
1/29

Plurimetric Fuzz: A Linear Type System for Bounding the
Sensitivity of Vector Functions

2023 Days of the Scalp Working Group
Formal Structures for Computation and Proofs

Victor Sannier
Joint work with Patrick Baillot

Laboratoire CRIStAL de Lille

2/29

1. Introduction

What is the sensitivity of a function?
What is differential privacy?

3/29

Setting: privacy-preserving queries to a database

An analyst makes queries to a database.

Example

What is the average salary of employees?
How many patients have the flu?
How old is Mr. Doe?
What is the salary of Mrs. Smith?

How to protect the privacy of individuals?

4/29

Anonymising the data is not enough

l e t query (db : database) : f l o a t =
l e t dupont = f i l t e r

(fun p −> p . b i r t h y e a r = 1970
&& p . postcode = 75000
&& p . weight >= 70)

db | > head
i n dupont . s a l a r y

One can find an individual by cross-referencing information.

5/29

What is differential privacy?

Let
D be a database,
x be an individual,
q be a query.

We want q(D) and q
(
D ∪ {x}

)
to be indistinguishable.

6/29

Formal definition of differential privacy (Dwork et al. 2006)

Let
D be the set of databases,
X be an arbitrary space (usually Rn),
f : D → X be a probabilistic algorithm.

Definition
f is (ε, δ)-differentially private if for all D,D ′ ∈ D such that d(D,D ′) ≤ 1 and all
S ⊆ X :

Pr
(
f (D) ∈ S

)
≤ eϵ Pr

(
f (D ′) ∈ S

)
+ δ

The distance between two databases is the number of rows that differ between them.

7/29

Query sensitivity

Definition
A function f : X → Y between two metric spaces (X , dX) and (Y , dY) is said to be
k-sensitive if for all x , x ′ ∈ X , we have dY

(
f (x), f (x ′)

)
≤ k · dX (x , x ′).

It is a measure of the specificity, that is of the continuity of the function.

Remark
The sensitivity of a query depends on the metric chosen on the source and target
spaces.

7/29

Query sensitivity

Definition
A function f : X → Y between two metric spaces (X , dX) and (Y , dY) is said to be
k-sensitive if for all x , x ′ ∈ X , we have dY

(
f (x), f (x ′)

)
≤ k · dX (x , x ′).

It is a measure of the specificity, that is of the continuity of the function.

Remark
The sensitivity of a query depends on the metric chosen on the source and target
spaces.

8/29

Adding noise

In order to guarantee differential privacy automatically, one can add noise to the
result of the query.

Theorem (Dwork and Roth 2014)

Let f : X → Rk be a k-sensitive function for the L1 distance. The function
MLaplace(f , ϵ) defined by:

MLaplace(f , ϵ)(x) =
(
π1
(
f (x)

)
+ Y1, . . . , πn

(
f (x)

)
+ Yn

)
where the Yi are i.i.d. according to a Laplace distribution of parameter k/ϵ is
(ϵ, 0)-DP.

Reminder. d1(x , y) =
∑k

i=1 |xi − yi |.

9/29

The role of logic

Program on a database

Program whose sensitivity is known

Differentially private program

Type system

Noise addition mechanism

10/29

2. The Fuzz functional language and its extensions

Sensitivity is an affine resource
which can be tracked by a type system.

11/29

Linear logic (Girard 1987)

Linear logic allows to reason about resources, state changes, etc.

Example

The ⊗ connective allows to model the simultaneous presence of two resources, and
⊸ their transformation.

H2 ⊗ H2 ⊗ O2 ⊸ H2O ⊗ H2O

Deduction rules model consumption, distribution, etc.

12/29

The Fuzz functional language

Fuzz (Reed and Pierce 2010) is a functional language with affine types to reason
about the sensitivity of programs.

Example

[x : A]s1 ⊢ b : B [x : A]s2 ⊢ c : C

[x : A]s1+s2 ⊢ (b, c) : B ⊗ C

If x 7→ f (x) is s1-sensitive and x 7→ g(x) is s2-sensitive, then x 7→
(
f (x), g(x)

)
is

(s1 + s2)-sensitive.

13/29

Semantic soundness theorem (Azevedo de Amorim et al. 2017)

Types are interpreted as metric spaces,

Interpretation of types

A⊗ B is interpreted by the space JAK × JBK endowed with the metric d1;
A ⊸ B is interpreted by the space of 1-sensitive functions from JAK to JBK
endowed with some metric d⊸.

and terms as functions between them.

