Plurimetric Fuzz: A Linear Type System for Bounding the Sensitivity of Vector Functions

2023 Days of the Scalp Working Group Formal Structures for Computation and Proofs

Victor Sannier Joint work with Patrick Baillot

Laboratoire CRIStAL de Lille

Université de Lille

Ínnin_

1. Introduction

What is the sensitivity of a function? What is differential privacy?

An analyst makes queries to a database.

Example

- What is the average salary of employees?
- How many patients have the flu?
- How old is Mr. Doe?
- What is the salary of Mrs. Smith?

How to protect the privacy of individuals?

One can find an individual by cross-referencing information.

Let

- D be a database,
- x be an individual,
- q be a query.

We want q(D) and $q(D \cup \{x\})$ to be indistinguishable.

A = > A = > A = > E 9 A P 5/29

Formal definition of differential privacy (Dwork et al. 2006)

Let

- $\blacksquare \mathcal{D}$ be the set of databases,
- X be an arbitrary space (usually Rⁿ),
- $f: \mathcal{D} \to X$ be a probabilistic algorithm.

Definition

 $f \text{ is } (\varepsilon, \delta)$ -differentially private if for all $D, D' \in \mathcal{D}$ such that $d(D, D') \leq 1$ and all $S \subseteq X$: $\Pr(f(D) \in S) \leq e^{\epsilon} \Pr(f(D') \in S) + \delta$

The distance between two databases is the number of rows that differ between them.

+ - + + # + + = + + = - 9 < e 6/29

Definition

A function $f: X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is said to be *k*-sensitive if for all $x, x' \in X$, we have $d_Y(f(x), f(x')) \leq k \cdot d_X(x, x')$.

It is a measure of the *specificity*, that is of the *continuity* of the function.

Definition

A function $f: X \to Y$ between two metric spaces (X, d_X) and (Y, d_Y) is said to be *k*-sensitive if for all $x, x' \in X$, we have $d_Y(f(x), f(x')) \leq k \cdot d_X(x, x')$.

It is a measure of the *specificity*, that is of the *continuity* of the function.

Remark

The sensitivity of a query depends on the metric chosen on the source and target spaces.

In order to guarantee differential privacy *automatically*, one can add noise to the result of the query.

Theorem (Dwork and Roth 2014)

Let $f: X \to \mathbb{R}^k$ be a k-sensitive function for the L^1 distance. The function $\mathcal{M}_{Laplace}(f, \epsilon)$ defined by:

$$\mathcal{M}_{Laplace}(f,\epsilon)(x) = \left(\pi_1(f(x)) + Y_1, \dots, \pi_n(f(x)) + Y_n\right)$$

+□ + + # + + = + + = + 9 < 0 8/29</p>

where the Y_i are i.i.d. according to a Laplace distribution of parameter k/ϵ is $(\epsilon, 0)$ -DP.

Reminder. $d_1(x, y) = \sum_{i=1}^k |x_i - y_i|.$

2. The Fuzz functional language and its extensions

Sensitivity is an affine resource which can be tracked by a type system.

Linear logic allows to reason about resources, state changes, etc.

Example

The \otimes connective allows to model the simultaneous presence of two resources, and $-\!\!\!\circ$ their transformation.

$$H_2 \otimes H_2 \otimes O_2 \multimap H_2 O \otimes H_2 O$$

Deduction rules model consumption, distribution, etc.

Fuzz (Reed and Pierce 2010) is a functional language with affine types to reason about the sensitivity of programs.

Example

$$\frac{[x:A]_{s_1} \vdash b:B \quad [x:A]_{s_2} \vdash c:C}{[x:A]_{s_1+s_2} \vdash (b,c):B \otimes C}$$

・ロト・オクト・モト・モト モ のへで 12/29

If $x \mapsto f(x)$ is s_1 -sensitive and $x \mapsto g(x)$ is s_2 -sensitive, then $x \mapsto (f(x), g(x))$ is $(s_1 + s_2)$ -sensitive.

Semantic soundness theorem (Azevedo de Amorim et al. 2017)

Types are interpreted as metric spaces,

Interpretation of types

- $A \otimes B$ is interpreted by the space $\llbracket A \rrbracket \times \llbracket B \rrbracket$ endowed with the metric d_1 ;
- A → B is interpreted by the space of 1-sensitive functions from [[A]] to [[B]] endowed with some metric d_→.

and terms as functions between them.

Theorem

If $[x : A]_s \vdash e : B$ is derivable, then the following function is s-sensitive:

$$\llbracket e \rrbracket : \llbracket A \rrbracket \longrightarrow \llbracket B \rrbracket \ x \longmapsto \llbracket e \rrbracket(x)$$

Motivation. Measure and track sensitivities for arbitrary L^p metrics, in particular to add noise according to different distributions:

- Laplace distribution for L¹,
- Gaussian distribution for *L*².

