras: structures (H,∨,∧,⊥,⊤,→) satisfying the

axioms of a bounded distributive lattice and, for all a, b, c ∈ H,

a ∧ b ≤ c ⇐⇒ a ≤ b → c .

(For the categorically minded: a Heyting algebra is a cartesian

closed partial order with finite sums.)

13/19



Pitts’ Theorem, Semantically

Pitts’ theorem can be reformulated using Heyting algebras as:

Theorem. Any homomorphism between finitely generated free

Heyting algebras has both an upper and a lower adjoint.

Using moreover Heyting categories, another formulation is:

Theorem. The opposite of the category HAfp of finitely presented

Heyting algebras is a Heyting category.

14/19



Pitts’ Theorem, Semantically

Pitts’ theorem can be reformulated using Heyting algebras as:

Theorem. Any homomorphism between finitely generated free

Heyting algebras has both an upper and a lower adjoint.

Using moreover Heyting categories, another formulation is:

Theorem. The opposite of the category HAfp of finitely presented

Heyting algebras is a Heyting category.

14/19



Aside: Why Pitts Proved His Theorem

“Some ten or so years ago I tried to prove the negation of [the

theorem] in connection with (...) the question of whether any

Heyting algebra can appear as the algebra of truth-values of an

elementary topos. I established that the free Heyting algebra on a

countable infinity of generators does not so appear provided [the

theorem] does not hold. It seemed likely to me (and to others to

whom I posed the question) that a [formula] ϕ could be found for

which Apϕ does not exist (although I could not find one!), thus

settling the original question about toposes and Heyting algebras

in the negative. That [the theorem] is true is quite a surprise to

me. (...) It remains an open question whether every Heyting

algebra can be the Lindenbaum algebra of a theory in intuitionistic

higher order logic.” (Pitts 1992)

15/19



A Sheaf Representation

S. Ghilardi and M. Zawadowski (1995) gave a different proof,

starting from the observation that every finitely presented Heyting

algebra H can be faithfully represented by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

GZ noticed that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ: HAfp −→ Sh(Posfin),

and characterized the image of Φ via a combinatorial condition (∗).

Pitts’ Theorem is then proved by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

16/19



A Sheaf Representation

S. Ghilardi and M. Zawadowski (1995) gave a different proof,

starting from the observation that every finitely presented Heyting

algebra H can be faithfully represented by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

GZ noticed that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ: HAfp −→ Sh(Posfin),

and characterized the image of Φ via a combinatorial condition (∗).

Pitts’ Theorem is then proved by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

16/19



A Sheaf Representation

S. Ghilardi and M. Zawadowski (1995) gave a different proof,

starting from the observation that every finitely presented Heyting

algebra H can be faithfully represented by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

GZ noticed that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ: HAfp −→ Sh(Posfin),

and characterized the image of Φ via a combinatorial condition (∗).

Pitts’ Theorem is then proved by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗).

16/19



A Sheaf Representation

S. Ghilardi and M. Zawadowski (1995) gave a different proof,

starting from the observation that every finitely presented Heyting

algebra H can be faithfully represented by a covariant presheaf

ΦH : HAfin −→ Set

defined as the restriction of Hom(H,−) to finite algebras.

GZ noticed that ΦH can also be seen as a contravariant sheaf on

the category Posfin of finite posets, giving a functor

Φ: HAfp −→ Sh(Posfin),

and characterized the image of Φ via a combinatorial condition (∗).

Pitts’ Theorem is then proved by showing that the direct image (∃)
and universal image (∀) operations on sheaves preserve (∗). 16/19



An Open Mapping Theorem

A different interpretation of the GZ sheaf theoretic proof.

Any bounded distributive lattice H can be described as a lattice of

compact-open subsets of a topological space X , based on the set

DL(H, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between

Heyting algebras and certain ordered compact spaces, now called

Esakia spaces. The finite part is Kripke semantics.

We can prove Pitts’ theorem in the dual category Esakia ≃ HAop:

Theorem. (vG. & Reggio 2018) Every continuous monotone map

between co-finitely presented Esakia spaces is open.

17/19



An Open Mapping Theorem

A different interpretation of the GZ sheaf theoretic proof.

