Division by two, omniscience, and homotopy type theory

Samuel Mimram Émile Oleon
SCALP working group
February 16, 2023

Natural numbers as sets

The natural numbers \mathbb{N} can be defined as the equivalence classes of finite sets under isomorphism (= cardinals).

For instance,

Operations on sets

When we have an operation on natural number we can therefore ask:
is the quotient of some operation on sets?

Operations on sets

When we have an operation on natural number we can therefore ask: is the quotient of some operation on sets?
For instance,

- addition is the quotient of disjoint union:
$3+2=a b c c b a y=a b c x y y=5$

Operations on sets

When we have an operation on natural number we can therefore ask:
is the quotient of some operation on sets?
For instance,

- addition is the quotient of disjoint union:

- product is the quotient of cartesian product:

$$
3 \times 2=\begin{array}{lll}
a & b & c
\end{array} \times \begin{array}{ll}
x \\
y
\end{array}=\begin{array}{lll}
a, x) & (b, x) & (c, x) \\
(a, y) & (b, y) & (c, y)
\end{array}=6
$$

Operations on sets

When we have an operation on natural number we can therefore ask:
is the quotient of some operation on sets?
This is satisfactory when it is the case because

- this is more "constructive": we replace equality by isomorphism,
- we have an extension of the operations to infinite sets,
- we can study which axioms of set theory we need to perform this.

Subtraction by 1

Next interesting operation is subtraction by 1

Subtraction by 1

Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

$$
m+1=n+1 \quad \text { implies } \quad m=n
$$

Subtraction by 1

Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

$$
m+1=n+1 \quad \text { implies } \quad m=n
$$

At the level of sets, this means that we should have

$$
A \sqcup\{\star\} \simeq B \sqcup\{\star\} \quad \text { implies } \quad A \simeq B
$$

Subtraction by 1

Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

$$
m+1=n+1 \quad \text { implies } \quad m=n
$$

At the level of sets, this means that we should have

$$
A \sqcup\{\star\} \simeq B \sqcup\{\star\} \quad \text { implies } \quad A \simeq B
$$

We see that this approach feels more constructive!

Subtraction by 1

$$
A \sqcup\{\star\} \longrightarrow B \quad B \sqcup\{\star\}
$$

Subtraction by 1

$$
A \sqcup\{\star\} \quad f \quad B \sqcup\{\star\}
$$

Subtraction by 1

$$
A \sqcup\{\star\} \longrightarrow B \quad B \sqcup\{\star\}
$$

Subtraction by 1

$$
A \sqcup\{\star\} \longrightarrow B \quad B \sqcup\{\star\}
$$

Subtraction by 1

$$
A \sqcup\{\star\} \longrightarrow B \quad B \sqcup\{\star\}
$$

Subtraction by 1

$$
A \sqcup\{\star\} \longrightarrow B \quad B \sqcup\{\star\}
$$

Subtraction by 1

$$
A \sqcup\{\star\} \longrightarrow B \quad B \sqcup\{\star\}
$$

Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

$$
m \times 2=n \times 2 \quad \text { implies } \quad m=n
$$

Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

$$
m \times 2=n \times 2 \quad \text { implies } \quad m=n
$$

At the level of sets, this means that we should have

$$
A \times\{0,1\} \simeq B \times\{0,1\} \quad \text { implies } \quad A \simeq B
$$

Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

$$
m \times 2=n \times 2 \quad \text { implies } \quad m=n
$$

At the level of sets, this means that we should have

$$
A \times\{0,1\} \simeq B \times\{0,1\} \quad \text { implies } \quad A \simeq B
$$

And this is indeed the case:

- if the two sets are finite, we are essentially working with natural numbers,
- otherwise we have $A \simeq A \sqcup A \simeq B \sqcup B \simeq B$.

Division by 2, constructively

This is the end of my talk

Division by 2, constructively

This could have been the end of my talk unless we wonder

> can this be performed constructively?

Division by 2, constructively

This could have been the end of my talk unless we wonder

can this be performed constructively?

Namely, we have been using two dubious principles in the proof of division by 2:

Division by 2, constructively

This could have been the end of my talk unless we wonder

can this be performed constructively?

