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My journey

In my journey, | was lucky to travel with

Frangois Clément,

Florian Faissole,
Vincent Martin,
Micaela Mayero,

Houda Mouhcine.

In my other life,
| have been busy with computer arithmetic and agrégation d’informatique.

Do not hesitate to reach me for one of these topics.
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. . numerical scheme, convergence
ApplIEd Mathematics algorithms + theorems

floating-point numbers, implementation

Computer programs + 7

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 4/47



Introduction

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 4/47



Motivations

PDE (Partial Differential Equation) weather forecast
nuclear simulation

optimal control
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Motivations

PDE (Partial Differential Equation) = weather forecast
= nuclear simulation
= optimal control

=

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids/volumes

= mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the size decreases)
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Motivations

PDE (Partial Differential Equation) weather forecast

=
= nuclear simulation
= optimal control
=

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids/volumes

= mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the size decreases)

= real program implementing the scheme/method

Let us machine-check this kind of programs!
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1D wave equation resolution by the 3-point scheme

2u(x, t) _e u(x, t) = s(x, t) ‘—/\—‘

ot? Ox2
ko, k—1 k—2 k=1 o k—1 k—1
u; 2uj +u; 2 Uiy 2uj +u _ k1
At? Ax? J

du = u[i+1][k] — 2 * u[i][¥] + u[i—1][x]; _
u[i][k+1] = 2 * u[i][k] — u[i][k—1] + a * dy; U= 1)Ax

(+1)Ax

Rounding error: [uf — exact (uf)| <78 x 273 x (k+1) x (k +2)

| okae(t) _ 2 2
Method error: Heh N O ¢ € [0, tmax], (Ax, AL) =5 0 (Ax* + At®)
0<AxAO<AtAcRI<1-¢
Program error: no illicit memory access, no division by zero, no overflow. ..

Formal verification of 32 lines of C code + 154 lines of annotations
< 150 theorems to prove (incl. 33 Coq theorems Coq for 15 000 lines)

Done with F. Clément, J.-C. Filliatre, M. Mayero, G. Melquiond, P. Weis

= now what?
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© Lebesgue Integration

@ And the FEM? (still WIP)

@ Conclusion and Perspectives



Motivations

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

The sinking of the Sleipner A offshore
platform

Excerpted from a report of SINTEE. Civil and Environmental Engineering:

The Sleipner A platform produces oil and gas in the North Sea and is supported on the
seabed at a water depth of 82 m. It is a Condeep type platform with a concrete gravity
base structure consisting of 24 cells and with a total base area of 16 000 m2. Four cells
are elongated to shafts supporting the platform deck. The first concrete base structure
for Sleipner A sprang a leak and sank under a controlled ballasting operation during
preparation for deck mating in Gandsfjorden outside Stavanger, Norway on 23 August
1991.

Immediately after the accident, the owner of the platform, Statoil, a Norwegian oil
company appointed an investigation group, and SINTEF was contracted to be the
technical advisor for this group.

The investigation into the accident is described in 16 reports...

The conclusion of the investigation was that the loss was caused by a failure in a cell wall,
resulting in a serious crack and a leakage that the pumps were not able to cope with. The
wall failed as a result of a combination of a serious error in the finite element analysis
and insufficient anchorage of the reinforcement in a critical zone.

A better idea of what was
involved can be obtained
from this photo and sketch
of the platform. The top
deck weighs 57,000 tons,
and provides
accommodation for about
200 people and support for
drilling equipment weighing
about 40,000 tons. When
the first model sank in
Auaust 1991. the crash
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http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.
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Motivations
Real life applications need solving PDE (Partial Differential Equation) on

complex 3D geometries.
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Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.

@ V. Martin

Instead of regular 2D /3D grids, we consider meshes made of
triangles/tetrahedra.
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Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)
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equations over many small subdomains, named finite elements, to
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= mathematical proofs of the FEM
= C++ library (Felisce) implementing the FEM
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https://en.wikipedia.org/wiki/Finite_element_method

Motivations
The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

= mathematical proofs of the FEM
= C++ library (Felisce) implementing the FEM

Let us machine-check this program!

First, let us understand/formally prove the mathematics.
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© Introduction

© Why the Finite Element Method?
© The Lax-Milgram Theorem

@ Focus on axioms

© Lebesgue Integration

@ And the FEM? (still WIP)

@ Conclusion and Perspectives



Lax-Milgram?

@ considered as the foremost theorem for the correctness of the Finite
Element Method. (stating in a few slides)

@ means that the (method) error may bounded when approximating an
infinite-dimensional space by a finite-dimensional one.

