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Non commutative logic and process calculi

Process calculi:

Representing concurrent systems
[6], [2],[4]

!

Pomset logic :

Extension of MLL with a
non-commutative and self-dual connective

/
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In this presentation

We will talk about:

• A fragment of CCS

• Logic system NMAL

• Correspondence between NMAL proofs and CCS processes executions

• A known problem - catalyzers

• Future work
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A fragment of CCS

Given the sets Names = {a,b, . . . } and Conames = {a,b, . . . }

P,Q,G B Nil terminated process

| P | Q parallel composition

| P + Q sum - non determinism

| a.P prefixing - execute a, then P

A structural equivalence :

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P + Q ≡ Q + P P | Nil ≡ P
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Operational Semantic

com
a.P | a.Q → P | Q

interaction is synchronisation

P → P ′
sum

P + Q → P ′
Q → Q ′

sum
P + Q → Q ′

choice between two behaviours

P → P ′
Par

P | Q → P ′ | Q

Q → Q ′
Par

P | Q → P | Q ′
parallel computation

P ≡ P ′→ Q ′ ≡ Q
struc

P → Q
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Examples

P | Q

(a | b) | a.b

b | b

Nil

P | R

(a | b) | (a | b)

b | b a | a

Nil Nil
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Examples

(P | R) + S

((a | b) | (a | b)) + (c | c | (a.b | b.a))

a | a b | b a.b | b.a

Nil Nil
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NMAL: Non commutive , multiplicative additive logic

ax
` a,a

` Γ,A,B`
` Γ,A` B

` Γ,A ` B,∆
⊗

` Γ,A ⊗B,∆

` A,C ,Γ ` B,D,∆
/
` A / B,C / D,Γ,∆

` Γ,Ai
⊕ i ∈ {1, 2}
` Γ,A1 ⊕A2

` Γ,A ` Γ,B
&
` Γ,A & B

` Γ ` ∆
mix

` Γ,∆

Theorem (cut elimination)

Given a proof π ∈ NMAL ∪ {cut} of conclusion ` Γ there exists a proof π′ ∈ NMAL having the
same conclusion ` Γ.
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Translation

We translate processes into formulas :

[[P | Q]] = [[P]]` [[Q]]

a.P = a / [[P]]

P + Q = [[P]] ⊕ [[Q]]
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Some intuitions

Reduction steps and NMAL’s rules look alike

com
a.P | a.Q → P | Q

 

ax
` a,a ` [[P]] , [[Q]]

/
` a / [[P]] ,a / [[Q]]`
` a / [[P]]` a / [[Q]]

P → P ′
sum

P + Q → P ′
 

` [[P]]′

π

` [[P]]
⊕

` [[P]] ⊕ [[Q]]
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One reduction step : one linear implication

Theorem

If P → Q then ` [[Q]] ( [[P]] is provable in NMAL

Proof.

By induction. If P ≡ a.P1 | a.P2 and Q ≡ P1 | P2 then

ax
a,a

π1

[[P]]1, [[P1]]

π2

[[P]]2, [[P2]]
⊗

[[P]]1 ⊗ [[P]]2, [[P1]] , [[P2]]
/

[[P]]1 ⊗ [[P]]2,a. / [[P1]] ,a. / [[P2]]`
[[P]]1 ⊗ [[P]]2,a. / [[P1]]` a. / [[P2]]

�
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Correspondence between executions and proofs

Theorem (Execution to proof)

If Pn → · · · → P0 → Nil, then ` [[Pn]] is provable in NMAL.

Proof.

We define a proof πn of Pn by induction:

• if n = 0, then P0 → Nil and P0 = a | a. Thus π0 =
ax
a,a`
a` a

• if n > 0, then

πn−1 IH
[[Pn−1]]

Thm
[[Pn−1]] ( [[Pn]]

cut
[[Pn]]

 cut-elim
NMAL

[[Pn]]
= πn

�

Theorem (Proof to execution)

[[P]] is provable in NMAL then P →∗ Nil
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A natural question

Safe Waiting

a | a b

Nil

Is P safe? Waiting?
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Catalyzers

b | b

Nil

b is a catalyzer for b

How to find a catalyzer for P?
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Yes we can

C ` Γ
ComX

C ` a,a,Γ

C ` Γ,A,B
Par

C ` Γ,A` B

C ` Γ,Ai
Plus i ∈ {1, 2}

C ` Γ,A1 ⊕A2

C ` Γ,A,B
Com

C ` Γ,a / A,a / B

C / a ` Γ,A
Release if no other rule is applicable

C ` Γ,a / A
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Example

P = a.b | b.a

a / a `
Release

a ` a
Com

a ` b,b / a
Release

` a / b,b / a
Par

` (a / b)` (b / a)
a.a is a catalyzer for P
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And for full CCS ?

P,Q,G B Nil terminated process

| P | Q parallel composition

| P + Q sum - non determinism

| a.P prefixing - execute a, then P

| νa.P restriction - makes a private

Communication only allowed under ν

com
νa.(a.P | a.Q) → νa.(P | Q)

Not really a smooth operator...
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To deadlock or not to deadlock?

Safe Waiting Deadlocked

νa.(a | a) b νb.b

Nil νa.νb.(a.b | b.a)

Is P safe, waiting or deadlocked?
And the catalyzer ?
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Work in progress

Deadlock war:

Enriching Session Types : Kobayashi [5]

Quest for catalyzers:

CCS : Bernardi et al. [1]
π-calculus : Montesi et al.[3]

IDEA: use NMAL to give a unified approach
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Future work

a.c | a.d | b.c | b.d

c | d | b.c | b.d a.c | a.d | c | d

c | d | c | d

Nil

ax
a,a

ax

b,b

ax
c,c

ax

d,d
ax−mix

c,d,c,d
/

c,d,b / c,b / d
/

a / c,a / d,b / c,b / d`
((a / c)` (a / d))` ((b / c)` (b / d))

∼ ax

b,b

ax
a,a

ax
c,c

ax

d,d
ax−mix

c,d,c,d
/

a / c,a / d,c,d
/

a / c,a / d,b / c,b / d`
((a / c)` (a / d))` ((b / c)` (b / d))

28 / 30



Future work

a.c | a.d | b.c | b.d

c | d | b.c | b.d a.c | a.d | c | d

c | d | c | d

Nil

/ / / /

` `

`

((a / c)` (a / d))` ((b / c)` (b / d))

ax ax

ax ax

=

/ / / /

` `

`

((a / c)` (a / d))` ((b / c)` (b / d))

ax ax

ax ax
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