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Dependent type theory suffers from verbosity of type annotations
Application: t@ax.pu
Dependent pair: (¢, u)ax.p
Cons: t:yl

Not only one application, but one for each pair A, B. Unusable in practice...

Most presentation restore usability by eliding type annotations from syntax
Application: tu
Dependent pair:  (t,u)
Cons: t::1

Syntax so common that many don’t realize that an omission is being made
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Typechecking without annotations

Omission has a cost Knowing annotations is needed for typing

I'+?type [,x:?F7?type F'rt:? F'ru:?

T'rtu:?

How to find A and B if they’re not stored in syntax?

Bidirectional typing Decompose ¢ : A in modes check t < A and infer t = A

Allow specify flow of type information in typing rules, explain how to use them

rrt==0C C—"Tlx:AB r'rue A

I'+tu= Blu/x]

Complements unannotated syntax very well, explains how to recover annotations
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Contribution

Bidirectional type systems have been studied and proposed for many theories

However, general guidelines have remained informal, no unified framework

This talk Generic account of bidirectional typing for class of type theories

Roadmap

1. We give a general definition of type theories (or equivalently, a logical

framework) supporting non-annotated syntaxes
2. For each theory, we define declarative and bidirectional type systems

3. We show, in a theory-independent fashion, their equivalence
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One syntax for all!

tuT,U == | x (variables)
| c(X1.uq, ..., Xp.ux) (constructor application)
| d(t; X1.uq, ..., Xk ug) (destructor application)
| x{uq,....ur} (metavariables)

In d(t;...), we call t the principal argument.

Example
Y= II(A B{x}), A(t{x}), Ty, Tm(A), (constructors)
@ (u) (destructors)

t,u, A B = x | x{t} | Ty | Tm(A) | @ (t;u) | A(x.t) | II(A, x.B)
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The theories

A theory T is made of schematic typing rules and rewrite rules.

3 schematic typing rules: sort rules, constructor rules and destructor rules

Sort rules Sorts are terms that can type other terms!.

Used to define the judgment forms of the theory.
Example: In MLTT, 2 judgment forms: O type and O : A for a type A.
FA:Ty
+ Ty sort + Tm(A) sort

We can then write A : Ty for A type, and t : Tm(A) fort : A

'We use the name "sort" instead of "type" to avoid a name clash with the types of the theory
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The sort of the rule is a pattern allowing to recover the omitted arguments
FA:Ty x:Tm(A) FB: Ty x: Tm(A) F t : Tm(B{x})
FA(t) : Tm(II(A x.B{x}))

Destructor rules are bidirectionally typed in mode infer

The sort of the principal argument t : T' should be a pattern allowing to recover

the omitted arguments
FA:Ty x: Tm(A) B : Ty Ft: Tm(II(A x.B{x})) Fu:Tm(A)
F @(t;u) : Tm(B{u})
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The theories

Rewrite rules Define the definitional equality (aka conversion) = of the theory.
@ (A(x.t{x});u) — t{u}
In general, of the form d (tP; fl.tf s fk.t]f ) —> r, with left-hand-side linear.

Condition: no two left-hand sides unify.

Therefore, rewrite systems are orthogonal, hence confluent by construction!



Full example

Theory Ty, defining minimalistic Martin-Lof Type Theory.

Ty(-) sort

Tm(A : Ty) sort

II(; A:Ty, B{x: Tm(A)} : Ty) : Ty

AA = Ty, B{x : Tm(A)} : Ty; t{x:Tm(A)} : Tm(B{x})) : Tm(II(A, x.B{x}))
@(A: Ty, B{x : Tm(A)} : Ty; t:Tm(II(A x.B{x})); u:Tm(A)) : Tm(B{u})
@ (A(x.t{x});u) = t{u}
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Declarative typing rules

Each theory T defines a declarative type system.