Namely, we have been using two dubious principles in the proof of division by 2:

- the excluded-middle: any set is finite or not,

Division by 2, constructively

This could have been the end of my talk unless we wonder

can this be performed constructively?

Namely, we have been using two dubious principles in the proof of division by 2:

- the excluded-middle: any set is finite or not,
- the axiom of choice: to construct the bijection $A \simeq A \sqcup A$.

History of division

- 1901: Bernstein gives a construction of division by 2 in ZF
- 1922: Serpiński simplifies the construction
- 1926: Lindenbaum and Tarski construct division by n
- 1943: Tarski forgets about the construction finds a new one
- 1994: Conway and Doyle manage to reinvent the 1926 solution
- 2015: Doyle, Qiu and Schartz further simplify the construction
- 2018: Swan shows that it cannot be performed entirely constructively
by exhibiting a non-boolean topos in which $\times \mathbf{2}$ is not regular
- 2022: we extended this to HoTT
- 2023: we only need the limited principle of omniscience

Still an active research topic :)

In this work

We started from Conway and Doyle's 1994 paper Division by three:

- we focus on division by 2 ,
- we formalize the results in Agda,
- we generalize from sets to spaces.

The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

with $\mathbf{2}=\{-,+\}$. We want to construct a bijection

without using the axiom of choice.

The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

This data secretly corresponds to a directed graph:

- the elements of $A \times \mathbf{2}$ and $B \times \mathbf{2}$ are vertices,

The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

This data secretly corresponds to a directed graph:

- the elements of $A \times \mathbf{2}$ and $B \times \mathbf{2}$ are vertices,
- the elements of A and B are edges: for $a \in A$,

$$
(a,-) \xrightarrow{a}(a,+)
$$

with $\mathbf{2}=\{-,+\}$

The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

This data secretly corresponds to a directed graph:

- the elements of $A \times \mathbf{2}$ and $B \times \mathbf{2}$ are vertices,
- the elements of A and B are edges: for $a \in A$,

$$
(a,-) \xrightarrow{a}(a,+)
$$

with $\mathbf{2}=\{-,+\}$

- we identify any two vertices related by the bijection.

The bijection as a graph

For instance, suppose

$$
A=\left\{a, a^{\prime}\right\} \quad B=\left\{b, b^{\prime}\right\}
$$

and consider the bijection

The bijection as a graph

For instance, suppose

$$
A=\left\{a, a^{\prime}\right\} \quad B=\left\{b, b^{\prime}\right\}
$$

and consider the bijection

Properties of the graph

Such a graph is characterized by

- every vertex is connected to exactly two edges
- in a path, edges alternate between elements of A and B

Chains

A chain is a connected component.

Chains

A chain is a connected component.
It is enough to make a bijection between the edges in A and in B in every chain.

Chains

A chain is a connected component.
It is enough to make a bijection between the edges in A and in B in every chain.
Suppose that we pick a distinguished edge in every chain:

Chains

A chain is a connected component.
It is enough to make a bijection between the edges in A and in B in every chain.
Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,

Chains

A chain is a connected component.
It is enough to make a bijection between the edges in A and in B in every chain.
Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every red element to the "next" blue one.

Chains

A chain is a connected component.
It is enough to make a bijection between the edges in A and in B in every chain.
Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every red element to the "next" blue one.

We thus only need to pick an orientation in every chain

Chains

A chain is a connected component.
It is enough to make a bijection between the edges in A and in B in every chain.
Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every red element to the "next" blue one.

We thus only need to pick an orientation in every chain ...
which is not obvious without choice!

Bracketing

Consider a chain

Bracketing

Consider a chain

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following forms:

Bracketing

Consider a chain

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following forms:
- slope: $\cdot \cdots \longrightarrow \cdot \longrightarrow \cdot \longrightarrow$
we can use any arrow as an orientation!

Bracketing

Consider a chain

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following forms:
- slope: $\cdot \cdots \longrightarrow \cdot \longrightarrow \cdot \longrightarrow$
we can use any arrow as an orientation!
- switch:

we have a canonical choice of an arrow for orientation!

Bracketing

Consider a chain

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following forms:
- slope: $\cdot \cdots \longrightarrow \cdot \longrightarrow \cdot \longrightarrow$
we can use any arrow as an orientation!
- switch:

we have a canonical choice of an arrow for orientation!
In each case we can pick an orientation without choice.

