
A complexity gap between pomset logic and system BV

NGUYỄN Lê Thành Dũng (a.k.a. Tito) — nltd@nguyentito.eu – ÉNS Lyon
joint work with Lutz Straßburger (Inria Saclay)

Journées du GT Scalp, February 15th, 2023

1/15

What is this about?

Pomset Logic (PL) and system BV: 2 logics over the same formulas
A two-decades-old conjecture
These logics are equivalent, i.e. prove the same formulas.

It was known that (BV ⊢ A) =⇒ (PL ⊢ A).
Our result: refuting the conjecture
There is some formula A such that BV ̸⊢ A but PL ⊢ A.

• What’s the point? Why do these logics exist?
• How did we come to think the conjecture should be false?

A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

2/15

What is this about?

Pomset Logic (PL) and system BV: 2 logics over the same formulas
A two-decades-old conjecture
These logics are equivalent, i.e. prove the same formulas.

It was known that (BV ⊢ A) =⇒ (PL ⊢ A).
Our result: refuting the conjecture
There is some formula A such that BV ̸⊢ A but PL ⊢ A.

• What’s the point? Why do these logics exist?
• How did we come to think the conjecture should be false?

A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

2/15

What is this about?

Pomset Logic (PL) and system BV: 2 logics over the same formulas
A two-decades-old conjecture
These logics are equivalent, i.e. prove the same formulas.

It was known that (BV ⊢ A) =⇒ (PL ⊢ A).
Our result: refuting the conjecture
There is some formula A such that BV ̸⊢ A but PL ⊢ A.

• What’s the point? Why do these logics exist?
• How did we come to think the conjecture should be false?

A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

2/15

The classical sequent calculus LK

An usual proof system for classical logic:

• Identity and cut rules
• Logical rules:

⊢ Γ,A ⊢ B,∆
⊢ Γ,A ∧ B,∆

⊢ Γ,A,B
⊢ Γ,A ∨ B

• Structural rules: contraction and weakening (below) + exchange

⊢ Γ,A,A
⊢ Γ,A

⊢ Γ

⊢ Γ,A

Remove contraction and weakening→Multiplicative Linear Logic (MLL)

3/15

The classical sequent calculus LK

An usual proof system for classical logic:

• Identity and cut rules
• Logical rules:

⊢ Γ,A ⊢ B,∆
⊢ Γ,A ∧ B,∆

⊢ Γ,A,B
⊢ Γ,A ∨ B

• Structural rules: contraction and weakening (below) + exchange

⊢ Γ,A,A
⊢ Γ,A

⊢ Γ

⊢ Γ,A

Remove contraction and weakening→Multiplicative Linear Logic (MLL)

3/15

Multiplicative Linear Logic (MLL)

A,B ::= a | a⊥ | A⊗ B | A` B

Involutive negation defined by De Morgan rules:

(a⊥)⊥ = a (A⊗ B)⊥ = A⊥ ` B⊥ (A` B)⊥ = A⊥ ⊗ B⊥

Sequent calculus: identity and cut rules + exchange + logical rules below:

⊢ Γ,A ⊢ B,∆
⊢ Γ,A⊗ B,∆

⊢ Γ,A,B
⊢ Γ,A` B

MLL is a constructive logic, with non-degenerate denotational semantics!
(corresponds to ∗-autonomous categories)

−→ semantics may suggest extensions to the logic

4/15

Multiplicative Linear Logic (MLL)

A,B ::= a | a⊥ | A⊗ B | A` B

Involutive negation defined by De Morgan rules:

(a⊥)⊥ = a (A⊗ B)⊥ = A⊥ ` B⊥ (A` B)⊥ = A⊥ ⊗ B⊥

Sequent calculus: identity and cut rules + exchange + logical rules below:

⊢ Γ,A ⊢ B,∆
⊢ Γ,A⊗ B,∆

⊢ Γ,A,B
⊢ Γ,A` B

MLL is a constructive logic, with non-degenerate denotational semantics!
(corresponds to ∗-autonomous categories)

−→ semantics may suggest extensions to the logic

4/15

Multiplicative Linear Logic (MLL)