Reminder. For all $x, y \in \mathbb{R}^k$, $d_p(x, y) = \sqrt[p]{\sum_{i=1}^k |x_i - y_i|^p}$. For p = 2, this is the Euclidean metric.

・ロト・オアト・ミト・ミト ミ のへで 14/29

The main idea is to introduce type constructors \otimes_p and \multimap_p for every parameter $p \in [1, +\infty]$. If $(a, b), (a', b') \in A \otimes_p B$, then

$$d_{\otimes_p}ig((a,b),(a',b')ig)=\sqrt[p]{d_A(a,a')^p+d_B(b,b')^p}.$$

Example

Semantically, we have rotate : Real \otimes_2 Real $-\otimes_2$ Real \otimes_2 Real but we do *not* have rotate : Real \otimes_1 Real $-\otimes_1$ Real \otimes_1 Real

The contexts are no longer lists of annotated variables, but trees. For example, $\Gamma_{,p} \Delta$ is the following tree:

> ρ Γ Δ

and it is interpreted as $\llbracket \Gamma \rrbracket \otimes_{\rho} \llbracket \Delta \rrbracket$.

Example (Tensor introduction rule)

$$\frac{\Gamma \vdash a : A \quad \Delta \vdash b : B}{\Gamma_{,p} \Delta \vdash (a,b) : A \otimes_p B} \otimes I$$

Let \downarrow be the evaluation relation for a standard big-step operational semantics.

Property (subject reduction)

If $\emptyset \vdash a : A$ and $a \downarrow v$, then $\emptyset \vdash v : A$.

Bunched Fuzz does not satisfy the subject reduction property.

3. Plurimetric Fuzz

We extend Fuzz to L^p metrics using ordinary contexts to recover the subject reduction property.

Plurimetric Fuzz has:

- primitives types: Unit, Real, etc.;
- sum types: $A \oplus B$;
- product types: $A \otimes_p B$ for $p \in [1, +\infty]$;
- function types: $A \multimap_{p} B$ for $p \in [1, +\infty]$;
- exponential types: $!_s A$ for $s \in (0, +\infty]$;

Plurimetric Fuzz has:

- primitives types: Unit, Real, etc.;
- sum types: $A \oplus B$;
- product types: $A \otimes_p B$ for $p \in [1, +\infty]$;
- function types: $A \multimap_{p} B$ for $p \in [1, +\infty]$;
- exponential types: $!_s A$ for $s \in (0, +\infty]$;

■ distribution types: ○*A*;

Plurimetric Fuzz has:

- primitives types: Unit, Real, etc.;
- sum types: $A \oplus B$;
- product types: $A \otimes_p B$ for $p \in [1, +\infty]$;
- function types: $A \multimap_{p} B$ for $p \in [1, +\infty]$;
- exponential types: $!_s A$ for $s \in (0, +\infty];$

- distribution types: ○*A*;
- **recursive types**: $\mu \alpha$.*A*.

Plurimetric Fuzz Contexts

Idea. We only allow one parameter per context, so these are lists again, but with an additional annotation: (p) Γ .

We lose some flexibility, but we gain the subject reduction property.

Example

Tensor introduction rule

$$\frac{(p) \ \Gamma \vdash a : A \quad (p) \ \Delta \vdash b : B}{(p) \ \mathsf{Contr} \ (p; \Gamma; \Delta) \vdash (a, b) : A \otimes_p B} \otimes I$$

Definition

Contr
$$(p; [x : A]_{s1}; [x : A]_{s2}) = [x : A]_{p/s_1^{\rho} + s_2^{\rho}}$$

Two rules allow for changing the parameter of a context:

$$\frac{(p) \ \Gamma \vdash \mathsf{a} : A \quad \Gamma \leq \Delta \quad p \geq q}{(q) \ \Delta \vdash \mathsf{a} : A} \geq W \qquad \frac{(p) \ \Gamma \vdash \mathsf{a} : A \quad \Gamma \leq \Delta \quad p \leq q}{(q) \ 2^{1/p - 1/q} \cdot \Delta \vdash \mathsf{a} : A} \leq W$$

Lemma (Subtyping)

For all types A, B and parameters $p \leq q$, there exists two terms le and ge such that

 $\emptyset \vdash \mathsf{le} : A \otimes_p B \multimap_p A \otimes_q B$ and $\emptyset \vdash \mathsf{ge} :!_{2^{1/p-1/q}}(A \otimes_q B) \multimap_q A \otimes_p B$

- lists, defined as μα.Unit ⊕ (A ⊗_p α) generalising the list type constructor in Fuzz, and functions on them (map, fold, take, etc.);
- matrices, defined as (A ⊗_p ... ⊗_p A) ⊗₁ ... ⊗₁ (A ⊗_p ... ⊗_p A) and functions on them;
- some machine-learning algorithms (gradient descent, k-means, k-nn clustering, etc.).