Example: functions and polynomials.

How to attack non-trivial mathematics?
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Mathematicians at work for Lax-Milgram theorem

@ more 50 pages of mathematical proofs
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Mathematicians at work for Lax-Milgram theorem

@ more 50 pages of mathematical proofs

o very detailed!

@ more than 7,000 lines and 220,000 characters

@ with dependencies!
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Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)

+ general spaces
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Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)
+ general spaces
+ many existing theorems

- not always the space we need
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Enriched Hierarchy

—: "used to define”
--»: “parameter of”
—: "is proved to be a”

AbelianGroup (0, +, —)
sum_n_m

RN

Ringpo(;l’l 2 J ModuleSpace ()
M,(C) M"’I(C)
Absing (| ]| NormedModule (|| ||

R, C o [, f
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Enriched Hierarchy

AbelianGroup (0, +, —)

sum._n_m

e

Ring (1, X)
pow.n
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Summary of the work done

@ results about functional spaces, linear and bilinear mappings
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Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module
decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}
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Summary of the work done

results about functional spaces, linear and bilinear mappings

fixed-point theorem in a sub-complete normed module

°
°

e decide if a space (> NormedModule) is only zero

@ norm on functions (operator_norm) on RU {+o0}
°

8 equivalences of continuity of linear mappings
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Summary of the work done

®© 6 6 6 6 6 o6 o o

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module

decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy
define c1lm: the set of the continuous linear mappings

prove it is a NormedModule, to consider clm E (clm E R)

prove Lax-Milgram theorem and Céa's lemma
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Lax-Milgram Theorem and Céa’s Lemma

Theorem (Lax-Milgram)

Let E : Hilbert, f € E', C,a € RY. Let ¢ : E — Prop, ¢
ModuleSpace-compatible and complete. Let a be a bilinear form of E
bounded by C and a-coercive. Then:

Flu e E,p(u) AVv € E,o(v) = f(v) = a(u, v) A |lullg < —|||f|||

Lemma (Céa)

| -G‘
.

Let E : Hilbert, f € E', 0 < a. Let p: E — Prop, ¢
ModuleSpace-compatible and complete. Let a be a bilinear form of E,
bounded by C > 0 and a-coercive. Let u and u, be the solutions given by
Lax—Milgram Theorem respectively on E and on the subspace . Then:

C
Vv, € E,p(vp) = [Ju— ”«PHE < o |u— V<p“E-

v
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Lax-Milgram Theorem in constructive logic

The first version of this theorem was:
H1 = (phi : E — Prop) : forall u: E, forall eps : posreal,

decidable (exists w : E, phi w A norm (minus u w) < eps).
Ho = (phi: E — Prop) (f : topo_dual E) :
decidable (exists u, - - phi u A £ u # 0).

Theorem (Lax-Milgram)

Let f € E',0 < . Let ¢ : E — Prop, ¢ ModuleSpace-compatible and
complete. Let a be a bilinear form on E, bounded and a-coercive.
Suppose Vf € E', Hy(ker(f) A ==p) A Ha(p, ).

Then, there exists a unique u € E such that ——p(u) and

1
WweE, —mp(v) = fv)=a(uv) A ullg < = ifll,.
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Come to the dark side; we have axioms!

Given the previous experiment, we added the excluded middle, both for
readability and for spreading formal methods to mathematicians.
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Come to the dark side; we have axioms!

Given the previous experiment, we added the excluded middle, both for
readability and for spreading formal methods to mathematicians.

For the rest of the talk, we assume:
@ real number axiom(s) from the standard library,

@ excluded middle,
e functional extensionality (a functional analysis must-have)

o Hilbert's epsilon (I want the inverse of a bijective function)

(All this may hurt you, but mathematicians do that all the time.)
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Back to the FEM

Towards the Coq formalization of the finite element method:

e Lax-Milgram theorem (V')
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Back to the FEM

Towards the Coq formalization of the finite element method:
e Lax-Milgram theorem (v')

@ requires the subspace to be complete
(v~ for finite-dimensional subspaces)

@ requires E to be a Hilbert space

@ E will be instantiated as the Sobolev space Lp
= prove that L; is an Hilbert space
=

Lebesgue integration!
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Back to the FEM

Towards the Coq formalization of the finite element method:
e Lax-Milgram theorem (v')

@ requires the subspace to be complete
(v~ for finite-dimensional subspaces)

requires £ to be a Hilbert space
E will be instantiated as the Sobolev space L,
prove that L, is an Hilbert space

Lebesgue integration!

o L | o o
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Measurability

Given a set E— Prop, is it measurable?