Main typing rules instantiate the schematic rules of T:

FA: Ty x: Tm(A) B : Ty F'rA:Ty I,x:Tm(A) + B: Ty
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) + t : Tm(B)
~>
FA(t) : Tm(II(A, x.B{x})) T+ A(x.t) : Tm(II(A, x.B))

FA: Ty x: Tm(A) - B: Ty
Ft:Tm(II(A, x.B{x})) *+u:Tm(A)

F @ (t;u) : Tm(B{u})
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Declarative typing rules

Each theory T defines a declarative type system.

Main typing rules instantiate the schematic rules of T:

FA: Ty x: Tm(A) B : Ty F'rA:Ty I,x:Tm(A) + B: Ty
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) + t : Tm(B)
~>
FA(t) : Tm(II(A, x.B{x})) T+ A(x.t) : Tm(II(A, x.B))
FA: Ty x: Tm(A) - B: Ty 'rA:Ty Ix:Tm(A) - B: Ty

Ft:Tm(II(A, x.B{x})) *+u:Tm(A) F'tt:Tm(II(A x.B)) TFu:Tm(A)
~>
F @ (t;u) : Tm(B{u}) I'+ @(t;u) : Tm(B[u/x])
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Matching modulo rewriting

In bidirectional typing, we need matching modulo rewriting to recover missing
arguments.

I'rt=>U

' @(t;u) =

We know
U = Tm(II(A x.B{x}))[A/A, x.B/B]

but how to recover A and B from U?

Given t” and u, we define a matching judgment
¥ <u~ J_C)l.tl/Xl, ...,J_fk.tk/xk

that tries to compute a metavariable substitution s.t. t7[X;.t; /X, ..., Xt /Xk] = w.
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Inferable and checkable terms

Not all unannotated terms can be algorithmically typed
?

IF'rA(x.t) =7

I'r@A(x.t);u) =7?

Avoided by defining bidirectional typing only for inferrable and checkable terms.

tua=x | d(t X1.U7, oo Xp Uy )

t,u = c(Xy.ug, . Xpup) | ¢

Principal argument of a destructor can only be variable or another destructor.

For most theories: €, u, ... = normal forms, and ', u', ... = neutrals
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Bidirectional typing rules

Each theory T defines a bidirectional type system.

Main typing rules instantiate the schematic rules of T:

FA:Ty x:Tm(A) +B: Ty Tm(II(A, x.B{x})) < T ~ A/A, x.B/B
x : Tm(A) + t : Tm(B{x}) I,x:Tm(A) + t° < Tm(B)
~>
FA(t) : Tm(II(A x.B{x})) FTFA(xt) =T
T+t =T
FA: Ty x: Tm(A) +B: Ty Tm(II(A x.B{x})) < T ~ A/A, x.B/B
Ft:Tm(II(A xB{x})) Fu:Tm(A) I'u® < Tm(A)

F@(t;u) : Tm(B{u}) I+ @(tu°) = Tm(B[u/x])
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Equivalence with declarative typing

Suppose underlying theory T is valid.

SoundnessIf T Fand T+t = TthenT +¢:T.
IfTr+Tsortand T+t < TthenT +t:T.

Completeness For t' inferable, if T+t : T thenT +t' = U with T = U.
For t€ checkable, if ' + ¢t : T thenT + t“ &< T.

Decidability If T weak normalizing, then inference is decidable for inferable terms,

and checking is decidable for checkable terms.
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Dependent sums

Extends T, with

FA:Ty x: Tm(A) +B: Ty
F2(AB) : Ty

FA:Ty x:Tm(A) B : Ty
Ft:Tm(2(A x.B{x}))

F proj, (t;-) : Tm(A)

proj, (pair(t,u);e) — t

FA:Ty x: Tm(A) +B: Ty
Ft:Tm(A) Fu:Tm(B{t})

F pair(t,u) : Tm(Z(A, x.B{x}))

FA: Ty x:Tm(A) FB: Ty
Ft:Tm(2(A x.B{x}))

