Mathematical Foundations of Plant Semantics

Simon Castellan ${ }^{1}$, Jos Käfer ${ }^{2}$, Eric Tannier ${ }^{3}$
${ }^{1}$ Inria Rennes
${ }^{2}$ CNRS
${ }^{3}$ Inria Lyon

February 16th, 2023

Another research

Can we do research that:

- solve a real need arising from society,
- empowers users without enslaving them (Illich's conviviality),
- is somewhat aligned with the ecological transition.

Another research

Can we do research that:

- solve a real need arising from society,
- empowers users without enslaving them (Illich's conviviality),
- is somewhat aligned with the ecological transition.

A case study, PI@ntNet: can we improve on the points above?

- Hard to trust
- Very knowledgeable but a bad teacher
- What if it goes away?

Botanist technology for Plant ID [Lamarck'1805]

Modern botanist technology [Bonnier'1904]

Flore complète de la France et de la Suisse, pour trouver facilement les noms de plantes, SANS MOTS TECHNIQUES

The rabbithole

Can we automate the work of building determination keys and alleviate some of their limits?

Output: offline app or even paper version of the key.

Challenges:

- No open source morphological database.
- No formal description of plants.

The rabbithole

Can we automate the work of building determination keys and alleviate some of their limits?

Output: offline app or even paper version of the key.

Challenges:

- No open source morphological database.
- No formal description of plants.
- Avoid over-engineering!
- Participative research to build data.

The ID3 algorithm [Quinlan'86]

In what order should we ask the questions?

The ID3 algorithm [Quinlan'86]

In what order should we ask the questions?

Bayesian algorithm using information theory:

1. Start with an initial probability distribution d.

The ID3 algorithm [Quinlan'86]

In what order should we ask the questions?

Bayesian algorithm using information theory:

1. Start with an initial probability distribution d.
2. For every question q :

- compute the average information after q.

3. Ask the question with the largest information.

The ID3 algorithm [Quinlan'86]

In what order should we ask the questions?

Bayesian algorithm using information theory:

1. Start with an initial probability distribution d.
2. For every question q :

- compute the average information after q.

3. Ask the question with the largest information.
4. Update d with the user answer and go back to (1).

The ID3 algorithm [Quinlan'86]

In what order should we ask the questions?

Bayesian algorithm using information theory:

1. Start with an initial probability distribution d.
2. For every question q :

- compute the average information after q.

3. Ask the question with the largest information.
4. Update d with the user answer and go back to (1).

Greedy and non-optimal, but good enough for now.

An aside about information theory [Shannon'48]

Information is usually defined as the opposite of entropy:

$$
\text { entropy: } \begin{aligned}
\mathscr{D}(X) & \rightarrow \mathbb{R} \\
d & \mapsto-\sum_{x \in X} d(x) \times \log (d(x))
\end{aligned}
$$

An aside about information theory [Shannon'48]

Information is usually defined as the opposite of entropy:

$$
\text { entropy: } \begin{aligned}
\mathscr{D}(X) & \rightarrow \mathbb{R} \\
d & \mapsto-\sum_{x \in X} d(x) \times \log (d(x))
\end{aligned}
$$

Extremal values:

$$
\begin{aligned}
\operatorname{entropy}(\text { uniform }(\{1, \ldots, n\})) & =\log (n) \\
\operatorname{entropy}(\operatorname{dirac}(x)) & =0
\end{aligned}
$$

An aside about information theory [Shannon'48]

Information is usually defined as the opposite of entropy:

$$
\text { entropy: } \begin{aligned}
\mathscr{D}(X) & \rightarrow \mathbb{R} \\
d & \mapsto-\sum_{x \in X} d(x) \times \log (d(x))
\end{aligned}
$$

Extremal values:

$$
\begin{aligned}
\text { entropy }(\text { uniform }(\{1, \ldots, n\})) & =\log (n) \\
\operatorname{entropy}(\operatorname{dirac}(x)) & =0
\end{aligned}
$$

Maximizing information \leftrightarrow minimizing entropy

Bayesian Update

Input:

- $d \in \mathscr{D}$ (Species) : prior knowledge of what species it may be.
- o O Obs: user answer ("red flower")

Output:

- $d^{\prime} \in \mathscr{D}$ (Species) : posterior knowledge

Bayesian Update

Input:

- $d \in \mathscr{D}$ (Species) : prior knowledge of what species it may be.
- o Obs: user answer ("red flower")

Output:

- $d^{\prime} \in \mathscr{D}$ (Species) : posterior knowledge

For $s \in$ Species: (Bayes' Law)

Input to the ID3 algorithm

```
(* Representation of the description of a species *)
(* e.g. ``white flowers, simple lanceolate leaves'' *)
type species
(* Representation of observation (user answers). *)
type observation
(* Given an observation, how likely is
    it to be a particular species ? *)
val score : species -> observation -> float
How to describe species and observation ?
\(\rightsquigarrow\) score tangles species and observation.
```


General shape of model

We distinguish two things:

- Plant description, which are certain and exhaustive "Tree with white flowers, large leaves ..."
- Observation, which are uncertain
"Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)"

General shape of model

We distinguish two things:

- Plant: Plant description, which are certain and exhaustive "Tree with white flowers, large leaves ..."
- Obs: Observation, which are uncertain
"Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)"
We let Obs = \mathscr{D} (Plant).