Any bounded distributive lattice H can be described as a lattice of

compact-open subsets of a topological space X , based on the set

DL(H, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between

Heyting algebras and certain ordered compact spaces, now called

Esakia spaces. The finite part is Kripke semantics.

We can prove Pitts’ theorem in the dual category Esakia ≃ HAop:

Theorem. (vG. & Reggio 2018) Every continuous monotone map

between co-finitely presented Esakia spaces is open.

17/19



An Open Mapping Theorem

A different interpretation of the GZ sheaf theoretic proof.

Any bounded distributive lattice H can be described as a lattice of

compact-open subsets of a topological space X , based on the set

DL(H, 2)

of homomorphisms to the two-element lattice (Stone 1937).

Esakia (1974) derived from this a dual equivalence between

Heyting algebras and certain ordered compact spaces, now called

Esakia spaces. The finite part is Kripke semantics.

We can prove Pitts’ theorem in the dual category Esakia ≃ HAop:

Theorem. (vG. & Reggio 2018) Every continuous monotone map

between co-finitely presented Esakia spaces is open.
17/19



Logical Connections

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an elementary

axiomatization of its existentially closed models.

The idea is that propositional quantifiers allow one to encode any

Heyting algebra equation in an elementary way.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

18/19



Logical Connections

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an elementary

axiomatization of its existentially closed models.

The idea is that propositional quantifiers allow one to encode any

Heyting algebra equation in an elementary way.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

18/19



Logical Connections

Ghilardi and Zawadowski use Pitts’ theorem to prove:

Theorem. The theory of Heyting algebras has a model completion.

Here, a model completion of a first order theory is an elementary

axiomatization of its existentially closed models.

The idea is that propositional quantifiers allow one to encode any

Heyting algebra equation in an elementary way.

One may identify the algebraic conditions needed for this, giving a

modular approach to model completions (Ghilardi & Zawadowski

2002; vG., Tsinakis, Metcalfe 2017; Metcalfe & Reggio 2023).

18/19



More Logical Connections

Linear temporal logic and Computation tree logic do not have

interpolation, but they do have propositional quantifiers.

Theorem. (Ghilardi & vG. 2016) There are finitely axiomatized

algebraic theories for LTL and fair CTL with model companions.

The proof technique makes essential use of the correspondence

between monadic second order logic and automata.

▶ Is there a syntactic proof?

▶ What is the computational meaning of these semantic methods?

Thank you!

19/19



More Logical Connections

Linear temporal logic and Computation tree logic do not have

interpolation, but they do have propositional quantifiers.

Theorem. (Ghilardi & vG. 2016) There are finitely axiomatized

algebraic theories for LTL and fair CTL with model companions.

The proof technique makes essential use of the correspondence

between monadic second order logic and automata.

▶ Is there a syntactic proof?

▶ What is the computational meaning of these semantic methods?

Thank you!

19/19



More Logical Connections

Linear temporal logic and Computation tree logic do not have

interpolation, but they do have propositional quantifiers.

Theorem. (Ghilardi & vG. 2016) There are finitely axiomatized

algebraic theories for LTL and fair CTL with model companions.

The proof technique makes essential use of the correspondence

between monadic second order logic and automata.

▶ Is there a syntactic proof?

▶ What is the computational meaning of these semantic methods?

Thank you!

19/19



More Logical Connections

Linear temporal logic and Computation tree logic do not have

interpolation, but they do have propositional quantifiers.

Theorem. (Ghilardi & vG. 2016) There are finitely axiomatized

algebraic theories for LTL and fair CTL with model companions.

The proof technique makes essential use of the correspondence

between monadic second order logic and automata.

▶ Is there a syntactic proof?

▶ What is the computational meaning of these semantic methods?

Thank you!

19/19



More Logical Connections

Linear temporal logic and Computation tree logic do not have

interpolation, but they do have propositional quantifiers.

Theorem. (Ghilardi & vG. 2016) There are finitely axiomatized

algebraic theories for LTL and fair CTL with model companions.

The proof technique makes essential use of the correspondence

between monadic second order logic and automata.

▶ Is there a syntactic proof?

▶ What is the computational meaning of these semantic methods?

Thank you!

19/19


