Mathematical Foundations of Plant Semantics

Simon Castellan1, Jos Käfer2, Eric Tannier3

1 Inria Rennes
2 CNRS
3 Inria Lyon

February 16th, 2023
Another research

Can we do research that:

- solve a real need arising from society,
- empowers users without enslaving them (Illich’s *conviviality*),
- is somewhat aligned with the ecological transition.
Another research

Can we do research that:

▶ solve a real need arising from society,
▶ empowers users without enslaving them (Illich’s *conviviality*),
▶ is somewhat aligned with the ecological transition.

A case study, Pl@ntNet: can we improve on the points above?

▶ Hard to trust
▶ Very knowledgeable but a bad teacher
▶ What if it goes away?
Flore complète de la France et de la Suisse, pour trouver facilement les noms de plantes, SANS MOTS TECHNIQUES
The rabbithole

Can we automate the work of building determination keys and alleviate some of their limits?

Output: offline app or even paper version of the key.

Challenges:

- No open source morphological database.
- No formal description of plants.
The rabbithole

Can we automate the work of building determination keys and alleviate some of their limits?

Output: offline app or even paper version of the key.

Challenges:

- No open source morphological database.
- No formal description of plants.
- Avoid over-engineering!
- Participative research to build data.
The ID3 algorithm [Quinlan’86]

In what order should we ask the questions?

1. Start with an initial probability distribution d.
2. For every question q:
 - Compute the average information after q.
3. Ask the question with the largest information.
4. Update d with the user answer and go back to (1).

Greedy and non-optimal, but good enough for now.
The ID3 algorithm [Quinlan’86]

In what order should we ask the questions?

Bayesian algorithm using **information theory**:

1. Start with an **initial probability distribution** d.
The ID3 algorithm [Quinlan’86]

In what order should we ask the questions?

Bayesian algorithm using **information theory**:

1. Start with an **initial probability distribution** d.
2. For every question q:
 - compute the average **information** after q.
3. Ask the question with the **largest information**.
The ID3 algorithm [Quinlan’86]

In what order should we ask the questions?

Bayesian algorithm using **information theory**:

1. Start with an **initial probability distribution** d.
2. For every question q:
 - compute the average **information** after q.
3. Ask the question with the **largest information**.
4. **Update** d with the user answer and go back to (1).
The ID3 algorithm [Quinlan’86]

In what order should we ask the questions?

Bayesian algorithm using information theory:

1. Start with an initial probability distribution \(d \).
2. For every question \(q \):
 - compute the average information after \(q \).
3. Ask the question with the largest information.
4. **Update** \(d \) with the user answer and go back to (1).

Greedy and non-optimal, but good enough for now.
An aside about information theory [Shannon’48]

Information is usually defined as the opposite of entropy:

$$\text{entropy} : \mathcal{D}(X) \to \mathbb{R}$$
$$d \mapsto -\sum_{x \in X} d(x) \times \log(d(x))$$
An aside about information theory [Shannon’48]

Information is usually defined as the opposite of entropy:

\[
\text{entropy} : \mathcal{D}(X) \to \mathbb{R} \\
\quad d \mapsto -\sum_{x \in X} d(x) \times \log(d(x))
\]

Extremal values:

\[
\begin{align*}
\text{entropy}(\text{uniform}(\{1, \ldots, n\})) &= \log(n) \\
\text{entropy}(\text{dirac}(x)) &= 0
\end{align*}
\]
An aside about information theory [Shannon’48]

Information is usually defined as the opposite of **entropy**:

\[
\text{entropy} : \mathcal{D}(X) \rightarrow \mathbb{R} \\
\quad d \mapsto -\sum_{x \in X} d(x) \times \log(d(x))
\]

Extremal values:

\[
\begin{align*}
\text{entropy}(\text{uniform}\{1, \ldots, n\}) &= \log(n) \\
\text{entropy}(\text{dirac}(x)) &= 0
\end{align*}
\]

Maximizing information \(\leftrightarrow\) minimizing entropy
Bayesian Update

Input:
- $d \in \mathcal{D}(\text{Species})$: prior knowledge of what species it may be.
- $o \in \text{Obs}$: user answer ("red flower")

Output:
- $d' \in \mathcal{D}(\text{Species})$: posterior knowledge

For $s \in \text{Species}$:

\[
d'(s) \propto d(s) \times \text{score}(s, o)
\]

\[
P(\text{we see } s | \text{observing } o)
\]

\[
P(\text{we see } s)
\]

\[
P(\text{observing } o | \text{we see } s)
\]
Bayesian Update

Input:

- $d \in \mathcal{D}(\text{Species})$: prior knowledge of what species it may be.
- $o \in \text{Obs}$: user answer ("red flower")

Output:

- $d' \in \mathcal{D}(\text{Species})$: posterior knowledge

For $s \in \text{Species}$: (Bayes’ Law)

$$d'(s) \propto d(s) \times \text{score}(s, o)$$

$$P(\text{we see } s \mid \text{observing } o) \quad P(\text{we see } s) \quad P(\text{observing } o \mid \text{we see } s)$$
Input to the ID3 algorithm

(* Representation of the description of a species *)
(* e.g. "white flowers, simple lanceolate leaves" *)

`type species`

(* Representation of observation (user answers). *)

`type observation`

(* Given an observation, how likely is it to be a particular species? *)

`val score : species -> observation -> float`

How to describe species and observation?

