
On non-commutative logic and process calculi

Matteo Acclavio1 Giovanni Bernardi3

Giulia Manara2,3 Fabrizio Montesi4

1University of Southern Denmark
2Università degli Studi Roma Tre – Dipartimento di Matematica e Fisica

3IRIF, Université Paris Cité

1 November 2023 – Rome, Italy

SCALP 23/24

1 / 30

Non commutative logic and process calculi

Process calculi:

Representing concurrent systems
[6], [2],[4]

!

Pomset logic :

Extension of MLL with a
non-commutative and self-dual connective

/

2 / 30

In this presentation

We will talk about:

• A fragment of CCS

• Logic system NMAL

• Correspondence between NMAL proofs and CCS processes executions

• A known problem - catalyzers

• Future work

3 / 30

In this presentation

We will talk about:

• A fragment of CCS

• Logic system NMAL

• Correspondence between NMAL proofs and CCS processes executions

• A known problem - catalyzers

• Future work

4 / 30

In this presentation

We will talk about:

• A fragment of CCS

• Logic system NMAL

• Correspondence between NMAL proofs and CCS processes executions

• A known problem - catalyzers

• Future work

5 / 30

In this presentation

We will talk about:

• A fragment of CCS

• Logic system NMAL

• Correspondence between NMAL proofs and CCS processes executions

• A known problem - catalyzers

• Future work

6 / 30

In this presentation

We will talk about:

• A fragment of CCS

• Logic system NMAL

• Correspondence between NMAL proofs and CCS processes executions

• A known problem - catalyzers

• Future work

7 / 30

A fragment of CCS

Given the sets Names = {a,b, . . . } and Conames = {a,b, . . . }

P,Q,G B Nil terminated process

| P | Q parallel composition

| P + Q sum - non determinism

| a.P prefixing - execute a, then P

A structural equivalence :

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P + Q ≡ Q + P P | Nil ≡ P

8 / 30

Operational Semantic

com
a.P | a.Q → P | Q

interaction is synchronisation

P → P ′
sum

P + Q → P ′
Q → Q ′

sum
P + Q → Q ′

choice between two behaviours

P → P ′
Par

P | Q → P ′ | Q

Q → Q ′
Par

P | Q → P | Q ′
parallel computation

P ≡ P ′→ Q ′ ≡ Q
struc

P → Q

9 / 30

Examples

P | Q

(a | b) | a.b

b | b

Nil

P | R

(a | b) | (a | b)

b | b a | a

Nil Nil

10 / 30

Examples

(P | R) + S

((a | b) | (a | b)) + (c | c | (a.b | b.a))

a | a b | b a.b | b.a

Nil Nil

11 / 30

NMAL: Non commutive , multiplicative additive logic

ax
` a,a

` Γ,A,B`
` Γ,A` B

` Γ,A ` B,∆
⊗

` Γ,A ⊗B,∆

` A,C ,Γ ` B,D,∆
/
` A / B,C / D,Γ,∆

` Γ,Ai
⊕ i ∈ {1, 2}
` Γ,A1 ⊕A2

` Γ,A ` Γ,B
&
` Γ,A & B

` Γ ` ∆
mix

` Γ,∆

Theorem (cut elimination)

Given a proof π ∈ NMAL ∪ {cut} of conclusion ` Γ there exists a proof π′ ∈ NMAL having the
same conclusion ` Γ.

12 / 30

NMAL: Non commutive , multiplicative additive logic

ax
` a,a

` Γ,A,B`
` Γ,A` B

` Γ,A ` B,∆
⊗

` Γ,A ⊗B,∆

` A,C ,Γ ` B,D,∆
/
` A / B,C / D,Γ,∆

` Γ,Ai
⊕ i ∈ {1, 2}
` Γ,A1 ⊕A2

` Γ,A ` Γ,B
&
` Γ,A & B

` Γ ` ∆
mix

` Γ,∆

Theorem (cut elimination)

Given a proof π ∈ NMAL ∪ {cut} of conclusion ` Γ there exists a proof π′ ∈ NMAL having the
same conclusion ` Γ.