Theorem
If [x : A]s ⊢ e : B is derivable, then the following function is s-sensitive:

JeK : JAK −→ JBK
x 7−→ JeK(x)

14/29

Motivation for extending Fuzz

Motivation. Measure and track sensitivities for arbitrary Lp metrics, in particular to
add noise according to different distributions:

Laplace distribution for L1,
Gaussian distribution for L2.

Reminder. For all x , y ∈ Rk , dp(x , y) =
p

√∑k
i=1 |xi − yi |p . For p = 2, this is the

Euclidean metric.

15/29

Bunched Fuzz (Wunder et al. 2023)

The main idea is to introduce type constructors ⊗p and ⊸p for every parameter
p ∈ [1,+∞]. If (a, b), (a′, b′) ∈ A⊗p B , then

d⊗p

(
(a, b), (a′, b′)

)
= p

√
dA(a, a′)p + dB(b, b′)p.

Example

Semantically, we have rotate : Real ⊗2 Real ⊸2 Real ⊗2 Real
but we do not have rotate : Real ⊗1 Real ⊸1 Real ⊗1 Real

16/29

Bunched Fuzz contexts

The contexts are no longer lists of annotated variables, but trees.
For example, Γ,p ∆ is the following tree:

Γ ∆

p

and it is interpreted as JΓK ⊗p J∆K.

Example (Tensor introduction rule)

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ,p ∆ ⊢ (a, b) : A⊗p B

17/29

Subject reduction property

Let ↓ be the evaluation relation for a standard big-step operational semantics.

Property (subject reduction)

If ∅ ⊢ a : A and a ↓ v , then ∅ ⊢ v : A.

Bunched Fuzz does not satisfy the subject reduction property.

18/29

3. Plurimetric Fuzz

We extend Fuzz to Lp metrics using ordinary contexts
to recover the subject reduction property.

19/29

Plurimetric Fuzz Types

Plurimetric Fuzz has:
primitives types: Unit, Real, etc.;
sum types: A⊕ B ;
product types: A⊗p B for p ∈ [1,+∞];
function types: A ⊸p B for p ∈ [1,+∞];
exponential types: !sA for s ∈ (0,+∞];

distribution types: ⃝A;
recursive types: µα.A.

19/29

Plurimetric Fuzz Types

Plurimetric Fuzz has:
primitives types: Unit, Real, etc.;
sum types: A⊕ B ;
product types: A⊗p B for p ∈ [1,+∞];
function types: A ⊸p B for p ∈ [1,+∞];
exponential types: !sA for s ∈ (0,+∞];
distribution types: ⃝A;

recursive types: µα.A.

19/29

Plurimetric Fuzz Types

Plurimetric Fuzz has:
primitives types: Unit, Real, etc.;
sum types: A⊕ B ;
product types: A⊗p B for p ∈ [1,+∞];
function types: A ⊸p B for p ∈ [1,+∞];
exponential types: !sA for s ∈ (0,+∞];
distribution types: ⃝A;
recursive types: µα.A.

20/29

Plurimetric Fuzz Contexts

Idea. We only allow one parameter per context, so these are lists again, but with an
additional annotation: (p) Γ.
We lose some flexibility, but we gain the subject reduction property.

Example

Tensor introduction rule

(p) Γ ⊢ a : A (p) ∆ ⊢ b : B
⊗I

(p) Contr (p; Γ;∆) ⊢ (a, b) : A⊗p B

Definition

Contr
(
p; [x : A]s1; [x : A]s2

)
= [x : A] p

√
sp1 +sp2

21/29

Weakening rules

Two rules allow for changing the parameter of a context:

(p) Γ ⊢ a : A Γ ≤ ∆ p ≥ q
≥ W

(q) ∆ ⊢ a : A

(p) Γ ⊢ a : A Γ ≤ ∆ p ≤ q
≤ W

(q) 21/p−1/q ·∆ ⊢ a : A

Lemma (Subtyping)

For all types A,B and parameters p ≤ q, there exists two terms le and ge such that

∅ ⊢ le : A⊗p B ⊸p A⊗q B and ∅ ⊢ ge :!21/p−1/q(A⊗q B) ⊸q A⊗p B

22/29

Examples

lists, defined as µα.Unit ⊕ (A⊗p α) generalising the list type constructor in Fuzz,
and functions on them (map, fold, take, etc.);
matrices, defined as (A⊗p . . .⊗p A)⊗1 . . .⊗1 (A⊗p . . .⊗p A) and functions on
them;
some machine-learning algorithms (gradient descent, k-means, k-nn clustering,
etc.).

