
Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex: Generating formally verified lexers

W. Ouedraogo G. Scherer L. Straßburger

Siemens Mobility - INRIA Saclay - LIX
ouedraogo@lix.polytechnique.fr

Scalp Working Group Days - 16/02/2023

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Presentation Overview

1 Lexers: What? Why?

2 Lexers in practice

3 Coqlex: What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

4 Evaluation
Execution time
Usability and features

5 Conclusion

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Compilation

Figure: Compiler design 1/4.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Compilation

Figure: Compiler design 2/4.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Compilation

Figure: Compiler design 3/4.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Front-end overview

Figure: Compiler design 4/4.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexers in practice

From a given string, a lexer
generates a stream/list of tokens:
part of the input string (lexeme)
associated with meaning.

Common additional features
1 Ignore white spaces and

comments
2 Detect/reject keywords
3 Track line/column numbers

Lexers and parser are usually generated using generators

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

Lexical buffer data structure:
• tracks positions
• used as lexer input
• is updated by lexers

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 (*OCamllex syntax*)
2 rule my_lexer = parse
3 ’b’ ’a’* ’b’ { 0 }
4 | ’a’* { my_lexer lexbuf }
5 | ’c’ { 20 }
6 | ’c’+ { 21 }

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

The priority and longuest match rule: the semantic action of the first lexical
rule whose regex matches the longest prefix of the input string.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘c‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘‘*)
4 | ’c’ { 20 } (*Matches ‘c‘ *)
5 | ’c’+ { 21 } (*Matches ‘c‘ *)
6

7

8 (* result tokens: [20]*)

Tokens for ‘c‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘cc‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘‘*)
4 | ’c’ { 20 } (*Matches ‘c‘ *)
5 | ’c’+ { 21 } (*Matches ‘cc‘ *)
6

7

8 (* result tokens: [21]*)

Tokens for ‘cc‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘aabbc‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘aa‘*)
4 | ’c’ { 20 } (*No match*)
5 | ’c’+ { 21 } (*No match*)
6

7

8 (* result tokens: ...*)

Tokens for ‘aabbc‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*Matches ‘bb‘*)
3 | ’a’* { my_lexer lexbuf } (*No match*)
4 | ’c’ { 20 } (*No match*)
5 | ’c’+ { 21 } (*No match*)
6

7

8 (* result tokens: [0; ...]*)

Tokens for ‘aabbc‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*No match*)
4 | ’c’ { 20 } (*Matches ‘c‘ *)
5 | ’c’+ { 21 } (*Matches ‘c‘ *)
6

7

8 (* result tokens: [0; 20]*)

Tokens for ‘aabbc‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘d‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘‘*)
4 | ’c’ { 20 } (*No match*)
5 | ’c’+ { 21 } (*No match*)
6

7

8 (* result tokens: Infinite loop*)

Tokens for ‘d‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’c’ { 20 } (*No match*)
4 | ’c’+ { 21 } (*No match*)
5

6

7 (* result tokens: Error*)

Tokens for ‘d‘ ?

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex: What? Why?

Contribution
1 A Coq library
2 A generator

Goals
1 Simplify lexer implementation
2 Allow to write proofs on

implemented lexers
3 Usable
4 Easy to

understand/review/improve

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection system
4 Optimization

lexer(T) :=
nat ->lexbuf ->Result(T) x lexbuf

action(T) :=
lexbuf ->Result(T) x lexbuf

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (1/4)
3 Selection systems
4 Optimization

Regex definition

regex ::=
∅r L(∅r) = ∅
| ϵr L(ϵr) = {ϵ}
| [[a]] L([[a]]) = {a}
| e1 + e2 L(e1 + e2) = L(e1) ∪ L(e1)
| e1 · e2 L(e1 · e2) =

{s1 ++ s2|s1 ∈ L(e1) ∧ s2 ∈ L(e2)}
| e∗ L(e∗) = {sn|s ∈ L(e) ∧ n ∈ N}

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (2/4)
3 Selection system
4 Optimization

the nullable funtion

nullable ∅r = false
nullable ϵr = true
nullable [[a]] = false
nullable (e1 + e2) =

nullable e1 ∨ nullable e2
nullable (e1 · e2) =

nullable e1 ∧ nullable e2
nullable e∗ = true

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (3/4)
3 Selection system
4 Optimization

the derive funtion

∅r/c = ∅r
ϵr/c = ∅r

[[a]] / c =

{
ϵ if a = c
∅r otherwise

(e1 + e2)/c = (e1/c) + (e2/c)