★□▶★@▶★≣▶★≣▶ ≣ 900 22/29

Theorem

For all parameters p, the image by the mapping P(p) of a (minimal) derivable judgement in Fuzz is a (minimal) derivable judgement in Plurimetric Fuzz.

Example

 $[n: \mathsf{Nat}]_2 \vdash (1, n, n): \mathsf{Nat} \otimes \mathsf{Nat} \otimes \mathsf{Nat}$

translates to the following judgement for p = 2:

(2) $[n : \operatorname{Nat}]_{\sqrt{2}} \vdash (1, n, n) : \operatorname{Nat} \otimes_2 \operatorname{Nat} \otimes_2 \operatorname{Nat}$

Theorem

For all parameters p, the image by the mapping P(p) of a (minimal) derivable judgement in Fuzz is a (minimal) derivable judgement in Plurimetric Fuzz.

Example

 $[n: \mathsf{Nat}]_2 \vdash (1, n, n): \mathsf{Nat} \otimes \mathsf{Nat} \otimes \mathsf{Nat}$

translates to the following judgement for p = 2:

(2) $[n : \operatorname{Nat}]_{\sqrt{2}} \vdash (1, n, n) : \operatorname{Nat} \otimes_2 \operatorname{Nat} \otimes_2 \operatorname{Nat}$

Remark

Not all Plurimetric Fuzz judgements can be obtained this way.

For all parameters *p*, the following diagram commutes:

The translation of the logical connectives does not extend to the primitive operations.

Example For p = 2, $\frac{[x: \text{Real}]_1 \vdash x: \text{Real}}{[x: \text{Real}]_1 \vdash y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash y: \text{Real}}{[x: \text{Real}]_1, [y: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Real}]_1 \vdash x + y: \text{Real}}{[x: \text{Real}]_1 \vdash x + y: \text{Real}} + \frac{[x: \text{Re$ does not soundly translate to $\frac{(2) [x: \operatorname{Real}]_1 \vdash x: \operatorname{Real}}{(2) [x: \operatorname{Real}]_{\sqrt{1}}, [y: \operatorname{Real}]_{\sqrt{1}} \vdash x + y: \operatorname{Real}}$

AD + (B) + E) + E > E > 040 25/29

Proposition (substitution)

If we have

 $\blacksquare (p) \Delta \vdash a : A;$

(p)
$$\Gamma$$
, $[x : A]_s \vdash b : B;$

then we have

$$(p)$$
 Contr $(p; \Gamma; s\Delta) \vdash b[x \mapsto a] : B$

Theorem (subject reduction)

```
If (p) \emptyset \vdash a : A and a \downarrow v, then (p) \emptyset \vdash v : A.
```

Contribution: a standard (i.e., not bunched) type system that extends Fuzz to L^p metrics:

A = > A = > A = > A = - D < C 27/29
 </p>

- such that the subject reduction property is satisfied
- with recursive types and a form of subtyping;
- that can be translated from and to Fuzz.

Contribution: a standard (i.e., not bunched) type system that extends Fuzz to L^p metrics:

- such that the subject reduction property is satisfied
- with recursive types and a form of subtyping;
- that can be translated from and to Fuzz.

Future work may include:

- generalisation to other metrics on distributions;
- automatic type checking and type inference;

- Azevedo de Amorim, Arthur, Marco Gaboardi, Justin Hsu, Shin ya Katsumata, and Ikram Cherigui (Jan. 2017). "A semantic account of metric preservation". In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. ACM. DOI: 10.1145/3009837.3009890.
- Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith (2006).
 "Calibrating Noise to Sensitivity in Private Data Analysis". In: *Theory of* Cryptography. Springer Berlin Heidelberg, pp. 265–284. DOI: 10.1007/11681878_14.
- Dwork, Cynthia and Aaron Roth (2014). "The Algorithmic Foundations of Differential Privacy". In: Foundations and Trends in Theoretical Computer Science 9.3-4, pp. 211-407. DOI: 10.1561/0400000042.

* - > * B > * E > * E > 0 C 28/29

Girard, Jean-Yves (1987). "Linear Logic". In: *Theoretical Computer Science* 50.1, pp. 1–102.

- Reed, Jason and Benjamin C. Pierce (Sept. 2010). "Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy". In: Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming. ACM. DOI: 10.1145/1863543.1863568.
- Wunder, June, Arthur Azevedo de Amorim, Patrick Baillot, and Marco Gaboardi (2023). "Bunched Fuzz: Sensitivity for Vector Metrics". In: *Programming Languages and Systems*, pp. 451–478. DOI: 10.1007/978-3-031-30044-8_17.