F proj,(t;-) : Tm(B{proj,(t)})

proj, (pair(t,u);e) = u

15



Lists
Extends T with
FA:Ty F x : Tm(A)
FA:Ty FA: Ty F 1: Tm(List(A))
F List(A) : Ty F nil : Tm(List(A)) F cons(x, 1) : Tm(List(A))

FA:Ty F 1:Tm(List(A))  x:Tm(List(A)) - P: Ty F pnil : Tm(P{nil})
x : Tm(A),y : Tm(List(A)), z : Tm(P{y}) + pcons : Tm(P{cons(x,y)})

F ListRec(1;P, pnil, pcons) : Tm(P{1})

ListRec(nil; x.P{x}, pnil, xyz.pcons{x,y, z}) — pnil
ListRec(cons(x, 1); x.P{x}, pnil, xyz.pcons{x, y, z}) +—
pcons{x, 1, ListRec(1; x.P{x}, pnil, xyz.pcons{x,y,z})}

16



W types
Extends T with

FA: Ty x: Tm(A) +B: Ty
FA: Ty x:Tm(A) B : Ty Fa:Tm(A) Ff: Tm(II(B{a}, x".W(A, x.B{x})))

FW(AB) : Ty F sup(a, f) : Tm(W (A x.B{x}))

FA:Ty x: Tm(A) B : Ty Ft:Tm(W(A x.B{x})) x : Tm(W(A x.B{x})) + P : Ty
x : Tm(A),y : Tm(TI(B{x}, x".'W(A, x.B{x}))), z : Tm(II(B{x}, x".P{@ (y,x")})) + p : Tm(P{sup(x,y)})
F WRec(t;P,p) : Tm(P{t})

WRec(sup(a, f); x.P{x}, xyz.p{x, y,z}) + p{a, f, A(x.WRec(@ (f, x); x.P{x}, xyz.p{x, y, z})) }

17



Universes
Extends T with

+a: Tm(U)
FU(-) : Ty FEl(a;-) : Ty
(Weak) Coquand-style

Tarski-style Adds codes for all types Adds a code constructor ¢

El(u;¢) — U FA:Ty

F c(A) : Tm(U)

Fu(-) : Tm(U)

Fa: Tm(U) x : Tm(El(a)) + b : Tm(U)
F (a,b) : Tm(U)

El(c(A);e) — A

El(r(a, x.b{x}); ) — II(El(a;¢), x.El(b{x}; ¢))

18
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Conclusion
Generic account of bidirectional typing for class of dependent type theories

Bidirectional system implemented in a prototype, available at

https://github.com/thiagofelicissimo/BiTTs

‘thiago@thiago-work:~/git/BiTTsS make examples
(* Judgnent forns *) exec tt examples/mitt.bitt

sort Ty ()

sort Tn (& & Ty)

(* Taski-style universe *)
constructor U () () & Ty

destructor EL () (A : Tn(U)) O) = Ty
(* type in type *)

constructor u () () & Ta(U)

rewrite EL(1) --> U

(* Dependent products *)
constructor N1 ()

(A : Ty, B0 TR} : Ty) Lcheck] 5_Nat = @(@(plus; 2.Nst); 3_at)
=Ty dune exec bitt examples/hol.bitt
constructor A (A : Ty, B{x : T(A)} : Ty) g
(t{x : TM(A)) TM(B(x)))
2 Tn(M(A, x. )

destructor @ (A : Ty, B{x : Tn(A)} : Ty)
(t = Tn(N(A, x. B{x})))
(u_: Tn(a))
: Tn(B(u})

rewrtte @(A(x. £{x}), u) --> t{u}

constructor T () (a : Tm(U), b{_ : Tn(EL())} : Tn(Y)) : Tm(U)

definition fact_4
[eval] fact_4 -->* S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(5(5(8)))))))))))2))))))))NN))
checked definition id_poly
o
rewrite EU(N(a, x.b{x})) --> N(EL(a), x. EL(b{x}))

[c o =
i thiago@thiago-work:~/git/BLTTsS
Beginning of buffer



https://github.com/thiagofelicissimo/BiTTs

Thank you for your attention!
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