A,B ::= a | a⊥ | A⊗ B | A` B

Involutive negation defined by De Morgan rules:

(a⊥)⊥ = a (A⊗ B)⊥ = A⊥ ` B⊥ (A` B)⊥ = A⊥ ⊗ B⊥

Sequent calculus: identity and cut rules + exchange + logical rules below:

⊢ Γ,A ⊢ B,∆
⊢ Γ,A⊗ B,∆

⊢ Γ,A,B
⊢ Γ,A` B

MLL is a constructive logic, with non-degenerate denotational semantics!
(corresponds to ∗-autonomous categories)

−→ semantics may suggest extensions to the logic

4/15

Extensions to Multiplicative Linear Logic

The denotational semantics of MLL in (hyper)coherence spaces suggest:

• The additional Mix rule ⊢ Γ ⊢ ∆

⊢ Γ,∆
– morally: A⊗ B ⊢ A` B

• A new connective such that A⊗ B ⊢ A ◁ B ⊢ A` B, which is:
non-commutative: A ◁ B ̸≡ B ◁ A self-dual: (A ◁ B)⊥ = A⊥ ◁ B⊥ (not B⊥ ◁ A⊥)

What should be the inference rules for ◁? Interesting proof-theoretic phenomenon:
to get a reasonable logic, one needs(?) to step outside the sequent calculus!

Two conservative extensions of MLL+Mix with A,B ::= · · · | A ◁ B
• Pomset Logic (Christian Retoré, early 1990s) — based on proof nets
• System BV (Alessio Guglielmi, late 1990s) — 1st application of deep inference

5/15

Extensions to Multiplicative Linear Logic

The denotational semantics of MLL in (hyper)coherence spaces suggest:

• The additional Mix rule ⊢ Γ ⊢ ∆

⊢ Γ,∆
– morally: A⊗ B ⊢ A` B

• A new connective such that A⊗ B ⊢ A ◁ B ⊢ A` B, which is:
non-commutative: A ◁ B ̸≡ B ◁ A self-dual: (A ◁ B)⊥ = A⊥ ◁ B⊥ (not B⊥ ◁ A⊥)

What should be the inference rules for ◁? Interesting proof-theoretic phenomenon:
to get a reasonable logic, one needs(?) to step outside the sequent calculus!

Two conservative extensions of MLL+Mix with A,B ::= · · · | A ◁ B
• Pomset Logic (Christian Retoré, early 1990s) — based on proof nets
• System BV (Alessio Guglielmi, late 1990s) — 1st application of deep inference

5/15

Extensions to Multiplicative Linear Logic

The denotational semantics of MLL in (hyper)coherence spaces suggest:

• The additional Mix rule ⊢ Γ ⊢ ∆

⊢ Γ,∆
– morally: A⊗ B ⊢ A` B

• A new connective such that A⊗ B ⊢ A ◁ B ⊢ A` B, which is:
non-commutative: A ◁ B ̸≡ B ◁ A self-dual: (A ◁ B)⊥ = A⊥ ◁ B⊥ (not B⊥ ◁ A⊥)

What should be the inference rules for ◁?

Interesting proof-theoretic phenomenon:
to get a reasonable logic, one needs(?) to step outside the sequent calculus!

Two conservative extensions of MLL+Mix with A,B ::= · · · | A ◁ B
• Pomset Logic (Christian Retoré, early 1990s) — based on proof nets
• System BV (Alessio Guglielmi, late 1990s) — 1st application of deep inference

5/15

Extensions to Multiplicative Linear Logic

The denotational semantics of MLL in (hyper)coherence spaces suggest:

• The additional Mix rule ⊢ Γ ⊢ ∆

⊢ Γ,∆
– morally: A⊗ B ⊢ A` B

• A new connective such that A⊗ B ⊢ A ◁ B ⊢ A` B, which is:
non-commutative: A ◁ B ̸≡ B ◁ A self-dual: (A ◁ B)⊥ = A⊥ ◁ B⊥ (not B⊥ ◁ A⊥)

What should be the inference rules for ◁? Interesting proof-theoretic phenomenon:
to get a reasonable logic, one needs(?) to step outside the sequent calculus!