13 / 30

Translation

We translate processes into formulas :

[[P | Q]] = [[P]]` [[Q]]

a.P = a / [[P]]

P + Q = [[P]] ⊕ [[Q]]

14 / 30

Some intuitions

Reduction steps and NMAL’s rules look alike

com
a.P | a.Q → P | Q

ax
` a,a ` [[P]] , [[Q]]

/
` a / [[P]] ,a / [[Q]]`
` a / [[P]]` a / [[Q]]

P → P ′
sum

P + Q → P ′

` [[P]]′

π

` [[P]]
⊕

` [[P]] ⊕ [[Q]]

15 / 30

One reduction step : one linear implication

Theorem

If P → Q then ` [[Q]] ([[P]] is provable in NMAL

Proof.

By induction. If P ≡ a.P1 | a.P2 and Q ≡ P1 | P2 then

ax
a,a

π1

[[P]]1, [[P1]]

π2

[[P]]2, [[P2]]
⊗

[[P]]1 ⊗ [[P]]2, [[P1]] , [[P2]]
/

[[P]]1 ⊗ [[P]]2,a. / [[P1]] ,a. / [[P2]]`
[[P]]1 ⊗ [[P]]2,a. / [[P1]]` a. / [[P2]]

�

16 / 30

One reduction step : one linear implication

Theorem

If P → Q then ` [[Q]] ([[P]] is provable in NMAL

Proof.

By induction. If P ≡ a.P1 | a.P2 and Q ≡ P1 | P2 then

ax
a,a

π1

[[P]]1, [[P1]]

π2

[[P]]2, [[P2]]
⊗

[[P]]1 ⊗ [[P]]2, [[P1]] , [[P2]]
/

[[P]]1 ⊗ [[P]]2,a. / [[P1]] ,a. / [[P2]]`
[[P]]1 ⊗ [[P]]2,a. / [[P1]]` a. / [[P2]]

�

17 / 30

Correspondence between executions and proofs

Theorem (Execution to proof)

If Pn → · · · → P0 → Nil, then ` [[Pn]] is provable in NMAL.

Proof.

We define a proof πn of Pn by induction:

• if n = 0, then P0 → Nil and P0 = a | a. Thus π0 =
ax
a,a`
a` a

• if n > 0, then

πn−1 IH
[[Pn−1]]

Thm
[[Pn−1]] ([[Pn]]

cut
[[Pn]]

 cut-elim
NMAL

[[Pn]]
= πn

�

Theorem (Proof to execution)

[[P]] is provable in NMAL then P →∗ Nil

18 / 30

Correspondence between executions and proofs

Theorem (Execution to proof)

If Pn → · · · → P0 → Nil, then ` [[Pn]] is provable in NMAL.

Proof.

We define a proof πn of Pn by induction:

• if n = 0, then P0 → Nil and P0 = a | a. Thus π0 =
ax
a,a`
a` a

• if n > 0, then

πn−1 IH
[[Pn−1]]

Thm
[[Pn−1]] ([[Pn]]

cut
[[Pn]]

 cut-elim
NMAL

[[Pn]]
= πn

�

Theorem (Proof to execution)

[[P]] is provable in NMAL then P →∗ Nil

19 / 30

Correspondence between executions and proofs

Theorem (Execution to proof)

If Pn → · · · → P0 → Nil, then ` [[Pn]] is provable in NMAL.

Proof.

We define a proof πn of Pn by induction:

• if n = 0, then P0 → Nil and P0 = a | a. Thus π0 =
ax
a,a`
a` a

• if n > 0, then

πn−1 IH
[[Pn−1]]

Thm
[[Pn−1]] ([[Pn]]

cut
[[Pn]]

 cut-elim
NMAL

[[Pn]]
= πn

�

Theorem (Proof to execution)

[[P]] is provable in NMAL then P →∗ Nil
20 / 30

A natural question

Safe Waiting

a | a b

Nil

Is P safe? Waiting?

