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Lexers in practice
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oo Common additional features

From a given string, a lexer @ Iznore white spaces and
generates a stream/list of tokens: 5 P
comments

part of the input string (lexeme) .
associated with meaning. @ Detect/reject keywords
©® Track line/column numbers

Lexers in
practice

Lexers and parser are usually generated using generators
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g [N5A8 Important concepts Lexical buffer data structure:
@ Lexical buffer e tracks positions

(2] e used as lexer input
practice. (3 e is updated by lexers
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Important concepts

® Lexical rules

1
2
3
4
5
6

(xOCamllex syntaxx)

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ { my_lexer lexbuf }
rer { 20 }
e+ { 21 }



Lexer generators

Generating
formally
verified
lexers with
Coglex Important concepts | — e ——
5 0 2 b’ ra’x b’ { 0 }
G . 3 | ra’«x { my_lexer lexbuf }
& 2 4 | 7c” { 20 }
© Selection system 5 | 'c'+ { 21}

Lexers in
practice

The priority and longuest match rule: the semantic action of the first lexical
rule whose regex matches the longest prefix of the input string.
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© Selection system

1
2
3
4
5

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ x { my_lexer lexbuf }
ey { 20 }
e+ { 21 }

Tokens for ‘c'?
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Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | ra’ { my_lexer lexbuf } (xMatches ‘x)
4 | e’ { 20 } (*Matches ‘c‘' *)

5 | "¢+ { 21 } (+*Matches ‘c‘' %)

6

7

8 ( result tokens: [20]+%)

Tokens for‘c'?
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Important concepts
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© Selection system

1
2
3
4
5

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ x { my_lexer lexbuf }
ey { 20 }
e+ { 21 }

Tokens for ‘cc'?
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Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | ra’ { my_lexer lexbuf } (xMatches ‘x)
4 | e’ { 20 } (*Matches ‘c‘' *)

5 | 'c’+ { 21 } (x*Matches ‘cc' *)

6

7

8 ( result tokens: [21]%)

Tokens for ‘cc'?
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© Selection system

1
2
3
4
5

rule my_lexer = parse
"b’ "a’x 'b" { 0 }
| "a’x { my_lexer lexbuf }
| "c’ { 20 }
[ "c'+ { 21 }

Tokens for ‘aabbc'?
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Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | "a’x { my_lexer lexbuf } (xMatches ‘aa‘x)
4 | e’ { 20 } (*No match«)

5 | "¢+ { 21 } (*No matchx)

6

7

8 (* result tokens: ...x)

Tokens for ‘aabbc'?
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Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*Matches ‘bb‘x)

3 | "a’"x { my_lexer lexbuf } (xNo matchx)
4 | e’ { 20 } (*No match«)

5 | "¢+ { 21 } (*No matchx)

6

7

8 ( result tokens: [0; ...1%)

Tokens for ‘aabbc'?
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Lexer generators

Important concepts
o
e

© Selection system

1 rule my_lexer = parse

2 b Ta’x b’ { 0 } (*No matchx)

3 | "a’"x { my_lexer lexbuf } (xNo matchx)
4 | e’ { 20 } (*Matches ‘c‘' *)

5 | "¢+ { 21 } (+*Matches ‘c‘' %)
6
7
8

(» result tokens: [0; 20]x*)

Tokens for ‘aabbc'?
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Important concepts
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© Selection system

1
2
3
4
5

rule my_lexer = parse
Ibl lal* Ibl { O }

ra’ x { my_lexer lexbuf }
ey { 20 }
e+ { 21 }

Tokens for ‘d'?
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Lexer generators

Important concepts

© Selection system

rule my_lexer = parse

1
2 b Ta’x b’ { 0 } (*No matchx)

3 | "a’"x { my_lexer lexbuf } (xMatches ‘%)
4 | e’ { 20 } (*No match«)

5 | "¢+ { 21 } (*No matchx)

6

7

8 (» result tokens: Infinite loopx)

Tokens for ‘d'?
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Lexer generators

Important concepts
o
(2]

© Selection system

1 rule my_lexer = parse

2 "o’ Ta’'x b’ { 0 } (*No matchx)
3 | “&” { 20 } (*No matchx)

4 | ¢+ { 21 } (*No matchw«)

5

6

7 (» result tokens: Errorx)

Tokens for‘d'?