Two conservative extensions of MLL+Mix with A,B ::= · · · | A ◁ B
• Pomset Logic (Christian Retoré, early 1990s) — based on proof nets
• System BV (Alessio Guglielmi, late 1990s) — 1st application of deep inference

5/15

Extensions to Multiplicative Linear Logic

The denotational semantics of MLL in (hyper)coherence spaces suggest:

• The additional Mix rule ⊢ Γ ⊢ ∆

⊢ Γ,∆
– morally: A⊗ B ⊢ A` B

• A new connective such that A⊗ B ⊢ A ◁ B ⊢ A` B, which is:
non-commutative: A ◁ B ̸≡ B ◁ A self-dual: (A ◁ B)⊥ = A⊥ ◁ B⊥ (not B⊥ ◁ A⊥)

What should be the inference rules for ◁? Interesting proof-theoretic phenomenon:
to get a reasonable logic, one needs(?) to step outside the sequent calculus!

Two conservative extensions of MLL+Mix with A,B ::= · · · | A ◁ B
• Pomset Logic (Christian Retoré, early 1990s) — based on proof nets
• System BV (Alessio Guglielmi, late 1990s) — 1st application of deep inference

5/15

Motivations

Guglielmi 2007, A System of Interaction and Structure (emphasis mine):
It is still open whether the logic in this paper, called BV, is the same
as pomset logic. We conjecture that it is actually the same logic, but one
crucial step is still missing, at the time of this writing, in the equivalence proof.
This paper is the first in a planned series of 3 papers dedicated to BV. […] In the
3rd part, some of my colleagues will hopefully show the equivalence of BV and
pomset logic

, this way explaining why it was impossible to find a sequent
system for pomset logic.

As announced earlier, this conjecture is false!

∃ formal arguments showing that “traditional sequent calculi cannot express BV”
[Tiu 2006]

6/15

Motivations

Guglielmi 2007, A System of Interaction and Structure (emphasis mine):
It is still open whether the logic in this paper, called BV, is the same
as pomset logic. We conjecture that it is actually the same logic, but one
crucial step is still missing, at the time of this writing, in the equivalence proof.
This paper is the first in a planned series of 3 papers dedicated to BV. […] In the
3rd part, some of my colleagues will hopefully show the equivalence of BV and
pomset logic

, this way explaining why it was impossible to find a sequent
system for pomset logic.

As announced earlier, this conjecture is false!

∃ formal arguments showing that “traditional sequent calculi cannot express BV”
[Tiu 2006]

6/15

Motivations

Guglielmi 2007, A System of Interaction and Structure (emphasis mine):
It is still open whether the logic in this paper, called BV, is the same
as pomset logic. We conjecture that it is actually the same logic, but one
crucial step is still missing, at the time of this writing, in the equivalence proof.
This paper is the first in a planned series of 3 papers dedicated to BV. […] In the
3rd part, some of my colleagues will hopefully show the equivalence of BV and
pomset logic, this way explaining why it was impossible to find a sequent
system for pomset logic.

As announced earlier, this conjecture is false!

∃ formal arguments showing that “traditional sequent calculi cannot express BV”
[Tiu 2006]

6/15

Motivations

Guglielmi 2007, A System of Interaction and Structure (emphasis mine):
It is still open whether the logic in this paper, called BV, is the same
as pomset logic. We conjecture that it is actually the same logic, but one
crucial step is still missing, at the time of this writing, in the equivalence proof.
This paper is the first in a planned series of 3 papers dedicated to BV. […] In the
3rd part, some of my colleagues will hopefully show the equivalence of BV and
pomset logic, this way explaining why it was impossible to find a sequent
system for pomset logic.

As announced earlier, this conjecture is false!