21 / 30

Catalyzers

b | b

Nil

b is a catalyzer for b

How to find a catalyzer for P?

22 / 30

Yes we can

C ` Γ
ComX

C ` a,a,Γ

C ` Γ,A,B
Par

C ` Γ,A` B

C ` Γ,Ai
Plus i ∈ {1, 2}

C ` Γ,A1 ⊕A2

C ` Γ,A,B
Com

C ` Γ,a / A,a / B

C / a ` Γ,A
Release if no other rule is applicable

C ` Γ,a / A

23 / 30

Example

P = a.b | b.a

a / a `
Release

a ` a
Com

a ` b,b / a
Release

` a / b,b / a
Par

` (a / b)` (b / a)
a.a is a catalyzer for P

24 / 30

And for full CCS ?

P,Q,G B Nil terminated process

| P | Q parallel composition

| P + Q sum - non determinism

| a.P prefixing - execute a, then P

| νa.P restriction - makes a private

Communication only allowed under ν

com
νa.(a.P | a.Q) → νa.(P | Q)

Not really a smooth operator...
25 / 30

To deadlock or not to deadlock?

Safe Waiting Deadlocked

νa.(a | a) b νb.b

Nil νa.νb.(a.b | b.a)

Is P safe, waiting or deadlocked?
And the catalyzer ?

26 / 30

Work in progress

Deadlock war:

Enriching Session Types : Kobayashi [5]

Quest for catalyzers:

CCS : Bernardi et al. [1]
π-calculus : Montesi et al.[3]

IDEA: use NMAL to give a unified approach

27 / 30

Future work

a.c | a.d | b.c | b.d

c | d | b.c | b.d a.c | a.d | c | d

c | d | c | d

Nil

ax
a,a

ax

b,b

ax
c,c

ax

d,d
ax−mix

c,d,c,d
/

c,d,b / c,b / d
/

a / c,a / d,b / c,b / d`
((a / c)` (a / d))` ((b / c)` (b / d))

∼ ax

b,b

ax
a,a

ax
c,c

ax

d,d
ax−mix

c,d,c,d
/

a / c,a / d,c,d
/

a / c,a / d,b / c,b / d`
((a / c)` (a / d))` ((b / c)` (b / d))

28 / 30

Future work

a.c | a.d | b.c | b.d

c | d | b.c | b.d a.c | a.d | c | d

c | d | c | d

Nil

/ / / /

` `

`

((a / c)` (a / d))` ((b / c)` (b / d))

ax ax

ax ax

=

/ / / /

` `

`

((a / c)` (a / d))` ((b / c)` (b / d))

ax ax

ax ax

29 / 30

Bibliography

Giovanni Bernardi and Adrian Francalanza.

Full-abstraction for client testing preorders.
Science of Computer Programming, 168:94–117, 2018.

Paola Bruscoli.

A purely logical account of sequentiality in proof search.
In Peter J. Stuckey, editor, Logic Programming, pages 302–316, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

Marco Carbone, Ornela Dardha, and Fabrizio Montesi.

Progress as compositional lock-freedom.
In Eva Kühn and Rosario Pugliese, editors, Coordination Models and Languages - 16th IFIP WG 6.1 International Conference, COORDINATION 2014,
Held as Part of the 9th International Federated Conferences on Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014,
Proceedings, volume 8459 of Lecture Notes in Computer Science, pages 49–64. Springer, 2014.

Ross Horne and Alwen Tiu.

Towards proofs as successful executions of processes.
2016.

Naoki Kobayashi.

A new type system for deadlock-free processes.
In Christel Baier and Holger Hermanns, editors, CONCUR 2006 – Concurrency Theory, pages 233–247, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Christian Retoré.

Pomset Logic: The Other Approach to Noncommutativity in Logic, page 299–345.
Springer International Publishing, 2021.

30 / 30