General shape of model

We distinguish two things:

- Plant: Plant description, which are certain and exhaustive "Tree with white flowers, large leaves ..."
- Obs: Observation, which are uncertain
"Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)"
We let $\mathrm{Obs}=\mathscr{D}(\mathrm{Plant})$.

$$
P \text { (observing } o \mid \text { we see } s \text {) }
$$

General shape of model

We distinguish two things:

- Plant: Plant description, which are certain and exhaustive "Tree with white flowers, large leaves ..."
- Obs: Observation, which are uncertain
"Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)"
We let $\mathrm{Obs}=\mathscr{D}$ (Plant).

$$
\begin{aligned}
& P(\text { observing } o \mid \text { we see } s) \\
= & \sum_{p \in \text { Plant }} o(p) \times P(\text { observed plant is } p \mid \text { we see } s)
\end{aligned}
$$

General shape of model

We distinguish two things:

- Plant: Plant description, which are certain and exhaustive "Tree with white flowers, large leaves ..."
- Obs: Observation, which are uncertain
"Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)"
We let Obs = \mathscr{D} (Plant).

$$
\begin{aligned}
& P(\text { observing } o \mid \text { we see } s) \\
= & \sum_{p \in \text { Plant }} o(p) \times \underbrace{P(\text { observed plant is } p \mid \text { we see } s)}_{s(p)}
\end{aligned}
$$

Thus we can also let Species $=\mathscr{D}$ (Plant) !

General shape of model

We distinguish two things:

- Plant: Plant description, which are certain and exhaustive "Tree with white flowers, large leaves ..."
- Obs: Observation, which are uncertain
"Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)"
We let Obs = \mathscr{D} (Plant).

$$
\begin{aligned}
& P(\text { observing } o \mid \text { we see } s) \\
= & \sum_{p \in \text { Plant }} o(p) \times \underbrace{P(\text { observed plant is } p \mid \text { we see } s)}_{s(p)}
\end{aligned}
$$

Thus we can also let Species $=\mathscr{D}$ (Plant) !

An example

```
type color = Red | Blue | White | Rose
type plant = { flower_color: color }
```


An example

```
type color = Red | Blue | White | Rose
type plant = { flower_color: color }
type observation = plant distribution
let whiteish : observation = fun p ->
    match p.flower_color with
    | White -> 0.8
    | Rose -> 0.2
    | _ -> 0.
```


An example

```
type color = Red | Blue | White | Rose
type plant = { flower_color: color }
type observation = plant distribution
let whiteish : observation = fun p ->
    match p.flower_color with
    | White -> 0.8
    | Rose -> 0.2
    | _ -> 0.
```

type species $=$ plant distribution
let laurier_rose : species = fun p ->
match p.flower_color with
| Rose -> 0.8
| White -> 0.2 (* cultivars *)
| _ -> 0.0

Where are we ?

We have all the conceptual ingredients to make it work:

- The decision tree algorithm
- Species and observation with uncertainty
- How to make species and observation interact (score)

Where are we ?

We have all the conceptual ingredients to make it work:

- The decision tree algorithm
- Species and observation with uncertainty
- How to make species and observation interact (score)

However:

- What is the real type for plant ?
- Where do we get the data?
- If plant is big, isn't score intractable ?

The project in a nutshell

1. How to have expert botanists write the type plant ?
2. How to describe the distribution probabilities for species ?

- User-friendlyness: we need a lot of data, hence of a lot of people!
- Link formal/informal: bibliographical info linked to data

The Flat Model - Plant

The naive approach:

$$
\text { Plant }=\prod_{i \in I} C_{i}
$$

where:

- I is the set of characters
- Each C_{i} is a simple sum $1+\ldots+1$

The Flat Model - Plant

The naive approach:

$$
\text { Plant }=\prod_{i \in I} C_{i}
$$

where:

- I is the set of characters
- Each C_{i} is a simple sum $1+\ldots+1$

Can be described by a textual format:

$$
\begin{aligned}
& \text { flower-color }=[\text { red blue white rose ...]; } \\
& \text { flower-petal-number }=\left[\begin{array}{lll}
1 & 2 & 3
\end{array} . .\right] ; \\
& \text { leaf-structure }=[\text { simple divided }] ;
\end{aligned}
$$

The Flat Model - Species

Distributions over Plant are inconvenient. However, we have a correspondance:

$$
\mathscr{D}(S \times T) \rightleftarrows \mathscr{D}(S) \times \mathscr{D}(T)
$$

