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Motivations

PDE (Partial Differential Equation) ⇒ weather forecast
⇒ nuclear simulation
⇒ optimal control
⇒ . . .

Usually too complex to solve by an exact mathematical formula
⇒ approximated by numerical scheme over discrete grids/volumes

⇒ mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the size decreases)

⇒ real program implementing the scheme/method

Let us machine-check this kind of programs!
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1D wave equation resolution by the 3-point scheme

∂2u(x , t)

∂t2
− c2

∂2u(x , t)

∂x2
= s(x , t)

ukj − 2uk−1
j + uk−2

j

∆t2
− c2

uk−1
j+1 − 2uk−1

j + uk−1
j−1

∆x2
= sk−1

j

du = u[i+1][k] − 2 ∗ u[i][ k] + u[i−1][k];
u[i][ k+1] = 2 ∗ u[i][k] − u[i][ k−1] + a ∗ du;

x

t

k∆t

(k − 1)∆t

(k − 2)∆t

j∆x

(j + 1)∆x(j − 1)∆x

Rounding error:
∣∣uki − exact

(
uki

)∣∣ ⩽ 78× 2−53 × (k + 1)× (k + 2)

Method error:
∥∥∥ek∆t(t)

h

∥∥∥
∆x

= O t ∈ [0, tmax], (∆x ,∆t) → 0

0 < ∆x ∧ 0 < ∆t ∧ c ∆t
∆x

⩽ 1− ξ

(∆x2 +∆t2)

Program error: no illicit memory access, no division by zero, no overflow. . .

Formal verification of 32 lines of C code + 154 lines of annotations
↪→ 150 theorems to prove (incl. 33 Coq theorems Coq for 15 000 lines)

Done with F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, P. Weis

⇒ now what?
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Motivations

http://www.ima.umn.edu/~arnold/disasters/sleipner.html
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Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.

@ V. Martin

Instead of regular 2D/3D grids, we consider meshes made of
triangles/tetrahedra.
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Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

⇒ mathematical proofs of the FEM
⇒ C++ library (Felisce) implementing the FEM

Let us machine-check this program!

First, let us understand/formally prove the mathematics.

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 10 / 47

https://en.wikipedia.org/wiki/Finite_element_method


Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

⇒ mathematical proofs of the FEM
⇒ C++ library (Felisce) implementing the FEM

Let us machine-check this program!

First, let us understand/formally prove the mathematics.

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 10 / 47

https://en.wikipedia.org/wiki/Finite_element_method


Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

⇒ mathematical proofs of the FEM
⇒ C++ library (Felisce) implementing the FEM

Let us machine-check this program!

First, let us understand/formally prove the mathematics.

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 10 / 47

https://en.wikipedia.org/wiki/Finite_element_method


Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements, to
approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

⇒ mathematical proofs of the FEM
⇒ C++ library (Felisce) implementing the FEM

Let us machine-check this program!

First, let us understand/formally prove the mathematics.

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 10 / 47

https://en.wikipedia.org/wiki/Finite_element_method


Outline

1 Introduction

2 Why the Finite Element Method?

3 The Lax-Milgram Theorem

4 Focus on axioms

5 Lebesgue Integration

6 And the FEM? (still WIP)

7 Conclusion and Perspectives

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 11 / 47



Lax-Milgram?

considered as the foremost theorem for the correctness of the Finite
Element Method. (stating in a few slides)

means that the (method) error may bounded when approximating an
infinite-dimensional space by a finite-dimensional one.

Example: functions and polynomials.

How to attack non-trivial mathematics?
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Mathematicians at work for Lax-Milgram theorem

more 50 pages of mathematical proofs

very detailed!
more than 7,000 lines and 220,000 characters
with dependencies!

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 13 / 47



Mathematicians at work for Lax-Milgram theorem

more 50 pages of mathematical proofs
very detailed!

more than 7,000 lines and 220,000 characters
with dependencies!

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 13 / 47



Mathematicians at work for Lax-Milgram theorem

more 50 pages of mathematical proofs
very detailed!
more than 7,000 lines and 220,000 characters

with dependencies!

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 13 / 47



Mathematicians at work for Lax-Milgram theorem

more 50 pages of mathematical proofs
very detailed!
more than 7,000 lines and 220,000 characters
with dependencies!

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 13 / 47



Mathematicians at work for Lax-Milgram theorem

more 50 pages of mathematical proofs
very detailed!
more than 7,000 lines and 220,000 characters
with dependencies!

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 13 / 47



Mathematicians at work for Lax-Milgram theorem

more 50 pages of mathematical proofs
very detailed!
more than 7,000 lines and 220,000 characters
with dependencies!

