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Another research

Can we do research that:

▶ solve a real need arising from society,

▶ empowers users without enslaving them (Illich’s conviviality),

▶ is somewhat aligned with the ecological transition.

A case study, Pl@ntNet: can we improve on the points above?

▶ Hard to trust

▶ Very knowledgeable but a bad teacher

▶ What if it goes away?
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Botanist technology for Plant ID [Lamarck’1805]
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Modern botanist technology [Bonnier’1904]

Flore complète de la France et de la Suisse, pour trouver facilement les noms de
plantes, sans mots techniques
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The rabbithole

Can we automate the work of building determination keys and
alleviate some of their limits?

Output: offline app or even paper version of the key.

Challenges:

▶ No open source morphological database.

▶ No formal description of plants.

▶ Avoid over-engineering !

▶ Participative research to build data.
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The ID3 algorithm [Quinlan’86]

In what order should we ask the questions?

Bayesian algorithm using information theory:

1. Start with an initial probability distribution d .

2. For every question q:
▶ compute the average information after q.

3. Ask the question with the largest information.

4. Update d with the user answer and go back to (1).

Greedy and non-optimal, but good enough for now.
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An aside about information theory [Shannon’48]

Information is usually defined as the opposite of entropy:

entropy : D(X ) → R
d 7→ −

∑
x∈X d(x)× log(d(x))

Extremal values:

entropy(uniform({1, ..., n})) = log(n)
entropy(dirac(x)) = 0

Maximizing information ↔ minimizing entropy
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Bayesian Update

Input:

▶ d ∈ D(Species) : prior knowledge of what species it may be.

▶ o ∈ Obs: user answer (“red flower”)

Output:

▶ d ′ ∈ D(Species) : posterior knowledge

For s ∈ Species: (Bayes’ Law)

d ′(s) ∝ d(s) × score(s, o)

P(we see s | observing o) P(we see s) P(observing o | we see s)
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Input to the ID3 algorithm

(* Representation of the description of a species *)

(* e.g. ``white flowers, simple lanceolate leaves'' *)

type species

(* Representation of observation (user answers). *)

type observation

(* Given an observation, how likely is

it to be a particular species ? *)

val score : species -> observation -> float

How to describe species and observation ?
⇝ score tangles species and observation.
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General shape of model

We distinguish two things:

▶ Plant description, which are certain and exhaustive
“Tree with white flowers, large leaves ...“

▶ Observation, which are uncertain
“Tree with whiteish flowers (maybe rose), not sure about leaves (its

winter)”

We let Obs = D(Plant).

P(observing o | we see s)
=

∑
p∈Plant o(p)× P(observed plant is p | we see s)

Thus we can also let Species = D(Plant) !
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General shape of model

We distinguish two things:

▶ Plant: Plant description, which are certain and exhaustive
“Tree with white flowers, large leaves ...“

▶ Obs: Observation, which are uncertain
“Tree with whiteish flowers (maybe rose), not sure about leaves (its

winter)”

We let Obs = D(Plant).

P(observing o | we see s)
=

∑
p∈Plant o(p)× P(observed plant is p | we see s)︸ ︷︷ ︸

s(p)

Thus we can also let Species = D(Plant) !

Mathematical Foundations of Plant Semantics · Simon Castellan, Jos Käfer, Eric Tannier 10 / 21
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An example

type color = Red | Blue | White | Rose

type plant = { flower_color: color }

type observation = plant distribution

let whiteish : observation = fun p ->

match p.flower_color with

| White -> 0.8

| Rose -> 0.2

| _ -> 0.

type species = plant distribution

let laurier_rose : species = fun p ->

match p.flower_color with

| Rose -> 0.8

| White -> 0.2 (* cultivars *)

| _ -> 0.0
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Where are we ?

We have all the conceptual ingredients to make it work:

▶ The decision tree algorithm

▶ Species and observation with uncertainty

▶ How to make species and observation interact (score)

However:

▶ What is the real type for plant ?

▶ Where do we get the data?

▶ If plant is big, isn’t score intractable ?
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The project in a nutshell

1. How to have expert botanists write the type plant ?

2. How to describe the distribution probabilities for species ?
▶ User-friendlyness: we need a lot of data, hence of a lot of

people!
▶ Link formal/informal: bibliographical info linked to data
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The Flat Model – Plant

The naive approach:

Plant =
∏
i∈I

Ci

where:

▶ I is the set of characters

▶ Each Ci is a simple sum 1 + . . .+ 1

Can be described by a textual format:

flower-color = [ red blue white rose ... ];

flower-petal-number = [ 1 2 3 ... ];

leaf-structure = [ simple divided ];

Mathematical Foundations of Plant Semantics · Simon Castellan, Jos Käfer, Eric Tannier 14 / 21
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The Flat Model – Species

Distributions over Plant are inconvenient.
However, we have a correspondance:

D(S × T )⇄ D(S)× D(T )

Thus we use
D(Plant)⇄

∏
i∈I

D(Ci )

# laurier-rose.species

flower-color = [ white: 0.8 rose: 0.2 ];

# we can omit the rest and use uniform distribution

With this representation, score can be computed in time
O(C1 + ...+ Cn) instead of O(C1 × ...× Cn) !
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Limits of the flat model

1. Plant is too rigid: what about plants without flowers?

2. Species cannot represent all probability distributions.
No correlation between trait distributions.

3. Compositional structure on species?
Merge different descriptions ...
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Going full algebraic type

What if we allow Plant to be an algebraic type?

plant := {

leaf;

flower;

}.

leaf := {

position: [ base | stem {disposition} ];

venation;

attachment;

}.

flower := {

inflorescence;

sex: [ unisexual | hermaphrodism ];

color: [ red | blue | white | rose ];

}.

⇝ Similar to ontologies (e.g. RDFS).
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What about Species?

We need to extend our abstraction:

D(S × T )⇄ D(S)× D(T )

to:
D(S ⊕ T )⇄

[0, 1]× D(S)× D(T )

Example of a distribution:

{ leaf = { position = stem };

flower = { color = [ 0.8: rose | 0.2: white ] }

}

Abstract type interpretation:

JS × T K = JSK × JT K JS + T K = [0, 1]× JSK × JT K.
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Biological species model of Linear Logic

We cannot still express polymorphism:

simple basal leaves, compound stem leaves

⇝ Can only say: simple or compound, basal or compound.We add
an exponential !S to the type language:

J!SK = D(S)

We can thus write:

[ 0.5 { leaf = { simple ; basal } }

| 0.5 { leaf = { compound; stem } } ]

In the plant description, we can add modalities:

plant = { leaf!; flower!; stem }

Mathematical Foundations of Plant Semantics · Simon Castellan, Jos Käfer, Eric Tannier 19 / 21
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Conclusion

We have a working prototype for the flat model:

▶ An editor for entering species distribution

▶ Greedy algorithm implementation

Inria exploratory project Back to the trees:

▶ Extend the model

▶ Work with local associations to build a database

▶ Implement non-greedy algorithms ?
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