A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)

A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent

A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
- the law of excluded middle: for any proposition A,

$$
A \vee \neg A
$$

A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
- the law of excluded middle: for any proposition A,

$$
A \vee \neg A
$$

- the axiom of choice: for $f: A \rightarrow$ Type,

$$
((x: A) \rightarrow\|f x\|) \rightarrow\|((x: A) \rightarrow f x)\|
$$

A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
- the law of excluded middle: for any proposition A,

$$
\mathrm{A} \vee \neg \mathrm{~A}
$$

- the axiom of choice: for $f: A \rightarrow$ Type,

$$
((x: A) \rightarrow\|f x\|) \rightarrow\|((x: A) \rightarrow f x)\|
$$

- we have access to HITs, which are useful (propositional trunc., quotient types)

A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
- the law of excluded middle: for any proposition A,

$$
\mathrm{A} \vee \neg \mathrm{~A}
$$

- the axiom of choice: for $f: A \rightarrow$ Type,

$$
((x: A) \rightarrow\|f x\|) \rightarrow\|((x: A) \rightarrow f x)\|
$$

- we have access to HITs, which are useful (propositional trunc., quotient types)
- we generalize the result from sets to spaces

A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
- the law of excluded middle: for any proposition A,

$$
\mathrm{A} \vee \neg \mathrm{~A}
$$

- the axiom of choice: for $f: A \rightarrow$ Type,

$$
((x: A) \rightarrow\|f x\|) \rightarrow\|((x: A) \rightarrow f x)\|
$$

- we have access to HITs, which are useful (propositional trunc., quotient types)
- we generalize the result from sets to spaces

The limited principle of omniscience

The law of excluded middle is: for any proposition A,
$A \vee \neg A$

The limited principle of omniscience

The law of excluded middle is: for any proposition A,

$$
A \vee \neg A
$$

Here and after, we do not need the full power of excluded middle, but only the limited principle of omniscience (LPO): \mathbb{Z} is omniscient.

```
Given a sequence P : \mathbb{Z }
    - either }\forall (n : \mathbb{Z) ᄀ (P n),
    - or \exists (n : \mathbb{Z}) (P n).
```

NB: Bool is the type of decidable propositions
(think: we can decide the halting problem)

The limited principle of omniscience

The limited principle of omniscience

$$
(P: \mathbb{Z} \rightarrow \text { Bool }) \rightarrow(\forall(\mathrm{n}: \mathbb{Z}) \rightarrow \neg(\mathrm{P} n)) \vee(\exists(\mathrm{n}: \mathbb{Z}) \rightarrow \mathrm{P} \text { n) }))
$$

is used here to determine whether

- a bracket is matched
- all brackets are matched,
- we have a switching arrow.

And it does not seem that we can avoid it.

From sets to spaces

We have formalized the original result:
Theorem
For any two types A and B which are sets,

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

From sets to spaces

We have formalized the original result:
Theorem
For any two types A and B which are sets,

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

but also the generalization
Theorem
For any two types A and B,

$$
\begin{array}{rlrl}
A \times 2 & \simeq B \times 2 & \rightarrow & A \\
& \simeq B \\
& \simeq \square & & \simeq
\end{array}
$$

From sets to spaces

We have formalized the original result:
Theorem
For any two types A and B which are sets,

$$
\mathrm{A} \times 2 \simeq \mathrm{~B} \times 2 \quad \rightarrow \quad \mathrm{~A} \simeq \mathrm{~B}
$$

but also the generalization

Theorem

For any two types A and B,

$$
\begin{array}{llll}
A \times 2 \simeq B \times 2 & \rightarrow & A & \simeq B \\
& \simeq \square \square
\end{array}
$$

Note: we should use equivalences instead of isomorphisms for types.

Components

Given a type A, we write $\|A\|_{\text {o }}$ for its set of connected components.

Components

Given a type A, we write $\|A\|_{\text {o for }}$ fots set of connected components.

Given $a \in A$, we write shape (a) for the actual component of A, which is a space.

Components

Given a type A, we write $\|A\|_{\text {o }}$ for its set of connected components.
Given $a \in A$, we write shape (a) for the actual component of A, which is a space.