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 23 /47



Measurability

Given a set E— Prop, is it measurable?

We chose the definition from the generator sets:

Context {E : Type}.

(* initialization sets *)
Variable gen : (E — Prop) — Prop.

Inductive measurable : (E— Prop) — Prop :=
| measurable_gen : forall omega, gen omega — measurable omega
| measurable_empty : measurable (fun _ = False)
| measurable_compl : forall omega,
measurable (fun x = not (omega x)) — measurable omega
| measurable_union_countable :
forall omegamat — (E— Prop),
(forall n, measurable (omega n)) —
measurable (fun x = exists n, omega n x).

The measurable sets are aka o-algebras.
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Measurability

Advantages of Inductive:
= induction is possible
= easy theorems

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 24 /47



Measurability

Advantages of Inductive:
= induction is possible
= easy theorems

We defined generators on R and R:

Definition gen_R_cc := (fun om = exists a b, (forall x, om x ¢ a <= x <= b)).
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Measurability

Advantages of Inductive:
= induction is possible
= easy theorems

We defined generators on R and R:

Definition gen_R_cc := (fun om = exists a b, (forall x, om x ¢ a <= x <= b)).
Definition gen_Rbar_mc := (fun om = exists a, (forall x, om x <> Rbar_le a x)).

But we may use other generators and prove the measurable sets are the
same. For instance a < x < b or with a and b in Q.

And we proved that it is equivalent to the usual Borel o-algebras:

Lemma measurable_R_open : forall om,
measurable gen_R_cc om <> measurable open om.
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Measurable functions

A function f : E — F is measurable if the set A(f(x)) is measurable in F

for all measurable sets A in E:

Definition measurable_fun : (E — F) — Prop :=

fun f = (forall (A: F — Prop), measurable genF A —
measurable genE (fun x = A (£ x))).
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Measurable functions

A function f : E — F is measurable if the set A(f(x)) is measurable in F
for all measurable sets A in E:

Definition measurable_fun : (E — F) — Prop :=
fun f = (forall (A: F — Prop), measurable genF A —
measurable genE (fun x = A (£ x))).

The sum and multiplication by a scalar of measurable functions on R and
R are measurable functions.
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Measure definition

We choose to not (yet) define the Lebesgue measure, but define what a
measure is supposed to satisfy:

Context {E : Type}.
Variable gen : (E — Prop) — Prop.

Record measure := mk_measure {

meas :> (E— Prop) — Rbar ;
meas_False : meas (fun _ = False) =0 ;
meas_ge_0: forall om, Rbar_le O (meas om) ;
meas_sigma_additivity : forall omega :nat — (E— Prop),

(forall n, measurable gen (omega n)) —

(forallnm x, omegan x — omegam X — n = m)

— meas (fun x = exists n, omega n x)

= Sup_seq (fun n = sum_Rbar n (fun m = meas (omega m)))
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Measure properties

Many properties hold for all measures such as:

Lemma measure_Boole_ineq : forall (mu:measure) (A:nat — E— Prop) (N : nat),
(forall n, n <= N — measurable gen (A n)) —
Rbar_le (mu (fun x = exists n,n <= N A An x))
(sum_Rbar N (fun m = mu (A m))).

0 U Al < Z 1(A;)

i€[0..N] i€[0..N]
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Simple functions?

Examples of simple functions @ mathonline

Z Le1gyy

y€ef(E)
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Simple functions?

Examples of simple functions @ mathonline

Z Le1gyy

y€ef(E)

We have tried various definitions of simple functions, especially as we
prefer to sum over a finite set of values.
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Simple functions definition

Definition finite_vals : (E— R) — (list R) — Prop :=
fun f 1 = forally, In (f y) 1.

= OK, but not unique.
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Simple functions definition

Definition finite_vals : (E— R) — (list R) — Prop :=
fun f 1 = forally, In (f y) 1.

= OK, but not unique.

Definition finite_vals_canonic : (E— R) — (list R) — Prop :=
fun f 1 = (LocallySorted R1t 1) A
(forallx, Inx 1 — existsy, fy =x) A
(forally, In (f y) 1).
= unique!
We were able to construct the second list from the first.
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Simple functions integration

/fdudéf' Z ap(f1(a)) eR
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Simple functions integration

/fdudéf' Z ap(f1a)) €R

aef(X)

Definition SF_aux : (E— R) — (list R) — Prop :=
fun f 1 = finite_vals_canonic f 1 A
(forall a, measurable gen (fun x = f x = a)).

