A Functorial model of Differential Linear Logic

SCALP 2023

Marie Kerjean (UP13), Valentin 'Richie' Maestracci (AMU), Morgan Rogers (UP13)

November 2023

What is a model of linear logic?

What is a model of linear logic ? A possible categorical answer: Seely Categories

$$(\mathcal{C},\times) \xrightarrow{\mathcal{E}'} (\mathcal{L},\otimes)$$
$$U$$

A strong monoidal adjunction ($! \stackrel{\text{\tiny def}}{=} \mathcal{E}' \circ U$)

Between a monoidal category of linear morphisms

And a cartesian category of non linear morphisms

How do we interpret a proof?

A proof π of conclusion $\Gamma \vdash A$ is interpreted as a morphism $\llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$ compositionally:

$$\frac{\frac{\pi}{A \vdash \Gamma}}{!A \vdash \Gamma}$$

Use a natural transformation $d_A: !A \to A$

$$d \stackrel{d}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} \Gamma$$

This is a compact version of requiring to have these natural transformations

Operator	Туре	Intuition	
W	$!A \multimap 1$	Create constant function	
С	$!A \multimap !A \otimes !A$	From 2 to 1 parameter	
d	$!A \multimap A$	Forget linearity	
р	$!A \multimap !!A$	Higher order	

Plus some commutative diagrams (to respect cut elimination)

What is Differential Linear Logic (DiLL)?

DiLL is a variant of linear logic that was discovered by Ehrhard & Regnier in 2004 with a notion of differentiation:

What is Differential Linear Logic (DiLL)?

DiLL is a variant of linear logic that was discovered by Ehrhard & Regnier in 2004 with a notion of differentiation:

This amounts to adding these operator:

Operator	Туре	Operator	Туре	Intuition
W	$!A \multimap 1$	W	$1 \multimap !A$	Evaluation at
				0
С	$!A \multimap !A \otimes !A$	c	$!A \otimes !A \multimap !A$	Convolution
d	$!A \multimap A$	d	$A \multimap !A$	Differentiation
р	$!A \multimap !!A$	Х	X	X

Dbar diagrams

Dbar diagrams 2

What is Differential Linear Logic (DiLL)?

There is a reformulation of such models with a biproduct \diamondsuit which automatically gives most operators.

$$\begin{array}{c} \mathcal{E}' \approx p \\ \overbrace{\qquad } \\ (\mathcal{C}, \times) & \overbrace{\qquad } \\ \swarrow \\ U \approx d \end{array} \begin{array}{c} \mathcal{L}, \otimes, \diamondsuit) \\ U \approx d \end{array}$$

Туре	Operator	
$ A \multimap A $	d	

But where would \overline{d} fit in such a setting?

Our contribution: A model where \overline{d} is expressed as a functor.

(Purely functorial)

Why would we want that?

- Express a modular transformation of program
 → (This is a key point of Differentiable Programming)
- Compactify definitions : Proving that something is a model becomes easier
- Makes link easier with Chiralities

We want to capture the chain-rule in a functorial way:

$$D_a(g\circ f)=D_{f(a)}(g)\circ D_a(f)$$

We want to capture the chain-rule in a functorial way:

$$\begin{split} D_a(g\circ f) &= D_{f(a)}(g)\circ D_a(f)\\ D_a(g\circ f) &= D_{f(a)}(g:B\to C)\circ D_a(f:A\to B) \end{split}$$

We want to capture the chain-rule in a functorial way:

$$\begin{split} D_a(g\circ f) &= D_{f(a)}(g)\circ D_a(f)\\ D_a(g\circ f) &= D_{f(a)}(g:B\to C)\circ D_a(f:A\to B) \end{split}$$

Let *D* depend on the point of differentiation!

We want to capture the chain-rule in a functorial way:

$$\begin{split} D_a(g\circ f) &= D_{f(a)}(g)\circ D_a(f)\\ D_a(g\circ f) &= D_{f(a)}(g:B\to C)\circ D_a(f:A\to B) \end{split}$$

Let *D* depend on the point of differentiation!

$$(A,a) \stackrel{f}{\longrightarrow} (B,f(a)) \stackrel{g}{\longrightarrow} (C,g(f(a)))$$

We want to capture the chain-rule in a functorial way:

$$\begin{split} D_a(g\circ f) &= D_{f(a)}(g)\circ D_a(f)\\ D_a(g\circ f) &= D_{f(a)}(g:B\to C)\circ D_a(f:A\to B) \end{split}$$

Let *D* depend on the point of differentiation!