Coglex: What? Why?
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Contribution Goals
ira )
E O A Coqlibrary © Simplify lexer implementation
@ A generator @ Allow to write proofs on
implemented lexers
©® Usable
@ Easy to

e understand/review/improve
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Implementation details
Rburger @ Typing a lexer lexer (T) =
9 nat —->lexbuf ->Result (T) x lexbuf

action(T) =
o lexbuf —->Result (T) x lexbuf

Coglex Library
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Coglex Implementation details  Regex definition
o . regex ::=
® Brzozowski @, L(2,) = o
derivatives (1/4) e L(ey) = {e}
© | [a] L([al) = {a}
(4] lei+e L(er+ex)=L(er)UL(er)
[e1-e2  L(er-e) =
Gt {81 H s2|s1 € L(e1) Asp € L(e2)}
: | e* L(e*)={s"|s e L(e) Ane N}
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0 o nullable &, = false
® Brzozowski nullable ¢ = true
derivatives (2/4) nullable [a] = false
(3 nullable (e1+ &)=
o nullable €1 Vnullable e

nullable (e1-6€2) =
nullable e Anullable é>
S nullable €* = true
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SSH  Implementation details
uel 0
® Brzozowski
derivatives (3/4)
©
o

Coglex Library

the derive funtion

@r/c :Qr
€r/C :Qr
[al/c _ eira==<¢

&, otherwise
(e1 + e2)/c=(ei1/c) + (e2/c)
(e1/c-e)+ ey/cifnullable ey
(e1/c - e) otherwise
e*/c =(e/c)- e*

(e1-e)/c =
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Implementation details  Matching a string

r/je=r r//az=(r/a)//z

® Brzozowski
derivatives (4/4)

0 matches r z=nullable (r//2)

Coglex Library
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Coglex
o nullable r = true nullable r = false
ira L e Sl(r7 6) = O Sl(r7 6) = —00
tral rger
© Selection system Si(r/a,z) =n
® Score: S, Si(r,az) = n+1
[}
o Si(r/a,z) = —oc0 nullable r = true
Si(r,az) =0

Coglex Library

Si(r/a,z) = —c0  nullable r = false

Si(r,az) = —o0



Coglex Library implementation details
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Implementation details = Semantic rule selection Choosing the first
e, 1) rule with the highest score (first argmax).
(2]
© Selection systems
J Problem: Lexing in quadratic time.
® Selection

Coglex Library e
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Coglex Library implementation details

Implementation details

@ Optimization

Idea: Stop S; as soon as possible

Details
@ Adding faster constructions
ex: ['0-'97vs 0" | 1| ... |'Y"
® Regexp simplification
ex:(r')y =rr o, =09,
© Stopping for trivial cases
ex: Sy(er,8) =0, S(Dr, 8) = —0



Generating
formally
verified

lexers with

Coglex

Coglex Generator

Coglex generator

lexer specification
(vl file)

-

o

\
O % @

Verified lexer Verified parser Code printer
(Written in Coaq) {(generated with Menhir) (Written in Ocaml)

Directory containing:

Coglex generator_/

Figure: Coglex generator architecture.

Lexer written in Cog
Helpers for compilation,
extraction and
benchmarking
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Related work and tools

@ Lexers written by hand (ex: CakeML)
® Nipkow

© OCamllex (Lex, Flex)

@ Verbatim/Verbatim++
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Coglex vs OCamllex vs Verbatim++

Processing Time (s)

] 0.08 o
129 — verbatim ocamllex
10 | — ocamllex - —— Coglex
—— CogLex £ 0.06
@
81 £
=
6 o 0.041
i
4 &
& 0.02
24 =
0 0.00
6 10600 20600 30600 40600 50600 (IJ 10600 20600 300‘00 40600 50(500
# Characters # Characters
Verbatim++ Coqglex OCamllex

Tokens per sec.

1.7 x 108

2.23 x 10°

3.9 x 107

Time to process 56ko.

12.11s

7.7x107%s

44 x107%s
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Coglex vs OCamllex vs Verbatim++

Coqlex OCamllex Verbatim++
Lexer language Coq OCaml Coq
lexbuf —>
Semantic action Result}ito}{en) OCaml code token
lexbuf
Error handling os os no
mechanism y y
Formally verified
| yes no yes
exers
Execution speed 100x slower fastest 10000x slower
(reference)
Generator yes yes no
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Coglex .vl syntax vs .mll syntax

Ouec r

G (‘H_‘ . . . . . . .

urg Listing 1: looping.vl Listing 2: looping.mll

1 rule my_lexer = parse 1 rule my_lexer = parse
2 'b" "a’x 'b’ { ret 0 } 2 "b’” "a’x b’ { 0}
3 | "a’x { my_lexer } 3 | ra’* { my_lexer lexbuf }
4 | EOF { ret 1 } 4 | EOF {1}

Remark: We proved that this lexer loops if the input string starts by a
character x such that x # ‘a’, and x # ‘b’

Usability and
features
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Coqlex in industry

@ In a Ada-to-Ada formally verified compiler

® Biggest program: 2380 files (25MB of code)

© Formally verified front-end

@ Compilation timee: x4 compared to the unverified front-end version.

Usability and
features



Coglex in a nutshell
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Ouedracge @ Usable * Coq proof of S, correctness
@ Simple and completeness
© Formally verified * Coq proof of Lexical rule

selection is correctness and
completeness

e Coq proof of Optimizations
correctness

@ Common lexer features are
implemented

Conclusion



Future work
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Improvements for Coqlex
Bturger @ Speed up
® Termination proof
© OCamllex <-> Coqglex converter
@ CompCert

Conclusion
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Conclusion

The End
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Thank you.

Questions?
Comments?
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