∃ formal arguments showing that “traditional sequent calculi cannot express BV”
[Tiu 2006]

6/15

A glance at deep inference

A methodology originally introduced for BV;
many other successes in past 2 decades (e.g. cut-free proofs for modal logics)

Deep inference = unary rules applied to subformulas of arbitrary depth:

inference rule A
B ⇝ instances S[A]

S[B] for any context S

e.g. A` (B⊗ (C`D))

A` ((B⊗ C)`D)

⇐⇒ ⊢ A,B ⊢ C,D
⊢ A,B⊗ C,D

(compare with rewriting systems, or functoriality in categorical logic)

7/15

A glance at deep inference

A methodology originally introduced for BV;
many other successes in past 2 decades (e.g. cut-free proofs for modal logics)

Deep inference = unary rules applied to subformulas of arbitrary depth:

inference rule A
B ⇝ instances S[A]

S[B] for any context S

e.g.
(A` B)⊗ (C`D)

A` (B⊗ (C`D))

A` ((B⊗ C)`D)

⇐⇒ ⊢ A,B ⊢ C,D
⊢ A,B⊗ C,D

(compare with rewriting systems, or functoriality in categorical logic)

7/15

A glance at deep inference

A methodology originally introduced for BV;
many other successes in past 2 decades (e.g. cut-free proofs for modal logics)

Deep inference = unary rules applied to subformulas of arbitrary depth:

inference rule A
B ⇝ instances S[A]

S[B] for any context S

e.g.
(A` B)⊗ (C`D)

A` (B⊗ (C`D))

A` ((B⊗ C)`D)

⇐⇒ ⊢ A,B ⊢ C,D
⊢ A,B⊗ C,D

(compare with rewriting systems, or functoriality in categorical logic)

7/15

Deep inference for MLL+Mix and BV

• Identity rule: a, a⊥

• MLL+Mix: rules for assoc/comm. of ⊗,` + unitality (A⊗ I ≡ A` I ≡ A) +

A⊗ (B` C)
(A⊗ B)` C (where A,B,C may be equal to I)

• BV: MLL+Mix rules for associativity/unitality of ◁ (not commutativity!) +

(A` B) ◁ (C`D)

(A ◁ C)` (B ◁D)
(where A,B,C,D may be equal to I)

8/15

Deep inference for MLL+Mix and BV

• Identity rule: a, a⊥

• MLL+Mix: rules for assoc/comm. of ⊗,` + unitality (A⊗ I ≡ A` I ≡ A) +

A⊗ (B` C)
(A⊗ B)` C (where A,B,C may be equal to I)

• BV: MLL+Mix rules for associativity/unitality of ◁ (not commutativity!) +

(A` B) ◁ (C`D)

(A ◁ C)` (B ◁D)
(where A,B,C,D may be equal to I)

8/15

Proof nets for Multiplicative Linear Logic

The proof system for Pomset Logic extends the graphical syntax of MLL proof nets

ax
⊢ A,A⊥ ax

⊢ B,B⊥
⊗

⊢ A⊗ B,A⊥,B⊥

ax ax

⊗

O
O

No distinction between ⊗ and ` −→ not all graphs correspond to correct proofs
−→ need a correctness criterion

9/15

Proof nets for Multiplicative Linear Logic

The proof system for Pomset Logic extends the graphical syntax of MLL proof nets

ax
⊢ A,A⊥ ax

⊢ B,B⊥
⊗

⊢ A⊗ B,A⊥,B⊥ O
⊢ A⊗ B,A⊥OB⊥

ax ax

⊗ O

O
No distinction between ⊗ and ` −→ not all graphs correspond to correct proofs

−→ need a correctness criterion

9/15

Proof nets for Multiplicative Linear Logic

The proof system for Pomset Logic extends the graphical syntax of MLL proof nets

ax
⊢ A,A⊥ ax

⊢ B,B⊥
⊗

⊢ A⊗ B,A⊥,B⊥ O
⊢ A⊗ B,A⊥OB⊥ O
⊢ (A⊗ B)O(A⊥OB⊥)

ax ax

⊗ O
O

No distinction between ⊗ and ` −→ not all graphs correspond to correct proofs
−→ need a correctness criterion

