Generating
formally
verified

lexers with

Coglex
Coglex: Generating formally verified lexers

W. Ouedraogo G. Scherer L. StralBburger

Siemens Mobility - INRIA Saclay - LIX
ouedraogo@lix.polytechnique.fr

Scalp Working Group Days - 16/02/2023

Presentation Overview

Generating
formally

=i @ Lcxers: What? Why?

lexers with
Coglex

@ Lexers in practice

© Coglex: What? Why?
Coqglex overview
Coqlex Library
Coglex Generator

@ tvaluation
Execution time
Usability and features

© Conclusion

Generating
formally
verified

lexers with
Coglex

Lexers:
What? Why?

Compilation

<> —"'{g}——*‘()

Code in source language Compiler Code in target language

Figure: Compiler design 1/4.

Generating
formally
verified

lexers with
Coglex

herer, L.

burger

Lexers:
What? Why?

Compilation

Code in source
language

Compiler

5 , N . Code in target
i - - ¥ language

Front-end Middle-end Back-end

Figure: Compiler design 2/4.

Generating
formally
verified

lexers with
Coglex

Lexers:
What? Why?

Compilation

Compiler/Front-end

Code in source Computer
language —_— representation of
the input code

Lexer Parser

Figure: Compiler design 3/4.

Front-end overview

Generating
formally
verified
lexers with
Coglex
LET

Lexi Parsi /
= LET ID(x) COLON ki /’ \\

let x : int =1 + 2 —= 1y iy equaLs ———= ID(x)l/m.us‘\ TYPE_INT

INTCL) PLUS INT(2) p / >
// \ \\
Lexers: S0 OINT(1) INT(2) .

What? Why? L 2 .
Bol+ progrom Tekens Abstroet Symrax Tree

Figure: Compiler design 4/4.

Lexers in practice

Generating
formally
verified

lexers with

oo Common additional features

From a given string, a lexer @ Iznore white spaces and
generates a stream/list of tokens: 5 P
comments

part of the input string (lexeme) .
associated with meaning. @ Detect/reject keywords
©® Track line/column numbers

Lexers in
practice

Lexers and parser are usually generated using generators

Lexer generators

Generating
formally
verified

lexers with

Coglex

g [N5A8 Important concepts Lexical buffer data structure:
@ Lexical buffer e tracks positions

(2] e used as lexer input
practice. (3 e is updated by lexers

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts

® Lexical rules

1
2
3
4
5
6

(xOCamllex syntaxx)

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ { my_lexer lexbuf }
rer { 20 }
e+ { 21 }

Lexer generators

Generating
formally
verified
lexers with
Coglex Important concepts | — e ——
5 0 2 b’ ra’x b’ { 0 }
G . 3 | ra’«x { my_lexer lexbuf }
& 2 4 | 7c” { 20 }
© Selection system 5 | 'c'+ { 21}

Lexers in
practice

The priority and longuest match rule: the semantic action of the first lexical
rule whose regex matches the longest prefix of the input string.

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts
o
(2]

© Selection system

1
2
3
4
5

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ x { my_lexer lexbuf }
ey { 20 }
e+ { 21 }

Tokens for ‘c'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | ra’ { my_lexer lexbuf } (xMatches ‘x)
4 | e’ { 20 } (*Matches ‘c‘' *)

5 | "¢+ { 21 } (+*Matches ‘c‘' %)

6

7

8 (result tokens: [20]+%)

Tokens for‘c'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts
o
(2]

© Selection system

1
2
3
4
5

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ x { my_lexer lexbuf }
ey { 20 }
e+ { 21 }

Tokens for ‘cc'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | ra’ { my_lexer lexbuf } (xMatches ‘x)
4 | e’ { 20 } (*Matches ‘c‘' *)

5 | 'c’+ { 21 } (x*Matches ‘cc' *)

6

7

8 (result tokens: [21]%)

Tokens for ‘cc'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts
o
(2]

© Selection system

1
2
3
4
5

rule my_lexer = parse
"b’ "a’x 'b" { 0 }
| "a’x { my_lexer lexbuf }
| "c’ { 20 }
["c'+ { 21 }

Tokens for ‘aabbc'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | "a’x { my_lexer lexbuf } (xMatches ‘aa‘x)
4 | e’ { 20 } (*No match«)

5 | "¢+ { 21 } (*No matchx)

6

7

8 (* result tokens: ...x)

Tokens for ‘aabbc'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*Matches ‘bb‘x)

3 | "a’"x { my_lexer lexbuf } (xNo matchx)
4 | e’ { 20 } (*No match«)