The bijection

$$
f: A \sqcup A \rightarrow B \sqcup B
$$

induces, for $a \in A \sqcup A$, a bijection

$$
f_{a}: \operatorname{shape}(a) \rightarrow \operatorname{shape}(f(a))
$$

which are thus "homotopy equivalent".

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
A \times 2 \simeq B \times 2
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times 2 & \simeq B \times 2 \\
\|A \times 2\|_{0} & \simeq\|B \times 2\|_{0}
\end{aligned}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
\mathrm{A} \times 2 \simeq \mathrm{~B} \times 2 \quad \rightarrow \quad \mathrm{~A} \simeq \mathrm{~B}
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathcal{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times \mathbb{L}
\end{aligned}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathbb{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times \mathbb{L} \\
\|A\|_{0} & \simeq\|B\|_{0}
\end{aligned}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathcal{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times 2 \\
\|A\|_{0} & \simeq\|B\|_{0}
\end{aligned}
$$

Since this bijection sends a directed arrow a to a reachable one b,

$$
\text { shape } \mathrm{a} \simeq \text { shape } \mathrm{b}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathbb{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times \mathbb{L} \\
\|A\|_{0} & \simeq\|B\|_{0}
\end{aligned}
$$

Since this bijection sends a directed arrow a to a reachable one b,
thus

$$
A \simeq \Sigma[a \in A](\text { shape } a) \simeq \Sigma[b \in B](\text { shape } b) \simeq B
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathbb{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times \mathbb{L} \\
\|A\|_{0} & \simeq\|B\|_{0}
\end{aligned}
$$

Since this bijection sends a directed arrow a to a reachable one b,

$$
\text { shape } \mathrm{a} \simeq \text { shape } \mathrm{b}
$$

thus

$$
A \simeq \Sigma[a \in A](\text { shape } a) \simeq \Sigma[b \in B](\text { shape } b) \simeq B
$$

Agda formalization

Consider the type $\mathbb{2}$ with two elements src and tgt

Agda formalization

Consider the type 2 with two elements src and tgt and suppose fixed a bijection

$$
A \times 2 \simeq B \times 2
$$

with A and B sets.

Agda formalization

Consider the type 2 with two elements src and tgt and suppose fixed a bijection

$$
A \times \mathcal{L} \simeq B \times \mathcal{L}
$$

with A and B sets. We define

- Arrows = A $\uplus \mathrm{B}$
- Ends $=$ Arrows $\times 2=$ dArrows

The idea:

$$
(\mathrm{a}, \mathrm{src}) \cdot \xrightarrow{\mathrm{a}} \cdot(\mathrm{a}, \mathrm{tg} \mathrm{t})
$$

Agda formalization

Consider the type $\mathcal{2}$ with two elements src and tgt and suppose fixed a bijection

$$
A \times \mathcal{L} \simeq B \times \mathcal{L}
$$

with A and B sets. We define

- Arrows $=\mathrm{A} \uplus \mathrm{B}$
- Ends $=$ Arrows $\times \mathbb{2}=$ dArrows

The idea:

$$
(\mathrm{a}, \mathrm{src}) \cdot \xrightarrow{\mathrm{a}} \cdot(\mathrm{a}, \mathrm{tg} \mathrm{t})
$$

We also have functions

$$
\begin{array}{rlrl}
\text { arr }: \text { dArrows } & \rightarrow \text { Arrows } & \text { fw : Arrows } & \rightarrow \text { dArrows } \\
(\mathrm{a}, \mathrm{src}) & \mapsto \mathrm{a} & \mathrm{a} & \mapsto(\mathrm{a}, \mathrm{src}) \\
(\mathrm{a}, \mathrm{tgt}) & \mapsto \mathrm{a} &
\end{array}
$$

Reachability

We can then define a function:

$$
\text { iterate }: \mathbb{Z} \rightarrow \text { dArrows } \rightarrow \text { dArrows }
$$

Reachability

We can then define a function:

$$
\text { iterate }: \mathbb{Z} \rightarrow \text { dArrows } \rightarrow \text { dArrows }
$$

And thus
reachable : dArrows \rightarrow dArrows \rightarrow Type
reachable e $e^{\prime}=\Sigma[n \in \mathbb{Z}]$ (iterate $n e \equiv e^{\prime}$)