4

1

6

25

8

7

910

3

11

13

12

16

1422

2021

23 26

25

27

1824

28

29

31

30

33

32

34

37

35 36

42

41

44

38 39

40 45

46 48

47

4950

51

43

60

52

61 64

62

65 67

66

68

6971

70

73 76

75

77 79

78 81

53 80

82

54

83

84

55

86

85

87

57

90

89

91

95

9394

96

97

98

63

100

15 99

101

102

103

74

105

104

107

19 106

108

109

110

111

112

114

113

115

116

118

117

119

123

120121 122

125

124

126

127

128

129

130

131

132

135

134

137

92136

139

56 58 59 138

141

140

144

142

143

145146

147

148

149 151

150

152

153

154

156

155

157158

159

160

161

163

162

164165

166

72 167

168

169

88 133

171

170

172

173

174

175

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 13 / 47



Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)

+ general spaces

+ many existing theorems

- not always the space we need
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Enriched Hierarchy

AbelianGroup (0, +, −)

sum n m

−→: “used to define”
99K: “parameter of”
−→: “is proved to be a”

Ring (1, ×)

pow n
Mn(C)

ModuleSpace (·)
Mn,m(C)

AbsRing (| |)
R, C

NormedModule (∥ ∥)∑
,

∫
, f ′
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Summary of the work done

results about functional spaces, linear and bilinear mappings

fixed-point theorem in a sub-complete normed module

decide if a space (≥ NormedModule) is only zero

norm on functions (operator norm) on R ∪ {+∞}
8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy

define clm: the set of the continuous linear mappings

prove it is a NormedModule, to consider clm E (clm E R)
prove Lax-Milgram theorem and Céa’s lemma
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Lax-Milgram Theorem and Céa’s Lemma

Theorem (Lax-Milgram)

Let E : Hilbert, f ∈ E ′, C , α ∈ R∗
+. Let φ : E → Prop, φ

ModuleSpace-compatible and complete. Let a be a bilinear form of E
bounded by C and α-coercive. Then:

∃!u ∈ E , φ(u) ∧ ∀v ∈ E , φ(v) =⇒ f (v) = a(u, v) ∧ ∥u∥E ≤ 1

α
|||f |||φ.

Lemma (Céa)

Let E : Hilbert, f ∈ E ′, 0 < α. Let φ : E → Prop, φ
ModuleSpace-compatible and complete. Let a be a bilinear form of E ,
bounded by C > 0 and α-coercive. Let u and uφ be the solutions given by
Lax–Milgram Theorem respectively on E and on the subspace φ. Then:

∀vφ ∈ E , φ(vφ) =⇒ ∥u − uφ∥E ≤ C

α
∥u − vφ∥E .
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Lax-Milgram Theorem in constructive logic

The first version of this theorem was:
H1 = (phi : E → Prop) : forall u : E, forall eps : posreal,

decidable (exists w : E, phi w ∧ norm (minus u w) < eps).

H2 = (phi : E → Prop) (f : topo_dual E) :

decidable (exists u, ¬ ¬ phi u ∧ f u ̸= 0).

Theorem (Lax-Milgram)

Let f ∈ E ′, 0 < α. Let φ : E → Prop, φ ModuleSpace-compatible and
complete. Let a be a bilinear form on E , bounded and α-coercive.
Suppose ∀f ∈ E ′, H1(ker(f ) ∧ ¬¬φ) ∧ H2(φ, f ).
Then, there exists a unique u ∈ E such that ¬¬φ(u) and

∀v ∈ E , ¬¬φ(v) =⇒ f (v) = a(u, v) ∧ ∥u∥E ≤ 1

α
· |||f |||φ.
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Come to the dark side; we have axioms!

Given the previous experiment, we added the excluded middle, both for
readability and for spreading formal methods to mathematicians.

For the rest of the talk, we assume:

real number axiom(s) from the standard library,

excluded middle,

functional extensionality (a functional analysis must-have)

Hilbert’s epsilon (I want the inverse of a bijective function)

(All this may hurt you, but mathematicians do that all the time.)
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Back to the FEM

Towards the Coq formalization of the finite element method:

Lax-Milgram theorem (✓)

requires the subspace to be complete
(✓ for finite-dimensional subspaces)

requires E to be a Hilbert space

E will be instantiated as the Sobolev space L2

⇒ prove that L2 is an Hilbert space

⇒ Lebesgue integration!