5 | "¢+ { 21 } (*No matchx)

6

7

8 (result tokens: [0; ...1%)

Tokens for ‘aabbc'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts
o
e

© Selection system

1 rule my_lexer = parse

2 b Ta’x b’ { 0 } (*No matchx)

3 | "a’"x { my_lexer lexbuf } (xNo matchx)
4 | e’ { 20 } (*Matches ‘c‘' *)

5 | "¢+ { 21 } (+*Matches ‘c‘' %)
6
7
8

(» result tokens: [0; 20]x*)

Tokens for ‘aabbc'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts
o
(2]

© Selection system

1
2
3
4
5

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ x { my_lexer lexbuf }
ey { 20 }
e+ { 21 }

Tokens for ‘d'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | "a’"x { my_lexer lexbuf } (xMatches ‘%)
4 | e’ { 20 } (*No match«)

5 | "¢+ { 21 } (*No matchx)

6

7

8 (» result tokens: Infinite loopx)

Tokens for ‘d'?

Generating
formally
verified

lexers with

Coglex

Lexers in
practice

Lexer generators

Important concepts
o
(2]

© Selection system

1 rule my_lexer = parse

2 "o’ Ta’'x b’ { 0 } (*No matchx)
3 | “&” { 20 } (*No matchx)

4 | ¢+ { 21 } (*No matchw«)

5

6

7 (» result tokens: Errorx)

Tokens for‘d'?

Coglex: What? Why?

Generating
formally
verified
lexers with
Coglex
Contribution Goals
ira)
E O A Coqlibrary © Simplify lexer implementation
@ A generator @ Allow to write proofs on
implemented lexers
©® Usable
@ Easy to

e understand/review/improve

Coglex Library implementation details

Generating
formally
verified

lexers with

Coglex

Implementation details
Rburger @ Typing a lexer lexer (T) =
9 nat —->lexbuf ->Result (T) x lexbuf

action(T) =
o lexbuf —->Result (T) x lexbuf

Coglex Library

Coglex Library implementation details

Generating
formally
e
Coglex Implementation details Regex definition
o . regex ::=
® Brzozowski @, L(2,) = o
derivatives (1/4) e L(ey) = {e}
© | [a] L([al) = {a}
(4] lei+e L(er+ex)=L(er)UL(er)
[e1-e2 L(er-e) =
Gt {81 H s2|s1 € L(e1) Asp € L(e2)}
: | e* L(e*)={s"|s e L(e) Ane N}

Coglex Library implementation details

Generating

formally
verified
lexers with . . .
Cenlle Implementation details the nullable funtion
0 o nullable &, = false
® Brzozowski nullable ¢ = true
derivatives (2/4) nullable [a] = false
(3 nullable (e1+ &)=
o nullable €1 Vnullable e

nullable (e1-6€2) =
nullable e Anullable é>
S nullable €* = true

Coglex Library implementation details

Generating

formally
verifieq
SSH Implementation details
uel 0
® Brzozowski
derivatives (3/4)
©
o

Coglex Library

the derive funtion

@r/c :Qr
€r/C :Qr
[al/c _ eira==<¢

&, otherwise
(e1 + e2)/c=(ei1/c) + (e2/c)
(e1/c-e)+ ey/cifnullable ey
(e1/c - e) otherwise
e*/c =(e/c)- e*

(e1-e)/c =

Coglex Library implementation details

Generating

formally

verified
lexers with

Coglex

Implementation details Matching a string

r/je=r r//az=(r/a)//z

® Brzozowski
derivatives (4/4)

0 matches r z=nullable (r//2)

Coglex Library

Coglex Library implementation details

Generating
forr‘_nglly . . .
operifiec Implementation details Score computation
Coglex
o nullable r = true nullable r = false
ira L e Sl(r7 6) = O Sl(r7 6) = —00
tral rger
© Selection system Si(r/a,z) =n
® Score: S, Si(r,az) = n+1
[}
o Si(r/a,z) = —oc0 nullable r = true
Si(r,az) =0

Coglex Library

Si(r/a,z) = —c0 nullable r = false

Si(r,az) = —o0

Coglex Library implementation details

Generating
formally
verified
lexers with
Coglex
Implementation details = Semantic rule selection Choosing the first
e, 1) rule with the highest score (first argmax).
(2]
© Selection systems
J Problem: Lexing in quadratic time.
® Selection

Coglex Library e

Generating
formally

verified

lexers with

Coglex

Coglex Library

Coglex Library implementation details

Implementation details

@ Optimization

Idea: Stop S; as soon as possible

Details
@ Adding faster constructions
ex: ['0-'97vs 0" | 1| ... |'Y"
® Regexp simplification
ex:(r')y =rr o, =09,
© Stopping for trivial cases
ex: Sy(er,8) =0, S(Dr, 8) = —0

Generating
formally
verified

lexers with

Coglex

Coglex Generator

Coglex generator

lexer specification
(vl file)

-

o

\
O % @

Verified lexer Verified parser Code printer
(Written in Coaq) {(generated with Menhir) (Written in Ocaml)

Directory containing:

Coglex generator_/

Figure: Coglex generator architecture.