Reachability

We can then define a function:

$$
\text { iterate }: \mathbb{Z} \rightarrow \text { dArrows } \rightarrow \text { dArrows }
$$

And thus
reachable : dArrows \rightarrow dArrows \rightarrow Type
reachable e $e^{\prime}=\Sigma[n \in \mathbb{Z}]$ (iterate $n e \equiv e^{\prime}$)
as well as
is-reachable : dArrows \rightarrow dArrows \rightarrow Type
is-reachable e e' = || reachable e e' ||

Revealing rechability

Recall,

$$
\begin{aligned}
\text { reachable e e } & =\Sigma[\mathrm{n} \in \mathbb{Z}] \text { (iterate } \mathrm{n} e \equiv \mathrm{e}^{\prime} \text {) } \\
\text { is-reachable e e} \mathrm{e}^{\prime} & =\| \text { reachable e e' } \|
\end{aligned}
$$

Clearly, reachable e e' \rightarrow is-reachable e e'

Revealing rechability

Recall,

$$
\begin{aligned}
\text { reachable e } e^{\prime} & \left.=\Sigma[n \in \mathbb{Z}] \text { (iterate } n e \equiv e^{\prime}\right) \\
\text { is-reachable e e } & =\| \text { reachable e e' } \|
\end{aligned}
$$

Clearly, reachable e e' \rightarrow is-reachable e e'

Proposition

Conversely, is-reachable e e' \rightarrow reachable e e'
Proof.

Revealing rechability

Recall,

$$
\begin{aligned}
\text { reachable e e } e^{\prime} & =\Sigma[n \in \mathbb{Z}] \text { (iterate } n e \equiv e^{\prime} \text {) } \\
\text { is-reachable e e } & =\| \text { reachable e e' } \|
\end{aligned}
$$

Clearly, reachable e e' \rightarrow is-reachable e e'

Proposition

Conversely, is-reachable e e' \rightarrow reachable e e'
Proof.
Since A and B are sets, so is dArrows $=(A \uplus B) \times \mathcal{D}$.

Revealing rechability

Recall,

$$
\begin{aligned}
\text { reachable e e' } & =\Sigma[\mathrm{n} \in \mathbb{Z}] \text { (iterate } \mathrm{n} e \equiv \mathrm{e}^{\prime} \text {) } \\
\text { is-reachable e e} \mathrm{e}^{\prime} & =\| \text { reachable e e' } \|
\end{aligned}
$$

Clearly, reachable e e' \rightarrow is-reachable e e'

Proposition

Conversely, is-reachable e e' \rightarrow reachable e e'
Proof.
Since A and B are sets, so is dArrows $=(A \uplus B) \times 2$.
Thus reachable e e' is a proposition,

Revealing rechability

Recall,

$$
\begin{aligned}
\text { reachable e e' } & =\Sigma[\mathrm{n} \in \mathbb{Z}] \text { (iterate } \mathrm{n} e \equiv \mathrm{e}^{\prime} \text {) } \\
\text { is-reachable e e} \mathrm{e}^{\prime} & =\| \text { reachable e e' } \|
\end{aligned}
$$

Clearly, reachable e e' \rightarrow is-reachable e e'

Proposition

Conversely, is-reachable e e' \rightarrow reachable e e'
Proof.
Since A and B are sets, so is dArrows $=(A \uplus B) \times 2$.
Thus reachable e e' is a proposition,
which is moreover decidable because we are classical.

Revealing rechability

Recall,

$$
\begin{aligned}
\text { reachable e e' } & =\Sigma[\mathrm{n} \in \mathbb{Z}] \text { (iterate } \mathrm{n} e \equiv \mathrm{e}^{\prime} \text {) } \\
\text { is-reachable e e' } & =\| \text { reachable e e' } \|
\end{aligned}
$$

Clearly, reachable e e' \rightarrow is-reachable e e'

Proposition

Conversely, is-reachable e e' \rightarrow reachable e e'

Proof.

Since A and B are sets, so is dArrows $=(A \uplus B) \times \mathbb{2}$.
Thus reachable e e' is a proposition,
which is moreover decidable because we are classical.
Supposing reachable e e', since we have a way to enumerate \mathbb{Z},
we can therefore find an $n: \mathbb{Z}$ such that iterate $n e \equiv e^{\prime}$.