$$(A,a) \xrightarrow{f} (B,f(a)) \xrightarrow{g} (C,g(f(a)))$$

 \vec{D} should be a functor, with morally $\vec{D}(f) = D_a(f)$

The co-Slice Category

The category $I \downarrow C$, the co-Slice of C is defined as follows:

- Objects: (A,a) with $a:I\rightarrow A$, intuitively, an element of A
- Arrows: $f: (A, a) \rightarrow (B, b)$ such that f(a) = b

The co-Slice Category

The category $I \downarrow \mathcal{C}$, the co-Slice of \mathcal{C} is defined as follows:

- Objects: (A,a) with $a:I\rightarrow A$, intuitively, an element of A
- Arrows: $f:(A,a) \to (B,b)$ such that f(a) = b

Now b:

$$D_a(g\circ f)=D(g)\circ D(f)=D_{f(a)}(g)\circ D_a(f)$$

Second thing

The differential (*ie*, best linear approximation) of a linear is itself.

Hence \vec{D} should preserve linear morphisms: $\forall a, l : D_a(l) = l$

But...

We cannot go up from \mathcal{C} to $I \downarrow \mathcal{C}$!

 \rightarrow Would require to choose a point

The category of Generalized Elements

Given a functor $U : \mathcal{L} \to \mathcal{C}$, the category $I \downarrow U$ of generalized elements over U is defined as:

- Objects: (A, a) with $a : I \to U(A)$
- Arrows: $l : A \rightarrow B$ such that U(l)(a) = b

In a sense, the linear part of the co-Slice.

Definition of Functorial DiLL Model

A pre-model of DiLL,

 $\begin{array}{ccc} \vec{U} \\ I \downarrow U & \longrightarrow & I \downarrow \mathcal{C} \\ \Pi \downarrow & & \downarrow \Pi \\ (\mathcal{L}, \otimes, \diamondsuit) & \xrightarrow{\rightarrow} & (\mathcal{C}, \times) \\ U \end{array}$

Definition of Functorial DiLL Model

A pre-model of DiLL, plus a functor $ec{D}$

Definition of Functorial DiLL Model

A pre-model of DiLL, plus a functor $ec{D}$

(And well pointedness relative to I ...)

Theorem: Our functorial model is a model of DiLL.

Theorem: The converse is true for well pointed models.

What if my model isn't well pointed?

A pre-model of DiLL, plus a functor $ec{D}$

$$\begin{array}{cccc} & \vec{U} \\ U \downarrow U & \longrightarrow & U \downarrow \mathcal{C} \\ \Pi \downarrow & \swarrow & \vec{D} & \downarrow \Pi \\ (\mathcal{L}, \diamondsuit) & \longrightarrow & (\mathcal{C}, \times) \\ & U \end{array}$$

What if my model isn't well pointed?

A pre-model of DiLL, plus a functor $ec{D}$

But we have no model/intuition of what is going on here...

What are Chiralities ?

A categorical framework by Melliès which refines *-autonomous categories into models of Polarized MLL.

With the left being strong monoidal, and $\downarrow\circ\uparrow=\mathrm{Id}$

Plus some extra conditions on the adjunction

Appears a lot for "smooth" models of DiLL (in Functional Analysis)

A parallel to be made

In Chiralities: Positive vs Negative | In DiLL: Linear vs Non-Linear

Kerjean, Maestracci, Rogers

Last but not least: a funny remark

When \mathcal{L} is a calculus category (so with integration on top), we have an relative $! \otimes Id$ -adjunction:

$$\begin{array}{ccc} & \vec{D} \\ I \downarrow \mathcal{C} & \overleftarrow{} \\ \overleftarrow{U} \end{array} & (\mathcal{L}, \otimes) \\ & \overline{U} \end{array}$$

$$(I\downarrow \mathcal{C})((a,A),(b,B))\simeq \mathcal{L}(!A\otimes A,B)$$

With $\overline{U}(l) = (U(l), U(u_A))$

This adjunction corresponds mathematically to the fundamental theorem of calculus !

Future Work

- Pursue similarities and extending our framework to Polarized LL with Mellie's Chiralities
- New model of Kerjean & Pacaud-Lemay with co-promotion should have a symmetric behavior: a functorial co-chain rule ?
- Investigate the **dependent** flavour

Future Work

- Pursue similarities and extending our framework to Polarized LL with Mellie's Chiralities
- New model of Kerjean & Pacaud-Lemay with co-promotion should have a symmetric behavior: a functorial co-chain rule ?
- Investigate the **dependent** flavour

Thank you for listening !

Any questions ? 😂