Definition SF: (E— R) — Set := fun f = { 1 | SF_aux f 1}.

Definition afl (f:E—R) :=
(fun a : Rbar = Rbar_mult a (mu (fun (x:E) = f x = a))).

Definition LInt_simple_fun_p :=
fun (f:E— R) (H:SF gen f) = let 1:= (proji_sig H) in
sum_Rbar_map 1 (afl f).

We proved the value does not depends on the proof H.
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Simple functions integration

/fdudéf' Z ap(f1(a)) eR

aef(X)

Definition SF_aux : (E— R) — (list R) — Prop :=
fun f 1 = finite_vals_canonic f 1 A
(forall a, measurable gen (fun x = f x = a)).

Definition SF: (E— R) — Set := fun f = { 1 | SF_aux f 1}.

Definition afl (f:E—R) :=
(fun a : Rbar = Rbar_mult a (mu (fun (x:E) = f x = a))).

Definition LInt_simple_fun_p :=
fun (f:E— R) (H:SF gen f) = let 1:= (proji_sig H) in
sum_Rbar_map 1 (afl f).

We proved the value does not depends on the proof H.

= theorems about sum, multiplication by a scalar and change of variable
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Lebesgue integral

/fdudéf' sup /gpdu eR
PESF 1, p<f
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Lebesgue integral

/fdudg' sup /god,u €R
PESF 4 ,p<f

b

Riemann integral vs Lebesgue integral

@© Serge Mehl chronomath.com
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Lebesgue integral definition

/fdudéf' sup /god,u eR
PESF 4, p<f

Definition LInt_p :(E— Rbar) — Rbar := fun f =
Rbar_lub (fun x = exists (g:E— R), exists (Hg: SF gen g),
non_neg g N\
(forall (z:E), Rbar_le (g z) (f z)) A
LInt_simple_fun_p mu g Hg = x).
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A monotone convergence theorem

Theorem (Beppo Levi, monotone convergence)

Let (fy)neny € M4 be a sequence of nonnegative measurable functions,
that is pointwise nondecreasing. Then, the pointwise limit of (f,)nen is
nonnegative and measurable, and we have in R

| Jim o= fim, [ o

Note that limp_o0 fn = suppey fn and limp_oo [ fn = sup,en [ fo-

Lemma Beppo_Levi : V f : nat — E — Rbar,
(V n, non_neg (f n)) — (V n, measurable_fun_Rbar genE (f n)) —
(Vxn, Rbar_le (fnx) (f (Sn) x)) —
LInt_p p (fun x = Sup_seq (fun n = f n x)) = Sup_seq (fun n = LInt_p p (f n)).
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Focus on a hard theorem
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Focus on a hard theorem

/(f+g):/f+/g

Lemma LInt_p_plus : forall f g,
non_neg f — non_neg g —
measurable_fun_Rbar gen f — measurable_fun_Rbar gen g —
LInt_p mu (fun x = Rbar_plus (f x) (g x))
= Rbar_plus (LInt_p mu f) (LInt_p mu g).
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Proof of [(f+g)=[f+ [g(1/2)

It needs adapted sequences:

Definition is_adapted_seq (f:E— Rbar) (phimnat— E— R) :=
(forall n, non_neg (phi n)) A
(forall (x:E) n, phin x <= phi (Sn)x) A
(forall n, exists 1, SF_aux gen (phi n) 1) A
(forall (x:E), is_sup_seq (fun n = phi n x) (£ x)).

as their limit gives the integral:

Lemma LInt_p_with_adapted_seq:
forall f phi, is_adapted_seq f phi —
is_sup_seq (fun n = LInt_p mu (phi n)) (LInt_p mu f).
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Proof of [(f+g)= [f+ [g(2/2)

Adapted sequences may be defined like that:

[27F(x))

Vx,  fa(x) T when f(x) < n,
n otherwise.
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Proof of [(f+g)= [f+ [g(2/2)

Adapted sequences may be defined like that:
[2"f(x))
Vx,  fa(x) T when f(x) < n,
n otherwise.

that may be written in Coq as:

Definition mk_adapted_seq (n:nat) (x:E) :=
match (Rbar_le_lt_dec (INR n) (f x)) with
| left _ = INRn
| right _ = round radix2 (FIX_exp (—n)) Zfloor (f x)

end.
relying on fixed-point arithmetic defined by the Flocq library!!
And then:

Lemma mk_adapted_seq_is_adapted_seq:
is_adapted_seq f mk_adapted_seq.
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Definition of a finite element (geometry and properties)
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Definition of a finite element (geometry and properties)