(e1 · e2)/c =

{
(e1/c · e2) + e2/c if nullable e1

(e1/c · e2) otherwise
e∗/c = (e/c) · e∗

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (4/4)
3 Selection system
4 Optimization

Matching a string

r//ϵ = r r//az = (r/a)//z

matches r z = nullable (r//z)

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection system

• Score: Sl
• Selection

4 Optimization

Score computation

nullable r = true

Sl(r , ϵ) = 0
nullable r = false

Sl(r , ϵ) = −∞

Sl(r/a, z) = n

Sl(r ,az) = n + 1

Sl(r/a, z) = −∞ nullable r = true

Sl(r ,az) = 0

Sl(r/a, z) = −∞ nullable r = false

Sl(r ,az) = −∞

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection systems

• Scores
• Selection

4 Optimization

Semantic rule selection Choosing the first
rule with the highest score (first argmax).

Problem: Lexing in quadratic time.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection systems
4 Optimization

Idea: Stop Sl as soon as possible

Details
1 Adding faster constructions

ex: [‘0‘- ‘9‘] vs ‘0‘ | ‘1‘ | ... | ‘9‘
2 Regexp simplification

ex: (r∗)∗ ≡ r∗, r ·∅r ≡ ∅r

3 Stopping for trivial cases
ex: Sl(ϵr , s) = 0, Sl(∅r , s) = −∞

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex generator

Figure: Coqlex generator architecture.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

State of the art

Related work and tools
1 Lexers written by hand (ex: CakeML)
2 Nipkow
3 OCamllex (Lex, Flex)
4 Verbatim/Verbatim++

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex vs OCamllex vs Verbatim++

Verbatim++ Coqlex OCamllex
Tokens per sec. 1.7 × 103 2.23 × 105 3.9 × 107

Time to process 56ko. 12.11 s 7.7 × 10−2 s 4.4 × 10−4 s

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex vs OCamllex vs Verbatim++

Coqlex OCamllex Verbatim++
Lexer language Coq OCaml Coq

Semantic action

lexbuf ->
Result(token)

x
lexbuf

OCaml code token

Error handling
mechanism yes yes no

Formally verified
lexers yes no yes

Execution speed 100x slower fastest
(reference) 10000x slower

Generator yes yes no

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Generator language

.vl syntax vs .mll syntax

Listing 1: looping.vl
1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { ret 0 }
3 | ’a’* { my_lexer }
4 | EOF { ret 1 }

Listing 2: looping.mll
1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | EOF { 1 }

Remark: We proved that this lexer loops if the input string starts by a
character x such that x ̸= ‘a‘, and x ̸= ‘b‘

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex industrial use-case

Coqlex in industry
1 In a Ada-to-Ada formally verified compiler
2 Biggest program: 2380 files (25MB of code)
3 Formally verified front-end
4 Compilation timeè: x4 compared to the unverified front-end version.

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Coqlex in a nutshell

1 Usable
2 Simple
3 Formally verified
4 Common lexer features are

implemented

• Coq proof of Sl , correctness
and completeness

• Coq proof of Lexical rule
selection is correctness and
completeness

• Coq proof of Optimizations
correctness

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Future work

Improvements for Coqlex
1 Speed up
2 Termination proof
3 OCamllex <-> Coqlex converter
4 CompCert

Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

The End

References
Brzozowski Janusz A. (1964)
Derivatives of regular expressions
JACM 1964

Joshua B Smith (2007)
Ocamllex and Ocamlyacc

Derek Egolf and al. (2022)
Verbatim++: verified, optimized, and
semantically rich lexing with derivatives
CPP 2022 27 – 39.

W. OUEDRAOGO and al. (2022)
Git link for Coqlex: https://gitlab.
inria.fr/wouedrao/coqlex

Thank you.
Questions?
Comments?

https://gitlab.inria.fr/wouedrao/coqlex
https://gitlab.inria.fr/wouedrao/coqlex

	Lexers: What? Why?
	Lexers in practice
	Coqlex: What? Why?
	Coqlex overview
	Coqlex Library
	Coqlex Generator

	Evaluation
	Execution time
	Usability and features

	Conclusion