. . .
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Outline

1 Introduction

2 Why the Finite Element Method?

3 The Lax-Milgram Theorem

4 Focus on axioms

5 Lebesgue Integration

6 And the FEM? (still WIP)

7 Conclusion and Perspectives
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Measurability

Given a set E→ Prop, is it measurable?

We chose the definition from the generator sets:

Context {E : Type}.

(* initialization sets *)

Variable gen : (E → Prop) → Prop.

Inductive measurable : (E→ Prop) → Prop :=
| measurable_gen : forall omega, gen omega → measurable omega

| measurable_empty : measurable (fun _ ⇒ False)
| measurable_compl : forall omega,

measurable (fun x ⇒ not (omega x)) → measurable omega

| measurable_union_countable :
forall omega:nat → (E→ Prop),

(forall n, measurable (omega n)) →
measurable (fun x ⇒ exists n, omega n x).

The measurable sets are aka σ-algebras.
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Measurability

Advantages of Inductive:
⇒ induction is possible
⇒ easy theorems

We defined generators on R and R:
Definition gen_R_cc := (fun om ⇒ exists a b, (forall x, om x ↔ a <= x <= b)).
Definition gen_Rbar_mc := (fun om ⇒ exists a, (forall x, om x ↔ Rbar_le a x)).

But we may use other generators and prove the measurable sets are the
same. For instance a < x < b or with a and b in Q.

And we proved that it is equivalent to the usual Borel σ-algebras:

Lemma measurable_R_open : forall om,
measurable gen_R_cc om ↔ measurable open om.
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Measurable functions

A function f : E → F is measurable if the set A(f (x)) is measurable in F
for all measurable sets A in E :

Definition measurable_fun : (E → F) → Prop :=
fun f ⇒ (forall (A: F → Prop), measurable genF A →
measurable genE (fun x ⇒ A (f x))).

The sum and multiplication by a scalar of measurable functions on R and
R are measurable functions.
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Measure definition

We choose to not (yet) define the Lebesgue measure, but define what a
measure is supposed to satisfy:

Context {E : Type}.
Variable gen : (E → Prop) → Prop.

Record measure := mk_measure {
meas :> (E→ Prop) → Rbar ;
meas_False : meas (fun _ ⇒ False) = 0 ;
meas_ge_0: forall om, Rbar_le 0 (meas om) ;
meas_sigma_additivity : forall omega :nat → (E→ Prop),
(forall n, measurable gen (omega n)) →
(forall n m x, omega n x → omega m x → n = m)
→ meas (fun x ⇒ exists n, omega n x)

= Sup_seq (fun n ⇒ sum_Rbar n (fun m ⇒ meas (omega m)))
}.
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Measure properties

Many properties hold for all measures such as:

Lemma measure_Boole_ineq : forall (mu:measure) (A:nat → E→ Prop) (N : nat),
(forall n, n <= N → measurable gen (A n)) →
Rbar_le (mu (fun x ⇒ exists n, n <= N ∧ A n x))

(sum_Rbar N (fun m ⇒ mu (A m))).

µ

 ⋃
i∈[0..N]

Ai

 ≤
∑

i∈[0..N]

µ(Ai )
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Simple functions?

Examples of simple functions @ mathonline

f =
∑

y∈f (E)

1f −1({y})

We have tried various definitions of simple functions, especially as we
prefer to sum over a finite set of values.
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Simple functions definition

Definition finite_vals : (E→ R) → (list R) → Prop :=
fun f l ⇒ forall y, In (f y) l.

⇒ OK, but not unique.

Definition finite_vals_canonic : (E→ R) → (list R) → Prop :=
fun f l ⇒ (LocallySorted Rlt l) ∧

(forall x, In x l → exists y, f y = x) ∧
(forall y, In (f y) l).

⇒ unique!
We were able to construct the second list from the first.
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Simple functions integration

∫
f dµ

def.
=

∑
a∈f (X )

aµ
(
f −1(a)

)
∈ R

Definition SF_aux : (E→ R) → (list R) → Prop :=
fun f l ⇒ finite_vals_canonic f l ∧
(forall a, measurable gen (fun x ⇒ f x = a)).

Definition SF : (E→ R) → Set := fun f ⇒ { l | SF_aux f l}.

Definition af1 (f:E→ R) :=
(fun a : Rbar ⇒ Rbar_mult a (mu (fun (x:E) ⇒ f x = a))).

Definition LInt_simple_fun_p :=
fun (f:E→ R) (H:SF gen f) ⇒ let l:= (proj1_sig H) in

sum_Rbar_map l (af1 f).

We proved the value does not depends on the proof H.