Record FE : Type := mk_FE {
d : nat; (* space dimension eg 1, 2, 3 *)
ndof : nat ; (* nb of degrees of freedom - eg number of nodes for Lagrange.
d_pos : (0 < d)%coq_nat :
ndof_pos : (0 < ndof)%coqg_nat ;
g_family : geom_family ; (¥ either Simplex or Quad *)
nvtx : nat := (*x ... *) (* number of vertices *)
vtx : '(' R°d)"nvtx ; (* vertices of geometrical element *)
K_geom : 'R"d — Prop := convex_envelop vtx ; (* geometrical element *)
P_approx : FRd d — Prop ; (* Subspace of F *)
P_compat_fin : has_dim P_approx ndof ;
sigma : '(FRd d — R)"ndof ;
is_linear_mapping_sigma : forall i, is_linear_mapping (sigma i) ;
FE _is_unisolvent :
is_unisolvent d ndof P_approx P_compat_fin (gather sigma) ;
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Geometrical transformation

Goal: to transform (and back) a finite element into a reference (nice)
finite element.

N K ooa
gogeo PK 2% 3000 Li(%) v, affine p
K V2 = (pgeo(VZ)
Pgeo

v
17 /_\‘
Vo = Qog};(eo(‘,;o)

Vi Vi = Qogeo(‘/)l)
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Lagrange nodes

We want to define the simplest finite elements (Lagrange finite elements).

There are still admits left.
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We want to define the simplest finite elements (Lagrange finite elements).

There are still admits left.
Let us focus on one point (one with no admit left :)

Given d and k, | want the list of the vectors of N¥ such that their sum is
smaller than k (Lagrange nodes).
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Lagrange nodes

We want to define the simplest finite elements (Lagrange finite elements).
There are still admits left.
Let us focus on one point (one with no admit left :)

Given d and k, | want the list of the vectors of N¥ such that their sum is
smaller than k (Lagrange nodes).

@ is this combinatorics?
@ or geometry? (see later)
@ or analysis?

Such a vector can be seen as a monomial among the polynomials on
d variables of degree < k.
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Example of Lagrange finite element nodes

For d =1,2,3 (in line) and k =1,2,3,4 (in column).

*—o—0—0 *—o0—0—0o
(0) (1) (0) (1) ) @ @ @ 6 0 @ 2 6 @

(0,0) (1,0) (0,0) (1,0) (2,0) (0,0) (1,0) (2,0) (3,0) (0,0)(1,0)(2,0)(3,0)(4,0)

(1,0,0)
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Construction of Lagrange finite element nodes

~

0,0 A0 Ao 430

0,d 1,d 2,d 3,d

o 2399, 0)
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Coq formalization

We defined this list of vectors A% (of size the binomial coefficient CJ, )

by concatenation of lists of varying sizes.

Lemma A_d_k_sum : forall d k i,
(sum (A_d_k d k i) <= k)%coq_nat.

Lemma A_d_k_surj : forall d k (b:'nat”d),
(sum b <= k)%coq_nat — exists i, b = A_d_k d k i.

Lemma A_d_k_inj : forall d k, injective (A_d_k d k).

Lemma A_d_k_MOn : forall d k, is_orderedF MOn (A_d_k d k).
(* a special order near the grevlex order on monomials *)
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Conclusion

A journey
@ hand by hand with mathematicians,
@ pretty long,
@ with various mathematics inside.

Available at https://lipn.univ-paris13.fr/coq-num-analysis/
and as an opam package.
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Conclusion

A journey
@ hand by hand with mathematicians,
@ pretty long,
@ with various mathematics inside.
Available at https://lipn.univ-paris13.fr/coq-num-analysis/
and as an opam package.
Difficult parts:
@ handling subspaces,

o trade-off between a usable library and proving one main theorem.
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Perspectives

@ end the definition of Lagrange finite elements
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Perspectives

@ end the definition of Lagrange finite elements

@ write the corresponding article about the FEM

@ extend Lebesgue integrals to functions of varying sign

/f: /max(O, f) —/max(O,—f)

(or by Bochner integral)
@ define L, and prove it is a Hilbert
o define the FEM algorithm and prove it

@ prove a real implementation (in floating-point arithmetic)
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Thank you for your attention

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 47 /47



	Introduction
	Why the Finite Element Method?
	The Lax-Milgram Theorem
	Focus on axioms
	Lebesgue Integration
	And the FEM? (still WIP)
	Conclusion and Perspectives