9/15

Proof nets for Multiplicative Linear Logic

The proof system for Pomset Logic extends the graphical syntax of MLL proof nets

ax
⊢ A,A⊥ ax

⊢ B,B⊥
⊗

⊢ A⊗ B,A⊥,B⊥ O
⊢ A⊗ B,A⊥OB⊥ O
⊢ (A⊗ B)O(A⊥OB⊥)

ax ax

⊗ O
O

No distinction between ⊗ and ` −→ not all graphs correspond to correct proofs
−→ need a correctness criterion

9/15

In addition to Pomset Logic, Retoré also invented in the 1990s…

A translation MLL+Mix proof nets→ graphs equipped with perfect matchings
(for linear logicians: reformulation of Danos–Regnier switching criterion)

Pomset logic: add directed edges to handle non-commutativity

ax ax

⊗ `

`
comes from a correct proof ⇐⇒ no alternating elementary cycle 10/15

In addition to Pomset Logic, Retoré also invented in the 1990s…

A translation MLL+Mix proof nets→ graphs equipped with perfect matchings
(for linear logicians: reformulation of Danos–Regnier switching criterion)

Pomset logic: add directed edges to handle non-commutativity

ax ax

◁ `

`
comes from a correct proof ⇐⇒ no alternating elementary cycle 10/15

In addition to Pomset Logic, Retoré also invented in the 1990s…

A translation MLL+Mix proof nets→ graphs equipped with perfect matchings
(for linear logicians: reformulation of Danos–Regnier switching criterion)

Pomset logic: add directed edges to handle non-commutativity

ax ax

◁ ◁

`
comes from a correct proof ⇐⇒ no alternating elementary cycle 10/15

Complexity of proof net correctness

In previous work (Log. Methods Comput. Sci. 2020) I brought proof nets and
perfect matchings even closer by exhibiting a converse translation (←)

−→we can apply results from mainstream combinatorics to study these logics!

This led us to a surprising realization:
Theorem (in the extended journal version of our CSL’22 paper)
Provability in pomset logic is strictly harder than in BV unless NP = coNP.

(more precisely: Σp
2 -complete vs NP-complete)

• In BV, the length of proofs is polynomially bounded
• It’s known that finding constrained cycles in directed graphs is often hard

(inspiration: Gourvès et al. 2013, Complexity of trails, paths and circuits in arc-colored digraphs)

−→ Suddenly, Guglielmi’s conjecture looked less plausible…

11/15

Complexity of proof net correctness

In previous work (Log. Methods Comput. Sci. 2020) I brought proof nets and
perfect matchings even closer by exhibiting a converse translation (←)

−→we can apply results from mainstream combinatorics to study these logics!

This led us to a surprising realization:
Theorem (in the extended journal version of our CSL’22 paper)
Provability in pomset logic is strictly harder than in BV unless NP = coNP.

(more precisely: Σp
2 -complete vs NP-complete)

• In BV, the length of proofs is polynomially bounded
• It’s known that finding constrained cycles in directed graphs is often hard

(inspiration: Gourvès et al. 2013, Complexity of trails, paths and circuits in arc-colored digraphs)

−→ Suddenly, Guglielmi’s conjecture looked less plausible…

11/15

Complexity of proof net correctness

In previous work (Log. Methods Comput. Sci. 2020) I brought proof nets and
perfect matchings even closer by exhibiting a converse translation (←)

−→we can apply results from mainstream combinatorics to study these logics!

This led us to a surprising realization:
Theorem (in the extended journal version of our CSL’22 paper)
Provability in pomset logic is strictly harder than in BV unless NP = coNP.

(more precisely: Σp
2 -complete vs NP-complete)

• In BV, the length of proofs is polynomially bounded
• It’s known that finding constrained cycles in directed graphs is often hard

(inspiration: Gourvès et al. 2013, Complexity of trails, paths and circuits in arc-colored digraphs)

−→ Suddenly, Guglielmi’s conjecture looked less plausible…
11/15

Reduction perfect matchings→ proof structures (FSCD 2018 / LMCS 2020)

w x

y z

e

f

g

a b

ax
e

ax
f

ax
g

O
x

O
y

⊗
a

⊗
b

w z

Extends to perfect matchings in general directed graphs→ pomset logic proof
structures, using the non-commutative ◁ to build a “directed ax” gadget. Hence:
Lemma
There is a PTIME reduction: ∃ directed æ-cycle⇝ pomset logic proof net incorrectness.