⇝ `score` tangles species and observation.
General shape of model

We distinguish two things:

- **Plant description**, which are certain and exhaustive
 “Tree with white flowers, large leaves ...“

- **Observation**, which are uncertain
 “Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)”
We distinguish two things:

- **Plant**: *Plant description*, which are certain and exhaustive

 “Tree with white flowers, large leaves ...“

- **Obs**: *Observation*, which are uncertain

 “Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)”

We let $\text{Obs} = \mathcal{D}(\text{Plant})$.
General shape of model

We distinguish two things:

- **Plant**: *Plant description*, which are certain and exhaustive
 “Tree with white flowers, large leaves ...“

- **Obs**: *Observation*, which are uncertain
 “Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)”

We let $\text{Obs} = \mathcal{D}(\text{Plant})$.

$$P(\text{observing } o \mid \text{we see } s)$$
General shape of model

We distinguish two things:

▶ **Plant**: **Plant description**, which are certain and exhaustive
 “Tree with white flowers, large leaves ...“

▶ **Obs**: **Observation**, which are uncertain
 “Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)”

We let \(\text{Obs} = \mathcal{D} (\text{Plant}) \).

\[
P(\text{observing } o \mid \text{ we see } s) \\
= \sum_{p \in \text{Plant}} o(p) \times P(\text{observed plant is } p \mid \text{ we see } s)
\]
We distinguish two things:

- **Plant**: Plant description, which are certain and exhaustive

 “Tree with white flowers, large leaves …“

- **Obs**: Observation, which are uncertain

 “Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)”

We let $\text{Obs} = \mathcal{D}(\text{Plant})$.

\[
P(\text{observing } o \mid \text{ we see } s) = \sum_{p \in \text{Plant}} o(p) \times P(\text{observed plant is } p \mid \text{ we see } s)
\]

Thus we can also let Species $= \mathcal{D}(\text{Plant})$!
General shape of model

We distinguish two things:

- **Plant**: **Plant description**, which are certain and exhaustive

 "Tree with white flowers, large leaves . . ."

- **Obs**: **Observation**, which are uncertain

 "Tree with whiteish flowers (maybe rose), not sure about leaves (its winter)"

We let $\text{Obs} = \mathcal{D}(\text{Plant})$.

\[
P(\text{observing } o \mid \text{ we see } s) = \sum_{p \in \text{Plant}} o(p) \times P(\text{observed plant is } p \mid \text{ we see } s)
\]

Thus we can also let $\text{Species} = \mathcal{D}(\text{Plant})$!
An example

type color = Red | Blue | White | Rose

type plant = { flower_color: color }
An example

type color = Red | Blue | White | Rose

type plant = { flower_color: color }

type observation = plant distribution

let whiteish : observation = fun p ->
 match p.flower_color with
 | White -> 0.8
 | Rose -> 0.2
 | _ -> 0.

let laurier_rose : species = fun p ->
 match p.flower_color with
 | Rose -> 0.8
 | White -> 0.2
 | _ -> 0.
An example

type color = Red | Blue | White | Rose

type plant = { flower_color: color }

type observation = plant distribution

let whiteish : observation = fun p ->
 match p.flower_color with
 | White -> 0.8
 | Rose -> 0.2
 | _ -> 0.

let laurier_rose : species = fun p ->
 match p.flower_color with
 | Rose -> 0.8
 | White -> 0.2 (* cultivars *)
 | _ -> 0.0

Where are we?

We have all the conceptual ingredients to make it work:

- The decision tree \textbf{algorithm}
- Species and observation with \textbf{uncertainty}
- How to make species and observation \textbf{interact} (score)
Where are we?

We have all the conceptual ingredients to make it work:

- The decision tree **algorithm**
- Species and observation with **uncertainty**
- How to make species and observation **interact** (score)

However:

- What is the real type for plant?
- Where do we get the data?
- If plant is big, isn't score intractable?
1. How to have expert botanists write the type plant?

2. How to describe the distribution probabilities for species?
 - User-friendliness: we need a lot of data, hence of a lot of people!
 - Link formal/informal: bibliographical info linked to data
The Flat Model – Plant

The naive approach:

\[\text{Plant} = \prod_{i \in I} C_i \]

where:

- \(I \) is the set of **characters**
- Each \(C_i \) is a simple sum \(1 + \ldots + 1 \)
The Flat Model – Plant

The naive approach:

\[
\text{Plant} = \prod_{i \in I} C_i
\]

where:

- \(I \) is the set of \textit{characters}
- Each \(C_i \) is a simple sum \(1 + \ldots + 1 \)

Can be described by a textual format:

- \text{flower-color} = [red blue white rose ...];
- \text{flower-petal-number} = [1 2 3 ...];
- \text{leaf-structure} = [simple divided];
Distributions over Plant are inconvenient. However, we have a correspondance:

\[\mathcal{D}(S \times T) \leftrightarrow \mathcal{D}(S) \times \mathcal{D}(T) \]
Distributions over Plant are inconvenient. However, we have a correspondence:

\[\mathcal{D}(S \times T) \Leftrightarrow \mathcal{D}(S) \times \mathcal{D}(T) \]

Thus we use

\[\mathcal{D}({\text{Plant}}) \Leftrightarrow \prod_{i \in I} \mathcal{D}(C_i) \]
Distributions over Plant are inconvenient. However, we have a correspondance:

$$\mathcal{D}(S \times T) \iff \mathcal{D}(S) \times \mathcal{D}(T)$$

Thus we use

$$\mathcal{D}({\text{Plant}}) \iff \prod_{i \in I} \mathcal{D}(C_i)$$

laurier-rose.species
flower-color = [white: 0.8 rose: 0.2];
we can omit the rest and use uniform distribution
The Flat Model – Species

Distributions over Plant are inconvenient. However, we have a correspondance:

\[\mathcal{D}(S \times T) \Leftrightarrow \mathcal{D}(S) \times \mathcal{D}(T) \]

Thus we use

\[\mathcal{D}(\text{Plant}) \Leftrightarrow \prod_{i \in I} \mathcal{D}(C_i) \]

laurier-rose.species
flower-color = [white: 0.8 rose: 0.2];
we can omit the rest and use uniform distribution

With this representation, score can be computed in time \(O(C_1 + \ldots + C_n) \) instead of \(O(C_1 \times \ldots \times C_n) \)!
Limits of the flat model

1. Plant is too **rigid**: what about plants without flowers?

2. Species cannot represent all probability distributions.
 No **correlation** between trait distributions.

3. Compositional structure on species?
 Merge different descriptions ...
Going full algebraic type

What if we allow Plant to be an algebraic type?

```
plant := {
  leaf;
  flower;
}.
leaf := {
  position: [ base | stem {disposition} ];
  venation;
  attachment;
}.
flower := {
  inflorescence;
  sex: [ unisexual | hermaphrodisim ];
  color: [ red | blue | white | rose ];
}.
```

⇝ Similar to ontologies (e.g. RDFS).
What about Species?

We need to extend our **abstraction**:

\[\mathcal{D}(S \times T) \leftrightarrow \mathcal{D}(S) \times D(T) \]

to:

\[\mathcal{D}(S \oplus T) \leftrightarrow \]
What about Species?

We need to extend our \textbf{abstraction}:

\[
\mathcal{D}(S \times T) \leftrightarrow \mathcal{D}(S) \times D(T)
\]

to:

\[
\mathcal{D}(S \oplus T) \leftrightarrow [0, 1] \times \mathcal{D}(S) \times D(T)
\]

Example of a distribution:

\[
\begin{aligned}
\{
\text{leaf} &= \{ \text{position} = \text{stem} \}; \\
\text{flower} &= \{ \text{color} = [0.8: \text{rose} \mid 0.2: \text{white}] \}
\}
\end{aligned}
\]
What about Species?

We need to extend our **abstraction**:

\[\mathcal{D}(S \times T) \rightleftharpoons \mathcal{D}(S) \times \mathcal{D}(T) \]

to:

\[\mathcal{D}(S \oplus T) \rightleftharpoons [0, 1] \times \mathcal{D}(S) \times \mathcal{D}(T) \]

Example of a distribution:

\{ leaf = { position = stem };
 flower = { color = [0.8: rose | 0.2: white] }
\}

Abstract type interpretation:

\[[S \times T] = [S] \times [T] \quad [S + T] = [0, 1] \times [S] \times [T]. \]
Biological species model of Linear Logic

We cannot still express **polymorphism**:

\[
\text{simple basal leaves, compound stem leaves}
\]
We cannot still express **polymorphism**:

\[
\text{simple basal leaves, compound stem leaves}
\]

\[
\implies \text{Can only say: simple or compound, basal or compound.}
\]
Biological species model of Linear Logic

We cannot still express **polymorphism**:

\[\text{simple basal leaves, compound stem leaves} \]

\[\rightsquigarrow \text{Can only say: simple or compound, basal or compound.} \]

We add an exponential \(!S \) to the type language:

\[[!S] = \mathcal{D}(S) \]

We can thus write:

\[[0.5 \{ \text{leaf} = \{ \text{simple} ; \text{basal} \} \}] \]
\[| 0.5 \{ \text{leaf} = \{ \text{compound}; \text{stem} \} \}] \]

In the plant description, we can add modalities:

\[\text{plant} = \{ \text{leaf!}; \text{flower!}; \text{stem} \} \]
Conclusion

We have a working prototype for the flat model:

- An editor for entering species distribution
- Greedy algorithm implementation
Conclusion

We have a working prototype for the flat model:

- An editor for entering species distribution
- Greedy algorithm implementation

Inria exploratory project *Back to the trees*:

- Extend the model
- Work with local associations to build a database
- Implement non-greedy algorithms?