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Compilation

Figure: Compiler design 1/4.
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Figure: Compiler design 2/4.
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Front-end overview

Figure: Compiler design 4/4.



Generating
formally
verified

lexers with
Coqlex

W.
Ouedraogo,

G. Scherer, L.
Straßburger

Lexers:
What? Why?

Lexers in
practice

Coqlex:
What? Why?
Coqlex overview
Coqlex Library
Coqlex Generator

Evaluation
Execution time
Usability and
features

Conclusion

Lexers in practice

From a given string, a lexer
generates a stream/list of tokens:
part of the input string (lexeme)
associated with meaning.

Common additional features
1 Ignore white spaces and

comments
2 Detect/reject keywords
3 Track line/column numbers

Lexers and parser are usually generated using generators
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

Lexical buffer data structure:
• tracks positions
• used as lexer input
• is updated by lexers
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 (*OCamllex syntax*)
2 rule my_lexer = parse
3 ’b’ ’a’* ’b’ { 0 }
4 | ’a’* { my_lexer lexbuf }
5 | ’c’ { 20 }
6 | ’c’+ { 21 }
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

The priority and longuest match rule: the semantic action of the first lexical
rule whose regex matches the longest prefix of the input string.
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘c‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘‘*)
4 | ’c’ { 20 } (*Matches ‘c‘ *)
5 | ’c’+ { 21 } (*Matches ‘c‘ *)
6

7

8 (* result tokens: [20]*)

Tokens for ‘c‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘cc‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘‘*)
4 | ’c’ { 20 } (*Matches ‘c‘ *)
5 | ’c’+ { 21 } (*Matches ‘cc‘ *)
6

7

8 (* result tokens: [21]*)

Tokens for ‘cc‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘aabbc‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘aa‘*)
4 | ’c’ { 20 } (*No match*)
5 | ’c’+ { 21 } (*No match*)
6

7

8 (* result tokens: ...*)

Tokens for ‘aabbc‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*Matches ‘bb‘*)
3 | ’a’* { my_lexer lexbuf } (*No match*)
4 | ’c’ { 20 } (*No match*)
5 | ’c’+ { 21 } (*No match*)
6

7

8 (* result tokens: [0; ...]*)

Tokens for ‘aabbc‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*No match*)
4 | ’c’ { 20 } (*Matches ‘c‘ *)
5 | ’c’+ { 21 } (*Matches ‘c‘ *)
6

7

8 (* result tokens: [0; 20]*)

Tokens for ‘aabbc‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | ’c’ { 20 }
5 | ’c’+ { 21 }

Tokens for ‘d‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’a’* { my_lexer lexbuf } (*Matches ‘‘*)
4 | ’c’ { 20 } (*No match*)
5 | ’c’+ { 21 } (*No match*)
6

7

8 (* result tokens: Infinite loop*)

Tokens for ‘d‘ ?
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Lexer generators

Important concepts
1 Lexical buffer
2 Lexical rules
3 Selection system

1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 } (*No match*)
3 | ’c’ { 20 } (*No match*)
4 | ’c’+ { 21 } (*No match*)
5

6

7 (* result tokens: Error*)

Tokens for ‘d‘ ?
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Coqlex: What? Why?

Contribution
1 A Coq library
2 A generator

Goals
1 Simplify lexer implementation
2 Allow to write proofs on

implemented lexers
3 Usable
4 Easy to

understand/review/improve
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection system
4 Optimization

lexer(T) :=
nat ->lexbuf ->Result(T) x lexbuf

action(T) :=
lexbuf ->Result(T) x lexbuf
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (1/4)
3 Selection systems
4 Optimization

Regex definition

regex ::=
∅r L(∅r ) = ∅
| ϵr L(ϵr ) = {ϵ}
| [[a]] L([[a]]) = {a}
| e1 + e2 L(e1 + e2) = L(e1) ∪ L(e1)
| e1 · e2 L(e1 · e2) =