23/29

Translation of Fuzz judgements

Theorem
For all parameters p, the image by the mapping P(p) of a (minimal) derivable
judgement in Fuzz is a (minimal) derivable judgement in Plurimetric Fuzz.

Example

[n : Nat]2 ⊢ (1, n, n) : Nat ⊗ Nat ⊗ Nat

translates to the following judgement for p = 2:

(2) [n : Nat]√2 ⊢ (1, n, n) : Nat ⊗2 Nat ⊗2 Nat

Remark
Not all Plurimetric Fuzz judgements can be obtained this way.

23/29

Translation of Fuzz judgements

Theorem
For all parameters p, the image by the mapping P(p) of a (minimal) derivable
judgement in Fuzz is a (minimal) derivable judgement in Plurimetric Fuzz.

Example

[n : Nat]2 ⊢ (1, n, n) : Nat ⊗ Nat ⊗ Nat

translates to the following judgement for p = 2:

(2) [n : Nat]√2 ⊢ (1, n, n) : Nat ⊗2 Nat ⊗2 Nat

Remark
Not all Plurimetric Fuzz judgements can be obtained this way.

24/29

For all parameters p, the following diagram commutes:

Der(Fuzz) Der(Plurimetric Fuzz)id

P(p)

F (p)

25/29

Translation of primitive operations

The translation of the logical connectives does not extend to the primitive
operations.

Example

For p = 2,
[x : Real]1 ⊢ x : Real [y : Real]1 ⊢ y : Real

+
[x : Real]1, [y : Real]1 ⊢ x + y : Real

does not soundly translate to

(2) [x : Real]1 ⊢ x : Real (2) [y : Real]1 ⊢ y : Real
+

(2) [x : Real]√1, [y : Real]√1 ⊢ x + y : Real

26/29

Type safety

Proposition (substitution)

If we have
(p) ∆ ⊢ a : A;
(p) Γ, [x : A]s ⊢ b : B ;

then we have
(p) Contr (p; Γ; s∆) ⊢ b[x 7→ a] : B

Theorem (subject reduction)

If (p) ∅ ⊢ a : A and a ↓ v , then (p) ∅ ⊢ v : A.

27/29

Conclusion

Contribution: a standard (i.e., not bunched) type system that extends Fuzz to Lp

metrics:
such that the subject reduction property is satisfied
with recursive types and a form of subtyping;
that can be translated from and to Fuzz.

Future work may include:
generalisation to other metrics on distributions;
automatic type checking and type inference;

27/29

Conclusion

Contribution: a standard (i.e., not bunched) type system that extends Fuzz to Lp

metrics:
such that the subject reduction property is satisfied
with recursive types and a form of subtyping;
that can be translated from and to Fuzz.

Future work may include:
generalisation to other metrics on distributions;
automatic type checking and type inference;

28/29

References I

Azevedo de Amorim, Arthur, Marco Gaboardi, Justin Hsu, Shin ya Katsumata, and
Ikram Cherigui (Jan. 2017). “A semantic account of metric preservation”. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. ACM. DOI: 10.1145/3009837.3009890.
Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith (2006).

“Calibrating Noise to Sensitivity in Private Data Analysis”. In: Theory of
Cryptography. Springer Berlin Heidelberg, pp. 265–284. DOI: 10.1007/11681878_14.
Dwork, Cynthia and Aaron Roth (2014). “The Algorithmic Foundations of

Differential Privacy”. In: Foundations and Trends in Theoretical Computer Science
9.3–4, pp. 211–407. DOI: 10.1561/0400000042.
Girard, Jean-Yves (1987). “Linear Logic”. In: Theoretical Computer Science 50.1,

pp. 1–102.

https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042

29/29

References II

Reed, Jason and Benjamin C. Pierce (Sept. 2010). “Distance Makes the Types Grow
Stronger: A Calculus for Differential Privacy”. In: Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming. ACM. DOI:
10.1145/1863543.1863568.
Wunder, June, Arthur Azevedo de Amorim, Patrick Baillot, and Marco Gaboardi

(2023). “Bunched Fuzz: Sensitivity for Vector Metrics”. In: Programming
Languages and Systems, pp. 451–478. DOI: 10.1007/978-3-031-30044-8_17.

https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1007/978-3-031-30044-8_17

	Introduction
	The Fuzz functional language and its extensions
	Plurimetric Fuzz
	References