Goal: show that finding directed æ-cycles is NP-hard

12/15

Reduction perfect matchings→ proof structures (FSCD 2018 / LMCS 2020)

w x

y z

e

f

g

a b

ax
e

ax
f

ax
g

O
x

O
y

⊗
a

⊗
b

w z

Extends to perfect matchings in general directed graphs→ pomset logic proof
structures, using the non-commutative ◁ to build a “directed ax” gadget. Hence:
Lemma
There is a PTIME reduction: ∃ directed æ-cycle⇝ pomset logic proof net incorrectness.

Goal: show that finding directed æ-cycles is NP-hard 12/15

Reduction from another graph-theoretic problem (“elementary round-trip”)

s

u v

w

t

s

u v

w

t

s1

s2

+

−

+

−

+

−

t1

t2

u v

w

cycle s top
−−→ t bottom−−−−−→ s without repeating vertex ↭ æ-cycle

13/15

Hardness results

The “elementary round-trip” problem is NP-complete (
backup slide︷ ︸︸ ︷

by reduction from 3SAT), so:
Theorem
Pomset proof net correctness is coNP-complete.

We can reduce a Π
p
2 -complete variant of elementary round-trip involving

the “switchings” of two “paired graphs”︸ ︷︷ ︸
à la Danos–Regnier

to pomset non-provability, therefore:

Theorem
Pomset logic provability is Σp

2 -complete.

Remark: here paired graphs / switchings are not related to the correctness criterion
but to the choice of plugging of axiom links

14/15

Hardness results

The “elementary round-trip” problem is NP-complete (
backup slide︷ ︸︸ ︷

by reduction from 3SAT), so:
Theorem
Pomset proof net correctness is coNP-complete.

We can reduce a Π
p
2 -complete variant of elementary round-trip involving

the “switchings” of two “paired graphs”︸ ︷︷ ︸
à la Danos–Regnier

to pomset non-provability, therefore:

Theorem
Pomset logic provability is Σp

2 -complete.

Remark: here paired graphs / switchings are not related to the correctness criterion
but to the choice of plugging of axiom links

14/15

Conclusion

Thanks for your attention!

Retoré’s Pomset Logic (PL) and Guglielmi’s BV: 2 logics over the same formulas,
from the 1990s, conservatively extending Multiplicative Linear Logic with Mix

Our result: refuting Guglielmi’s two-decades-old conjecture

• There is some formula A such that BV ̸⊢ A but PL ⊢ A.
A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

• Moreover, “BV ⊢ A?” is NP-complete while “PL ⊢ A?” is Σp
2 -complete.

• These logics exemplify two proof-theoretic paradigms going by necessity
beyond the sequent calculus: proof nets and deep inference.

• We realized that the conjecture was very probably false thanks to connections
with mainstream graph theory + knowledge of the algorithms literature.

15/15

Conclusion

Thanks for your attention!

Retoré’s Pomset Logic (PL) and Guglielmi’s BV: 2 logics over the same formulas,
from the 1990s, conservatively extending Multiplicative Linear Logic with Mix

Our result: refuting Guglielmi’s two-decades-old conjecture

• There is some formula A such that BV ̸⊢ A but PL ⊢ A.
A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

• Moreover, “BV ⊢ A?” is NP-complete while “PL ⊢ A?” is Σp
2 -complete.

• These logics exemplify two proof-theoretic paradigms going by necessity
beyond the sequent calculus: proof nets and deep inference.

• We realized that the conjecture was very probably false thanks to connections
with mainstream graph theory + knowledge of the algorithms literature.

15/15

Conclusion

Thanks for your attention!

Retoré’s Pomset Logic (PL) and Guglielmi’s BV: 2 logics over the same formulas,
from the 1990s, conservatively extending Multiplicative Linear Logic with Mix

Our result: refuting Guglielmi’s two-decades-old conjecture

• There is some formula A such that BV ̸⊢ A but PL ⊢ A.
A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

• Moreover, “BV ⊢ A?” is NP-complete while “PL ⊢ A?” is Σp
2 -complete.