{s1 ++ s2|s1 ∈ L(e1) ∧ s2 ∈ L(e2)}
| e∗ L(e∗) = {sn|s ∈ L(e) ∧ n ∈ N}
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (2/4)
3 Selection system
4 Optimization

the nullable funtion

nullable ∅r = false
nullable ϵr = true
nullable [[a]] = false
nullable (e1 + e2) =

nullable e1 ∨ nullable e2
nullable (e1 · e2) =

nullable e1 ∧ nullable e2
nullable e∗ = true
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (3/4)
3 Selection system
4 Optimization

the derive funtion

∅r/c = ∅r
ϵr/c = ∅r

[[a]] / c =

{
ϵ if a = c
∅r otherwise

(e1 + e2)/c = (e1/c) + (e2/c)

(e1 · e2)/c =

{
(e1/c · e2) + e2/c if nullable e1

(e1/c · e2) otherwise
e∗/c = (e/c) · e∗
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives (4/4)
3 Selection system
4 Optimization

Matching a string

r//ϵ = r r//az = (r/a)//z

matches r z = nullable (r//z)
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection system

• Score: Sl
• Selection

4 Optimization

Score computation

nullable r = true

Sl(r , ϵ) = 0
nullable r = false

Sl(r , ϵ) = −∞

Sl(r/a, z) = n

Sl(r ,az) = n + 1

Sl(r/a, z) = −∞ nullable r = true

Sl(r ,az) = 0

Sl(r/a, z) = −∞ nullable r = false

Sl(r ,az) = −∞
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection systems

• Scores
• Selection

4 Optimization

Semantic rule selection Choosing the first
rule with the highest score (first argmax).

Problem: Lexing in quadratic time.
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Coqlex Library implementation details

Implementation details
1 Typing a lexer
2 Brzozowski

derivatives
3 Selection systems
4 Optimization

Idea: Stop Sl as soon as possible

Details
1 Adding faster constructions

ex: [‘0‘- ‘9‘] vs ‘0‘ | ‘1‘ | ... | ‘9‘
2 Regexp simplification

ex: (r∗)∗ ≡ r∗, r ·∅r ≡ ∅r

3 Stopping for trivial cases
ex: Sl(ϵr , s) = 0, Sl(∅r , s) = −∞
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Coqlex generator

Figure: Coqlex generator architecture.
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State of the art

Related work and tools
1 Lexers written by hand (ex: CakeML)
2 Nipkow
3 OCamllex (Lex, Flex)
4 Verbatim/Verbatim++
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Coqlex vs OCamllex vs Verbatim++

Verbatim++ Coqlex OCamllex
Tokens per sec. 1.7 × 103 2.23 × 105 3.9 × 107

Time to process 56ko. 12.11 s 7.7 × 10−2 s 4.4 × 10−4 s
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Coqlex vs OCamllex vs Verbatim++

Coqlex OCamllex Verbatim++
Lexer language Coq OCaml Coq

Semantic action

lexbuf ->
Result(token)

x
lexbuf

OCaml code token

Error handling
mechanism yes yes no

Formally verified
lexers yes no yes

Execution speed 100x slower fastest
(reference) 10000x slower

Generator yes yes no
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Generator language

.vl syntax vs .mll syntax

Listing 1: looping.vl
1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { ret 0 }
3 | ’a’* { my_lexer }
4 | EOF { ret 1 }

Listing 2: looping.mll
1 rule my_lexer = parse
2 ’b’ ’a’* ’b’ { 0 }
3 | ’a’* { my_lexer lexbuf }
4 | EOF { 1 }

Remark: We proved that this lexer loops if the input string starts by a
character x such that x ̸= ‘a‘, and x ̸= ‘b‘
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Coqlex industrial use-case

Coqlex in industry
1 In a Ada-to-Ada formally verified compiler
2 Biggest program: 2380 files (25MB of code)
3 Formally verified front-end
4 Compilation timeè: x4 compared to the unverified front-end version.
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Coqlex in a nutshell

1 Usable
2 Simple
3 Formally verified
4 Common lexer features are

implemented

• Coq proof of Sl , correctness
and completeness

• Coq proof of Lexical rule
selection is correctness and
completeness

• Coq proof of Optimizations
correctness
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Future work

Improvements for Coqlex
1 Speed up
2 Termination proof
3 OCamllex <-> Coqlex converter
4 CompCert
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The End
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Thank you.
Questions?
Comments?

https://gitlab.inria.fr/wouedrao/coqlex
https://gitlab.inria.fr/wouedrao/coqlex
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