⇒ theorems about sum, multiplication by a scalar and change of variable
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Lebesgue integral

∫
f dµ

def.
= sup

φ∈SF+,φ≤f

∫
φ dµ ∈ R

Riemann integral vs Lebesgue integral
@ Serge Mehl chronomath.com
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Lebesgue integral definition

∫
f dµ

def.
= sup

φ∈SF+,φ≤f

∫
φ dµ ∈ R

Definition LInt_p :(E→ Rbar) → Rbar := fun f ⇒
Rbar_lub (fun x ⇒ exists (g:E→ R), exists (Hg: SF gen g),

non_neg g ∧
(forall (z:E), Rbar_le (g z) (f z)) ∧
LInt_simple_fun_p mu g Hg = x).
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A monotone convergence theorem

Theorem (Beppo Levi, monotone convergence)

Let (fn)n∈N ∈ M+ be a sequence of nonnegative measurable functions,
that is pointwise nondecreasing. Then, the pointwise limit of (fn)n∈N is
nonnegative and measurable, and we have in R∫

lim
n→∞

fn dµ = lim
n→∞

∫
fn dµ.

Note that limn→∞ fn = supn∈N fn and limn→∞
∫
fn = supn∈N

∫
fn.

Lemma Beppo_Levi : ∀ f : nat → E → Rbar,
(∀ n, non_neg (f n)) → (∀ n, measurable_fun_Rbar genE (f n)) →
(∀ x n, Rbar_le (f n x) (f (S n) x)) →
LInt_p µ (fun x ⇒ Sup_seq (fun n ⇒ f n x)) = Sup_seq (fun n ⇒ LInt_p µ (f n)).
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Focus on a hard theorem

∫
(f + g) =

∫
f +

∫
g

Lemma LInt_p_plus : forall f g,
non_neg f → non_neg g →
measurable_fun_Rbar gen f → measurable_fun_Rbar gen g →
LInt_p mu (fun x ⇒ Rbar_plus (f x) (g x))

= Rbar_plus (LInt_p mu f) (LInt_p mu g).
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Proof of
∫
(f + g) =

∫
f +

∫
g (1/2)

It needs adapted sequences:

Definition is_adapted_seq (f:E→ Rbar) (phi:nat→ E→ R) :=
(forall n, non_neg (phi n)) ∧
(forall (x:E) n, phi n x <= phi (S n) x) ∧
(forall n, exists l, SF_aux gen (phi n) l) ∧
(forall (x:E), is_sup_seq (fun n ⇒ phi n x) (f x)).

as their limit gives the integral:

Lemma LInt_p_with_adapted_seq :
forall f phi, is_adapted_seq f phi →

is_sup_seq (fun n ⇒ LInt_p mu (phi n)) (LInt_p mu f).

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 35 / 47



Proof of
∫
(f + g) =

∫
f +

∫
g (2/2)

Adapted sequences may be defined like that:

∀x , fn(x)
def.
=

 ⌊2nf (x)⌋
2n

when f (x) < n,

n otherwise.

that may be written in Coq as:

Definition mk_adapted_seq (n:nat) (x:E) :=
match (Rbar_le_lt_dec (INR n) (f x)) with

| left _ ⇒ INR n

| right _ ⇒ round radix2 (FIX_exp (−n)) Zfloor (f x)
end.

relying on fixed-point arithmetic defined by the Flocq library!!

And then:

Lemma mk_adapted_seq_is_adapted_seq :
is_adapted_seq f mk_adapted_seq.
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Definition of a finite element (geometry and properties)

Record FE : Type := mk_FE {
d : nat ; (* space dimension eg 1, 2, 3 *)

ndof : nat ; (* nb of degrees of freedom - eg number of nodes for Lagrange. *)

d_pos : (0 < d)%coq_nat ;
ndof_pos : (0 < ndof)%coq_nat ;
g_family : geom_family ; (* either Simplex or Quad *)

nvtx : nat := (* ... *) (* number of vertices *)

vtx : ’(’ Rˆd)ˆnvtx ; (* vertices of geometrical element *)

K_geom : ’ Rˆd → Prop := convex_envelop vtx ; (* geometrical element *)

P_approx : FRd d → Prop ; (* Subspace of F *)

P_compat_fin : has_dim P_approx ndof ;
sigma : ’( FRd d → R)ˆndof ;
is_linear_mapping_sigma : forall i, is_linear_mapping (sigma i) ;
FE _is_unisolvent :

is_unisolvent d ndof P_approx P_compat_fin (gather sigma) ;
}.
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Geometrical transformation

Goal: to transform (and back) a finite element into a reference (nice)
finite element.

v̂0

v̂2

v̂1
0

1

1

v0 = φK
geo(v̂0)

v2 = φK
geo(v̂2)

v1 = φK
geo(v̂1)

φK
geo

K̂

K

φK
geo : K̂ ∋ x̂ 7→

∑nKV
i=1 L̂i (x̂) vi affine
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Lagrange nodes

We want to define the simplest finite elements (Lagrange finite elements).