• These logics exemplify two proof-theoretic paradigms going by necessity
beyond the sequent calculus: proof nets and deep inference.

• We realized that the conjecture was very probably false thanks to connections
with mainstream graph theory + knowledge of the algorithms literature.

15/15

Conclusion

Thanks for your attention!

Retoré’s Pomset Logic (PL) and Guglielmi’s BV: 2 logics over the same formulas,
from the 1990s, conservatively extending Multiplicative Linear Logic with Mix

Our result: refuting Guglielmi’s two-decades-old conjecture

• There is some formula A such that BV ̸⊢ A but PL ⊢ A.
A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

• Moreover, “BV ⊢ A?” is NP-complete while “PL ⊢ A?” is Σp
2 -complete.

• These logics exemplify two proof-theoretic paradigms going by necessity
beyond the sequent calculus: proof nets and deep inference.

• We realized that the conjecture was very probably false thanks to connections
with mainstream graph theory + knowledge of the algorithms literature.

15/15

Conclusion Thanks for your attention!

Retoré’s Pomset Logic (PL) and Guglielmi’s BV: 2 logics over the same formulas,
from the 1990s, conservatively extending Multiplicative Linear Logic with Mix

Our result: refuting Guglielmi’s two-decades-old conjecture

• There is some formula A such that BV ̸⊢ A but PL ⊢ A.
A = ((a ◁ b)⊗ (c ◁ d))` ((e ◁ f)⊗ (g ◁ h))` (a⊥ ◁ h⊥)` (e⊥ ◁ b⊥)` (g⊥ ◁ d⊥)` (c⊥ ◁ f⊥)

• Moreover, “BV ⊢ A?” is NP-complete while “PL ⊢ A?” is Σp
2 -complete.

• These logics exemplify two proof-theoretic paradigms going by necessity
beyond the sequent calculus: proof nets and deep inference.

• We realized that the conjecture was very probably false thanks to connections
with mainstream graph theory + knowledge of the algorithms literature.

15/15

Backup slide: Reduction CNF-SAT→ elementary round-trip

(x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z)

We consider two graphs whose vertices
are the literal occurrences in the clauses:

• paths s→ t in 1st graph =
choose one literal in each clause

• paths t→ s in 2nd graph =
choose assignment and visit all
false literals (here x = false,
y = false, z = true)

Non-intersecting pair =
satisfying assignment

Backup slide: Reduction CNF-SAT→ elementary round-trip

(x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z)

We consider two graphs whose vertices
are the literal occurrences in the clauses:

• paths s→ t in 1st graph =
choose one literal in each clause

• paths t→ s in 2nd graph =
choose assignment and visit all
false literals (here x = false,
y = false, z = true)

Non-intersecting pair =
satisfying assignment

x

¬x

y

¬y

z

¬z

x ∨ y ∨ z ¬x ∨ y ¬y ∨ ¬zs

t

Backup slide: Reduction CNF-SAT→ elementary round-trip

(x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z)

We consider two graphs whose vertices
are the literal occurrences in the clauses:

• paths s→ t in 1st graph =
choose one literal in each clause

• paths t→ s in 2nd graph =
choose assignment and visit all
false literals (here x = false,
y = false, z = true)

Non-intersecting pair =
satisfying assignment

x

¬x

y

¬y

z

¬z

x ∨ y ∨ z ¬x ∨ y ¬y ∨ ¬zs

t

Backup slide: Reduction CNF-SAT→ elementary round-trip

(x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z)

We consider two graphs whose vertices
are the literal occurrences in the clauses:

• paths s→ t in 1st graph =
choose one literal in each clause

• paths t→ s in 2nd graph =
choose assignment and visit all
false literals (here x = false,
y = false, z = true)

Non-intersecting pair =
satisfying assignment

x

¬x

y

¬y

z

¬z

x ∨ y ∨ z ¬x ∨ y ¬y ∨ ¬zs

t

	Appendix