The Flat Model - Species

Distributions over Plant are inconvenient. However, we have a correspondance:

$$
\mathscr{D}(S \times T) \rightleftarrows \mathscr{D}(S) \times \mathscr{D}(T)
$$

Thus we use

$$
\mathscr{D}(\text { Plant }) \rightleftarrows \prod_{i \in I} \mathscr{D}\left(C_{i}\right)
$$

The Flat Model - Species

Distributions over Plant are inconvenient. However, we have a correspondance:

$$
\mathscr{D}(S \times T) \rightleftarrows \mathscr{D}(S) \times \mathscr{D}(T)
$$

Thus we use

$$
\mathscr{D}(\text { Plant }) \rightleftarrows \prod_{i \in I} \mathscr{D}\left(C_{i}\right)
$$

\# laurier-rose.species
flower-color = [white: 0.8 rose: 0.2];
\# we can omit the rest and use uniform distribution

The Flat Model - Species

Distributions over Plant are inconvenient. However, we have a correspondance:

$$
\mathscr{D}(S \times T) \rightleftarrows \mathscr{D}(S) \times \mathscr{D}(T)
$$

Thus we use

$$
\mathscr{D}(\text { Plant }) \rightleftarrows \prod_{i \in I} \mathscr{D}\left(C_{i}\right)
$$

\# laurier-rose.species
flower-color = [white: 0.8 rose: 0.2];
\# we can omit the rest and use uniform distribution
With this representation, score can be computed in time
$O\left(C_{1}+\ldots+C_{n}\right)$ instead of $O\left(C_{1} \times \ldots \times C_{n}\right)$!

Limits of the flat model

1. Plant is too rigid: what about plants without flowers?
2. Species cannot represent all probability distributions. No correlation between trait distributions.
3. Compositional structure on species? Merge different descriptions ...

Going full algebraic type

What if we allow Plant to be an algebraic type?
plant := \{
leaf;
flower;
\}.
leaf := \{ position: [base | stem \{disposition\}]; venation; attachment;
\}.
flower := \{
inflorescence;
sex: [unisexual | hermaphrodism];
color: [red | blue | white | rose];
\}.
\rightsquigarrow Similar to ontologies (e.g. RDFS).

What about Species?

We need to extend our abstraction:

$$
\mathscr{D}(S \times T) \rightleftarrows \mathscr{D}(S) \times D(T)
$$

to:

$$
\mathscr{D}(S \oplus T) \rightleftarrows
$$

What about Species?

We need to extend our abstraction:

$$
\mathscr{D}(S \times T) \rightleftarrows \mathscr{D}(S) \times D(T)
$$

to:

$$
\mathscr{D}(S \oplus T) \rightleftarrows[0,1] \times \mathscr{D}(S) \times \mathscr{D}(T)
$$

Example of a distribution:
\{ leaf = \{ position = stem \}; flower = \{ color = [0.8: rose | 0.2: white] \} \}

What about Species?

We need to extend our abstraction:

$$
\mathscr{D}(S \times T) \rightleftarrows \mathscr{D}(S) \times D(T)
$$

to:

$$
\mathscr{D}(S \oplus T) \rightleftarrows[0,1] \times \mathscr{D}(S) \times \mathscr{D}(T)
$$

Example of a distribution:
\{ leaf = \{ position = stem \}; flower $=\{$ color $=$ [0.8: rose | 0.2: white] \} \}

Abstract type interpretation:

$$
\llbracket S \times T \rrbracket=\llbracket S \rrbracket \times \llbracket T \rrbracket \quad \llbracket S+T \rrbracket=[0,1] \times \llbracket S \rrbracket \times \llbracket T \rrbracket .
$$

Biological species model of Linear Logic

We cannot still express polymorphism:
simple basal leaves, compound stem leaves

Biological species model of Linear Logic

We cannot still express polymorphism:
simple basal leaves, compound stem leaves
\rightsquigarrow Can only say: simple or compound, basal or compound.

Biological species model of Linear Logic

We cannot still express polymorphism:
simple basal leaves, compound stem leaves
\rightsquigarrow Can only say: simple or compound, basal or compound.We add an exponential !S to the type language:

$$
\llbracket!S \rrbracket=\mathscr{D}(S)
$$

We can thus write:
[0.5 \{ leaf = \{ simple ; basal \} \}
| 0.5 \{ leaf = \{ compound; stem \} \}]
In the plant description, we can add modalities:
plant = \{ leaf!; flower!; stem \}

Conclusion

We have a working prototype for the flat model:

- An editor for entering species distribution
- Greedy algorithm implementation

Conclusion

We have a working prototype for the flat model:

- An editor for entering species distribution
- Greedy algorithm implementation

Inria exploratory project Back to the trees:

- Extend the model
- Work with local associations to build a database
- Implement non-greedy algorithms ?