There are still admits left.

Let us focus on one point (one with no admit left :)

Given d and k , I want the list of the vectors of Nd such that their sum is
smaller than k (Lagrange nodes).

is this combinatorics?

or geometry? (see later)

or analysis?

Such a vector can be seen as a monomial among the polynomials on
d variables of degree ≤ k.
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Example of Lagrange finite element nodes

For d = 1, 2, 3 (in line) and k = 1, 2, 3, 4 (in column).

(0) (1) (0) (1) (2) (0) (1) (2) (3) (0) (1) (2) (3) (4)

(0, 0) (1, 0)

(0, 1)

(0, 0) (1, 0)

(0, 1)

(2, 0)

(1, 1)

(0, 2)

(0, 0) (1, 0)

(0, 1)

(2, 0)

(1, 1)

(0, 2)

(3, 0)

(2, 1)

(1, 2)

(0, 3)

(0, 0)(1, 0)

(0, 1)

(2, 0)

(1, 1)

(0, 2)

(3, 0)

(2, 1)

(1, 2)

(0, 3)

(4, 0)

(3, 1)

(2, 2)

(1, 3)

(0, 4)

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(2, 0, 0)

(1, 0, 1)

(1, 1, 0)

(0, 0, 2)

(0, 1, 1)

(0, 2, 0)

(3, 0, 0)

(2, 0, 1)

(2, 1, 0)

(1, 0, 2)

(1, 1, 1)

(1, 2, 0)

(0, 0, 3)

(0, 1, 2)

(0, 2, 1)

(0, 3, 0)

(4, 0, 0)

(3, 0, 1)

(3, 1, 0)

(2, 0, 2)

(2, 1, 1)

(2, 2, 0)

(1, 0, 3)

(1, 1, 2)

(1, 2, 1)

(1, 3, 0)

(0, 0, 4)

(0, 1, 3)

(0, 2, 2)

(0, 3, 1)

(0, 4, 0)
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Construction of Lagrange finite element nodes

v̂0 v̂2 = (0, 1)

v̂3 = (0, 1)

K̂2

â(0,0) â(1,0)

â(0,1)

â(2,0)

â(1,1)

â(0,2)

â(3,0)

â(2,1)

â(1,2)

â(0,3)

C0,d C1,d C2,d C3,d

v̂0

v̂1 = (1, 0, 0)

v̂2

v̂3 = (0, 0, 1)

K̂3

â(3,0,0)

â(2,0,1)

â(2,1,0)

â(1,0,2)

â(1,1,1)

â(1,2,0)

â(0,0,3)

â(0,1,2)

â(0,2,1)

â(0,3,0)
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Coq formalization

We defined this list of vectors Ak
d (of size the binomial coefficient Cd

d+k)
by concatenation of lists of varying sizes.

Lemma A_d_k_sum : forall d k i,
(sum (A_d_k d k i) <= k)%coq_nat.

Lemma A_d_k_surj : forall d k (b:’natˆd),
(sum b <= k)%coq_nat → exists i, b = A_d_k d k i.

Lemma A_d_k_inj : forall d k, injective (A_d_k d k).

Lemma A_d_k_MOn : forall d k, is_orderedF MOn (A_d_k d k).
(* a special order near the grevlex order on monomials *)

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 43 / 47



Outline

1 Introduction

2 Why the Finite Element Method?

3 The Lax-Milgram Theorem

4 Focus on axioms

5 Lebesgue Integration

6 And the FEM? (still WIP)

7 Conclusion and Perspectives

Sylvie Boldo (Inria) Formalization of Applied Mathematics November 27th, 2023 44 / 47



Conclusion

A journey

hand by hand with mathematicians,

pretty long,

with various mathematics inside.

Available at https://lipn.univ-paris13.fr/coq-num-analysis/
and as an opam package.

Difficult parts:

handling subspaces,

trade-off between a usable library and proving one main theorem.
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Perspectives

end the definition of Lagrange finite elements

write the corresponding article about the FEM

extend Lebesgue integrals to functions of varying sign∫
f =

∫
max(0, f )−

∫
max(0,−f )

(or by Bochner integral)

define L2 and prove it is a Hilbert

define the FEM algorithm and prove it

prove a real implementation (in floating-point arithmetic)
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Thank you for your attention
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