On non-commutative logic and process calculi

Matteo Acclavio¹ Giovanni Bernardi³ **Giulia Manara**^{2,3} Fabrizio Montesi⁴

¹University of Southern Denmark ²Università degli Studi Roma Tre – Dipartimento di Matematica e Fisica ³IRIF, Université Paris Cité

1 November 2023 - Rome, Italy

SCALP 23/24

Process calculi:

Pomset logic :

 $\leftrightarrow \rightarrow$

Representing *concurrent systems*

Extension of MLL with a non-commutative and self-dual connective

⊲

• A fragment of CCS

- A fragment of CCS
- Logic system NMAL

- A fragment of CCS
- Logic system NMAL
- Correspondence between NMAL proofs and CCS processes executions

- A fragment of CCS
- Logic system NMAL
- Correspondence between NMAL proofs and CCS processes executions
- A known problem catalyzers

- A fragment of CCS
- Logic system NMAL
- Correspondence between NMAL proofs and CCS processes executions
- A known problem catalyzers
- Future work

A fragment of CCS

Given the sets Names = $\{a, b, ...\}$ and Conames = $\{\overline{a}, \overline{b}, ...\}$

P, Q, G :=	Nil	terminated process
I	$P \mid Q$	parallel composition
I	P + Q	sum - non determinism
I	a.P	prefixing - execute a , then P

A structural equivalence :

 $P \mid Q \equiv Q \mid P$ $P \mid (Q \mid R) \equiv (P \mid Q) \mid R$ $P + Q \equiv Q + P$ $P \mid Nil \equiv P$

Examples

 $(\textbf{P} \mid \textbf{R}) + \textbf{S}$

NMAL: Non commutive , multiplicative additive logic

$$a \times \frac{1}{F + a, \overline{a}} \qquad \Im \frac{F + \Gamma, A, B}{F + \Gamma, A \Im B} \qquad \otimes \frac{F + \Gamma, A + B, \Delta}{F + \Gamma, A \otimes B, \Delta} \qquad \P \frac{F + A, C, \Gamma + B, D, \Delta}{F + A \blacktriangleleft B, C \blacktriangleleft D, \Gamma, \Delta}$$

$$\oplus \frac{\vdash \Gamma, A_{i}}{\vdash \Gamma, A_{1} \oplus A_{2}} i \in \{1, 2\} \qquad \& \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B} \qquad \min \frac{\vdash \Gamma \vdash \Delta}{\vdash \Gamma, \Delta}$$

NMAL: Non commutive , multiplicative additive logic

$$a \times \frac{1}{F + a, \overline{a}} \qquad \Im \frac{F \Gamma, A, B}{F \Gamma, A \Im B} \qquad \otimes \frac{F \Gamma, A + B, \Delta}{F \Gamma, A \otimes B, \Delta} \qquad \neg \frac{F A, C, \Gamma + B, D, \Delta}{F A \triangleleft B, C \triangleleft D, \Gamma, \Delta}$$

$$\oplus \frac{\vdash \Gamma, A_i}{\vdash \Gamma, A_1 \oplus A_2} i \in \{1, 2\} \qquad \& \frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B} \qquad \min \frac{\vdash \Gamma \vdash \Delta}{\vdash \Gamma, \Delta}$$

Theorem (cut elimination)

Given a proof $\pi \in NMAL \cup \{cut\}$ of conclusion $\vdash \Gamma$ there exists a proof $\pi' \in NMAL$ having the same conclusion $\vdash \Gamma$.

We translate processes into formulas :

 $\llbracket P \mid Q \rrbracket = \llbracket P \rrbracket \Im \llbracket Q \rrbracket$

 $a.P = a \triangleleft \llbracket P \rrbracket$

 $P + Q = \llbracket P \rrbracket \oplus \llbracket Q \rrbracket$

Reduction steps and NMAL's rules look alike

av ———

One reduction step : one linear implication

Theorem

If $P \rightarrow Q$ then $\vdash \llbracket Q \rrbracket \rightarrow \llbracket P \rrbracket$ is provable in NMAL

One reduction step : one linear implication

Theorem

If $P \rightarrow Q$ then $\vdash \llbracket Q \rrbracket \rightarrow \llbracket P \rrbracket$ is provable in NMAL

Proof.

By induction. If $P \equiv a.P_1 \mid \overline{a}.P_2$ and $Q \equiv P_1 \mid P_2$ then

$$ax \frac{\overline{a,\overline{a}}}{[P]_{1}} \otimes \frac{\overline{[P]_{1}}, [[P_{1}]]}{[P]_{2}}, [[P_{2}]]}{[P]_{2}, [[P_{2}]]}$$

$$ax \frac{\overline{a,\overline{a}}}{[P]_{1}} \otimes \overline{[P]_{2}}, [[P_{1}]], [[P_{2}]]}{[P]_{1}} \otimes \overline{[P]_{2}}, a. \triangleleft [[P_{1}]], \overline{a}. \triangleleft [[P_{2}]]}$$

$$\overline{[P]_{1}} \otimes \overline{[P]_{2}}, a. \triangleleft [[P_{1}]], \overline{a}. \triangleleft [[P_{2}]]}$$

Correspondence between executions and proofs

Theorem (Execution to proof)

If $P_n \to \cdots \to P_0 \to \text{Nil}$, then $\vdash \llbracket P_n \rrbracket$ is provable in NMAL.