Lexer written in Cog
Helpers for compilation,
extraction and
benchmarking

State of the art

Generating
formally
verified

lexers with

Coglex

Related work and tools

@ Lexers written by hand (ex: CakeML)
® Nipkow

© OCamllex (Lex, Flex)

@ Verbatim/Verbatim++

Generating
formally
verified

lexers with

Coglex

Execution time

Coglex vs OCamllex vs Verbatim++

Processing Time (s)

] 0.08 o
129 — verbatim ocamllex
10 | — ocamllex - —— Coglex
—— CogLex £ 0.06
@
81 £
=
6 o 0.041
i
4 &
& 0.02
24 =
0 0.00
6 10600 20600 30600 40600 50600 (IJ 10600 20600 300‘00 40600 50(500
Characters # Characters
Verbatim++ Coqglex OCamllex

Tokens per sec.

1.7 x 108

2.23 x 10°

3.9 x 107

Time to process 56ko.

12.11s

7.7x107%s

44 x107%s

Generating
formally
verified

lexers with
Coglex

Usability and
features

Coglex vs OCamllex vs Verbatim++

Coqlex OCamllex Verbatim++
Lexer language Coq OCaml Coq
lexbuf —>
Semantic action Result}ito}{en) OCaml code token
lexbuf
Error handling os os no
mechanism y y
Formally verified
| yes no yes
exers
Execution speed 100x slower fastest 10000x slower
(reference)
Generator yes yes no

Generator language

Generating

formally

verified

lexers with

Coglex .vl syntax vs .mll syntax

Ouec r

G (‘H_‘

urg Listing 1: looping.vl Listing 2: looping.mll

1 rule my_lexer = parse 1 rule my_lexer = parse
2 'b" "a’x 'b’ { ret 0 } 2 "b’” "a’x b’ { 0}
3 | "a’x { my_lexer } 3 | ra’* { my_lexer lexbuf }
4 | EOF { ret 1 } 4 | EOF {1}

Remark: We proved that this lexer loops if the input string starts by a
character x such that x # ‘a’, and x # ‘b’

Usability and
features

Coglex industrial use-case

Generating
formally
verified

lexers with

Coglex

Coqlex in industry

@ In a Ada-to-Ada formally verified compiler

® Biggest program: 2380 files (25MB of code)

© Formally verified front-end

@ Compilation timee: x4 compared to the unverified front-end version.

Usability and
features

Coglex in a nutshell

Generating
formally
verified

lexers with

Coglex

Ouedracge @ Usable * Coq proof of S, correctness
@ Simple and completeness
© Formally verified * Coq proof of Lexical rule

selection is correctness and
completeness

e Coq proof of Optimizations
correctness

@ Common lexer features are
implemented

Conclusion

Future work

Generating
formally
verified

lexers with

Coglex

Improvements for Coqlex
Bturger @ Speed up
® Termination proof
© OCamllex <-> Coqglex converter
@ CompCert

Conclusion

Generating
formally
verified

lexers with

Coglex

Conclusion

The End

References

@ Brzozowski Janusz A. (1964)
Derivatives of regular expressions
JACM 1964

[§ Joshua B Smith (2007)
Ocamllex and Ocamlyacc

Derek Egolf and al. (2022)

Verbatim++: verified, optimized, and
semantically rich lexing with derivatives
CPP 2022 27 - 39.

ﬁ W. OUEDRAOGO and al. (2022)
Git link for Coglex: https://gitlab.
inria.fr/wouedrao/coglex

Thank you.

Questions?
Comments?

https://gitlab.inria.fr/wouedrao/coqlex
https://gitlab.inria.fr/wouedrao/coqlex

	Lexers: What? Why?
	Lexers in practice
	Coqlex: What? Why?
	Coqlex overview
	Coqlex Library
	Coqlex Generator

	Evaluation
	Execution time
	Usability and features

	Conclusion