Chains

We are tempted to define directed chains as

$$
\Sigma[\mathrm{e} \in \text { dArrows }] \quad(\Sigma[\mathrm{e}, \in \text { dArrows }] \text { (is-reachable e e')) }
$$

Chains

We are tempted to define directed chains as

$$
\Sigma[\mathrm{e} \in \text { dArrows }] \quad(\Sigma[\mathrm{e}, \in \text { dArrows }] \text { (is-reachable e e')) }
$$

However, this are rather pointed chains.

Chains

We are tempted to define directed chains as

$$
\Sigma[\mathrm{e} \in \text { dArrows }] \quad(\Sigma[\mathrm{e}, \in \text { dArrows }] \text { (is-reachable e e')) }
$$

However, this are rather pointed chains.
A satisfactory definition of directed chains
dChains = dArrows / is-reachable

Chains

We are tempted to define directed chains as

$$
\Sigma[\mathrm{e} \in \text { dArrows }] \quad(\Sigma[\mathrm{e}, \in \text { dArrows }] \text { (is-reachable e e')) }
$$

However, this are rather pointed chains.
A satisfactory definition of directed chains
dChains = dArrows / is-reachable
and similarly, we define chains as
Chains = Arrows / is-reachable-arr

Building the bijection chainwise

Given a chain c, we write chainA c (resp. chainB c) for the type of its elements in A (resp. B).

Building the bijection chainwise

Given a chain c, we write chainA c (resp. chainB c) for the type of its elements in A (resp. B).

Lemma

If, for every chain c , we have chainA $\mathrm{c} \simeq$ chainB c , then $\mathrm{A} \simeq \mathrm{B}$.
Proof.
Given a relation R on a type A, the type is the union of its equivalence classes:

$$
A \simeq \Sigma[c \in A / R]\left(\text { fiber }\left[_\right]\right)
$$

The result can be deduced from this and standard equivalences.

Types of chain

Recall that a chain c can be

- well-bracketed:

- a switching chain:
- a slope:

By excluded-middle, we know that we are in one of those three cases (provided we show that they are propositions).

Types of chain

Recall that a chain c can be

- well-bracketed:

- a switching chain:

- a slope:

By excluded-middle, we know that we are in one of those three cases (provided we show that they are propositions).

It only remains to show chainA $c \simeq$ chainB c in each case (we will only present well-bracketing).

Well-bracketing

A word over $\{()$,$\} may be interpreted as a Dyck path:$

Well-bracketing

The height of the following path is 4 :

$$
\frac{(}{1} \cdot \frac{(}{1} \cdot \frac{)}{-1} \cdot \frac{(}{1}
$$

Well-bracketing

The height of the following path is 4 :

$$
\xrightarrow[1]{(} \cdot \xrightarrow[1]{(} \cdot \stackrel{)}{\leftarrow-1} \cdot \frac{(}{1}
$$

An arrow a is matched when it satisfies

```
\Sigma[n\in\mathbb{N}](
    height (suc n) (fw a) \equiv 0 ^
    ((k : N ) }->\textrm{k}<\operatorname{suc}\textrm{n}->\neg(height k (fw x) \equiv 0))
```


Well-bracketing

The chain of an arrow o is well-bracketed when every arrow reachable from o is matched.

Proposition

Being well-bracketed for a reachable arrow is a proposition, which is independent of the choice of o.

Well-bracketing

The chain of an arrow o is well-bracketed when every arrow reachable from o is matched.

Proposition

Being well-bracketed for a reachable arrow is a proposition, which is independent of the choice of o.

A chain is well-bracketed when each of its arrow is well-bracketed in the above sense.

Well-bracketing

A chain is well-bracketed when each of its arrow is well-bracketed.
Remark
Since
Chains = Arrows / is-reachable-arr
in order for this definition to make sense:

- we need to eliminate to a set (by definition of chains as quotients): here, we eliminate to HProp, which is a set, of which being well-bracketed is an element!
- we need to show that this is independent of the choice of the representative for the origin o.

Well-bracketing

A chain is well-bracketed when each of its arrow is well-bracketed.