Correspondence between executions and proofs

Theorem (Execution to proof)

If $P_n \to \cdots \to P_0 \to \text{Nil}$, then $\vdash \llbracket P_n \rrbracket$ is provable in NMAL.

Proof.

We define a proof π_n of P_n by induction:

• if
$$n = 0$$
, then $P_0 \rightarrow \text{Nil}$ and $P_0 = a \mid \overline{a}$. Thus $\pi_0 = \frac{a}{\sqrt[n]{n-\overline{a}}} \frac{\overline{a}, \overline{a}}{a \sqrt[n]{n-\overline{a}}}$
• if $n > 0$, then $\frac{\pi_{n-1} \| \| H \| \| Thm}{\sup \| P_{n-1} \| \multimap \| P_n \|} \qquad \text{cut-elim} \qquad [NMAL]{NMAL} = \pi_n$

Correspondence between executions and proofs

Theorem (Execution to proof)

If $P_n \to \cdots \to P_0 \to \text{Nil}$, then $\vdash \llbracket P_n \rrbracket$ is provable in NMAL.

Proof.

We define a proof π_n of P_n by induction:

• if
$$n = 0$$
, then $P_0 \rightarrow \text{Nil}$ and $P_0 = a \mid \overline{a}$. Thus $\pi_0 = \frac{a}{\Im} \frac{a}{a} \frac{\overline{a}}{\overline{\partial}} \overline{\overline{a}}$
• if $n > 0$, then $\frac{\pi_{n-1} \| \| H \| \| Thm}{\sup \| P_{n-1} \| -\infty \| P_n \|} \longrightarrow \text{cut-elim} \| P_n \| = \pi_n$

ax —

[P**]** is provable in NMAL then $P \rightarrow^* Nil$

A natural question

Is *P* safe? Waiting?

\overline{b} is a *catalyzer* for *b*

How to find a catalyzer for P?

$$\operatorname{Com}^{\checkmark} \frac{C \vdash \Gamma}{C \vdash a, \overline{a}, \Gamma} \qquad \operatorname{Par} \frac{C \vdash \Gamma, A, B}{C \vdash \Gamma, A \stackrel{\mathcal{D}}{\mathcal{B}} B} \qquad \operatorname{Plus} \frac{C \vdash \Gamma, A_{i}}{C \vdash \Gamma, A_{1} \oplus A_{2}} i \in \{1, 2\}$$
$$\operatorname{Com} \frac{C \vdash \Gamma, A, B}{C \vdash \Gamma, a \triangleleft A, \overline{a} \triangleleft B}$$

Release
$$\frac{C \triangleleft \overline{a} \vdash \Gamma, A}{C \vdash \Gamma, a \triangleleft A}$$
 if no other rule is applicable

Example

$$P = a.\overline{b} \mid b.\overline{a}$$

$$\operatorname{Release} \frac{\overline{a} \triangleleft a \vdash}{\overline{a} \vdash \overline{a}}$$

$$\operatorname{Com} \frac{\overline{a} \vdash \overline{b}, b \triangleleft \overline{a}}{\overline{a} \vdash \overline{b}, b \triangleleft \overline{a}}$$

$$\operatorname{Release} \frac{\overline{a} \vdash \overline{b}, b \triangleleft \overline{a}}{\vdash a \triangleleft \overline{b}, b \triangleleft \overline{a}}$$

$$\operatorname{Par} \frac{}{\vdash (a \triangleleft \overline{b}) \Re (b \triangleleft \overline{a})}$$

 \overline{a} . a is a catalyzer for P

And for full CCS ?

$$P, Q, G := Nil$$
$$| P | Q$$

P+Q

a.P

va.P

terminated process parallel composition sum - non determinism prefixing - execute *a*, then *P* restriction - makes a private

Communication only allowed under ν

 $com \frac{}{va.(a.P \mid \overline{a}.Q) \rightarrow va.(P \mid Q)}$

Not really a smooth operator...

To deadlock or not to deadlock?

Is *P* safe, waiting or deadlocked? And the catalyzer ?

Deadlock war:

Enriching Session Types : Kobayashi [5]

Quest for catalyzers:

CCS : Bernardi et al. [1] π -calculus : Montesi et al.[3]

IDEA: use NMAL to give a unified approach

Future work

Future work

Bibliography

Giovanni Bernardi and Adrian Francalanza. Full-abstraction for client testing preorders. Science of Computer Programming, 168:94-117, 2018.

Paola Bruscoli

A purely logical account of sequentiality in proof search. In Peter J. Stuckey, editor, Logic Programming, pages 302–316, Berlin, Heidelberg, 2002, Springer Berlin Heidelberg,

Marco Carbone, Ornela Dardha, and Eabrizio Montesi.

Progress as compositional lock-freedom.

In Eva Kühn and Rosario Pugliese, editors, Coordination Models and Languages - 16th JEIP WG 6.1 International Conference, COORDINATION 2014. Held as Part of the 9th International Federated Conferences on Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings, volume 8459 of Lecture Notes in Computer Science, pages 49-64, Springer, 2014,

Ross Horne and Alwen Tiu

Towards proofs as successful executions of processes. 2016.

Naoki Kobavashi.

A new type system for deadlock-free processes. In Christel Baier and Holger Hermanns, editors, CONCUR 2006 - Concurrency Theory, pages 233-247, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg,

Christian Retoré

Pomset Logic: The Other Approach to Noncommutativity in Logic, page 299-345. Springer International Publishing, 2021.