Remark

Since
Chains = Arrows / is-reachable-arr
in order for this definition to make sense:

- we need to eliminate to a set (by definition of chains as quotients): here, we eliminate to HProp, which is a set, of which being well-bracketed is an element!
- we need to show that this is independent of the choice of the representative for the origin o.

Proposition

Given a well-bracketed chain c, we have an equivalence chainA $c \simeq$ chainB c.

The two other cases

- switching chains
- slopes
are handled similarly.

Division by 2

Theorem
For any two types A and B which are sets,

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B .
$$

Our aim is now to generalize the theorem to the situation where A and B are arbitrary types (as opposed to sets).

We suppose fixed an equivalence $\mathrm{A} \times \mathcal{2} \simeq \mathrm{B} \times \mathcal{2}$.

The set truncation

Given a type A, we write \|A $\|_{o}$ for its set truncation:
$\|\bullet \bullet \bullet \bullet \bullet\|_{0}=\bullet \bullet$

The set truncation

Given a type A, we write || A $\|_{o}$ for its set truncation:

We have a quotient map

The set truncation

Given a type A, we write \|A $\|_{o}$ for its set truncation:

$$
\|\bullet \bullet \bullet \bullet \bullet\|_{0}=\bullet \bullet
$$

We have a quotient map

The picture we should have in mind is

Given a : A,

- \mid a l_{o} is its connected component,
- fiber |-lo | a lo are the elements of this connected component.

Equivalences and set truncation

Proposition

Suppose given an equivalence $\mathrm{A} \simeq \mathrm{B}$ (with $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$).

- There is an induced equivalence $\|\mathrm{A}\|_{\mathrm{o}} \simeq\|\mathrm{B}\|_{\mathrm{o}}$.
- Given x : \| A \|o, we have an equivalence

$$
\text { fiber |-|o } x \simeq \text { fiber }|-| o\left(\left|\mid \|_{o}-m a p ~ f ~ x\right) ~\right.
$$

Equivalences and set truncation

Proposition

Given an equivalence $\mathrm{A}_{\mathrm{O}} \simeq \mathrm{B}_{\mathrm{O}}$ (with $\mathrm{f}: \mathrm{A}_{\mathrm{O}} \rightarrow \mathrm{B}_{\mathrm{O}}$), and type families $\mathrm{P}: \mathrm{A}_{\mathrm{O}} \rightarrow$ Type and Q : $\mathrm{B}_{\mathrm{O}} \rightarrow$ Type, such that for $\mathrm{x}: \mathrm{A}$, we have

$$
P x \simeq Q(f x)
$$

Then

$$
\Sigma \mathrm{A}_{0} \mathrm{P} \simeq \Sigma \mathrm{~B}_{\mathrm{O}} \mathrm{Q}
$$

Reachability and equivalence

Proposition

Given directed arrows a and bin || dArrows $\|_{o}$ reachable from the other, we have

$$
\text { fiber }|-| o \mathrm{a} \simeq \text { fiber }|-| \mathrm{ob}
$$

Proof.

We can define functions

$$
\text { next : dArrows } \rightarrow \text { dArrows } \quad \text { prev }: \text { dArrows } \rightarrow \text { dArrows }
$$

sending a directed arrow to the next one (in the direction), which form an equivalence, thus

$$
\text { fiber }|-| o \mathrm{a} \simeq \text { fiber }\left.\right|_{-\mid}\left(\| \text {next } \|_{0}\right. \text { a) }
$$

by previous proposition and we conclude by induction.

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
A \times 2 \simeq B \times 2
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times 2 & \simeq B \times 2 \\
\|A \times 2\|_{0} & \simeq\|B \times 2\|_{0}
\end{aligned}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathcal{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times \mathbb{L}
\end{aligned}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathbb{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{L} & \simeq\|B\|_{0} \times \mathbb{L} \\
\|A\|_{0} & \simeq\|B\|_{0}
\end{aligned}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
\mathrm{A} \times 2 \simeq \mathrm{~B} \times 2 \quad \rightarrow \quad \mathrm{~A} \simeq \mathrm{~B}
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathcal{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times 2 \\
\|A\|_{0} & \simeq\|B\|_{0}
\end{aligned}
$$

Since this bijection sends a directed arrow a to a reachable one b,

$$
\text { fiber }|-| o \mathrm{a} \simeq \text { fiber }\left.\right|_{-\mid} \mathrm{ob}
$$

Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
$$

Proof.

$$
\begin{aligned}
A \times \mathcal{L} & \simeq B \times \mathbb{L} \\
\|A \times \mathcal{L}\|_{0} & \simeq\|B \times \mathcal{L}\|_{0} \\
\|A\|_{0} \times \mathcal{Z} & \simeq\|B\|_{0} \times \mathbb{L} \\
\|A\|_{0} & \simeq\|B\|_{0}
\end{aligned}
$$

Since this bijection sends a directed arrow a to a reachable one b,

$$
\text { fiber }|-| o \mathrm{a} \simeq \text { fiber }|-| \mathrm{o} b
$$

thus $A \simeq \Sigma[a \in A]($ fiber $|-| o a) \simeq \Sigma[b \in B]($ fiber $|-| o b) \simeq B$

The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f: A \rightarrow B$ and $g: B \rightarrow A$ there is a bijection $h: A \simeq B$

The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f: A \rightarrow B$ and $g: B \rightarrow A$ there is a bijection $h: A \simeq B$

It can be shown in classical logic.

The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f: A \rightarrow B$ and $g: B \rightarrow A$ there is a bijection $h: A \simeq B$ such that $h(x)=y \operatorname{implies} f(x)=y$ or $x=g(y)$.

It can be shown in classical logic.

The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f: A \rightarrow B$ and $g: B \rightarrow A$ there is a bijection $h: A \simeq B$ such that $h(x)=y$ implies $f(x)=y$ or $x=g(y)$.

It can be shown in classical logic.
Theorem (Pradic-Brown'22) CBS implies excluded middle.

Proof.
Given P, take $A=\mathbb{N}$ and $B=\{\star \mid P\} \uplus \mathbb{N}$.

The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f: A \rightarrow B$ and $g: B \rightarrow A$ there is a bijection $h: A \simeq B$

It can be shown in classical logic.
Theorem (Pradic-Brown'22)
CBS implies excluded middle.
Proof.
Replace \mathbb{N} with an infinite type for which LPO holds
(yes, this exists! [Escardò'13])

The converse implication

Conjecture
"For every A and $B, 2 A \simeq 2 B$ implies $A \simeq B$ " implies $L P O$.
Proof.
Take $A=B=\mathbb{Z}$ and $P: \mathbb{Z} \rightarrow$ Bool. We take the bijection $f: A \rightarrow B$ such that

- if $\neg P(n)$ then $\cdot \xrightarrow[(n)]{\stackrel{n}{r}}$.
- if $P(n)$ then $\cdot \frac{n}{\varkappa^{n}} \cdot \frac{n}{)^{n}}$.
- we link $\cdot \stackrel{n-1}{\longleftrightarrow} \cdot \stackrel{n}{\longleftrightarrow}$.

The converse implication

Conjecture

"For every A and $B, 2 A \simeq 2 B$ implies $A \simeq B$ " implies $L P O$.

Proof.

Take $A=B=\mathbb{Z}$ and $P: \mathbb{Z} \rightarrow$ Bool. We take the bijection $f: A \rightarrow B$ such that

- if $\neg P(n)$ then $\cdot \stackrel{n}{(} \cdot \stackrel{n}{)^{n}}$.
- if $P(n)$ then $\cdot \frac{n}{\Vdash^{n}} \cdot \leftarrow^{n}$)
- we link $\cdot \stackrel{n-1}{\longleftrightarrow} \cdot \stackrel{n}{\longleftrightarrow}$.

Thus

- if $\forall n . \neg P(n)$ then we are well-bracketed and match n with n
- if $\exists n . P(n)$ then there is an excess in ")" and we match n with $n-1$

We have $\exists n .(P)$ if $h(0)=-1$!

Quick announcements

- the SYCO conference will take place at École polytechnique on 20-21 April 2023 (deadline: 6 March 2023)

- there is an open assistant professor position in foundations of computer science open at École polytechnique (deadline: 15 March 2023)

- please also consider submitting posters for GT LHC!

Questions?

