
Finitary semantics and regular languages of λ-terms

Vincent Moreau, joint work with Tito Nguyễn

GT SCALP

November the 27th, 2023

IRIF, Université Paris Cité, Inria Paris



Introduction & motivations



The Church encoding

Any finite word can be encoded as a λ-term through the Church encoding:

abb ∈ {a, b}∗ ⇝ λ(a : o ⇒ o).λ(b : o ⇒ o).λ(e : o). b (b (a e)) .

The type of words over a two-letter alphabet {a, b} is

Church{a,b} := (o ⇒ o)︸ ︷︷ ︸
a

⇒ (o ⇒ o)︸ ︷︷ ︸
b

⇒ o︸︷︷︸
input

⇒ o︸︷︷︸
output

.

More generally, any finite ranked tree can be encoded as a λ-term:

e e

a a e

⇝ λ(a : o ⇒ o ⇒ o).λ(e : o).a e (a e e)

→ The simply typed λ-calculus generalizes finite words and trees.

1/15



Languages of λ-terms: the semantic side

If Q is a finite set, then any t ∈ Λβη⟨Church{a,b}⟩ can be interpreted as

JtKQ ∈ (Q ⇒ Q) ⇒ (Q ⇒ Q) ⇒ Q ⇒ Q .

For all δa : Q → Q, δb : Q → Q and q0 ∈ Q, then

Jλa.λb.λc . b (b (a c))KQ(δa, δb, q0) = δb(δb(δa(q0))) ,

so interpreting the encoding of a word amounts to running an automaton over it. The

same observation holds for finite ranked trees.

→ Semantics of λ-calculus in finite sets generalize the interpretation in DFAs.

2/15



Language λ-terms: the syntactic side

We consider the type

Bool := o ⇒ o ⇒ o

whose only inhabitants, up to βη-conversion, are

true := λ(x : o).λ(y : o).x and false := λ(x : o).λ(y : o).y .

An automaton can be encoded as a λ-term

r ∈ Λβη⟨((B ⇒ B) ⇒ (B ⇒ B) ⇒ B ⇒ B) ⇒ Bool⟩

for some simple type B representing the set of finite states.

→ Regular languages can be recovered syntactically from the λ-calculus.

3/15



This work

Both semantic and syntactic languages of λ-terms yield back regular languages for the

simple type of finite words.

→ We show that semantic and syntactic languages of λ-terms coincide at

every simple type, demonstrating its robustness.

We can reason by proving the three following implications:

Regular for some finitary CCC

Syntactically regular Regular for FinSet
We will see this!

To achive this, we will crucially use a new technique called squeezing.

4/15



Languages of λ-terms



The universal property of λ-terms

The category Lam has as objects the simple types built on the base type o and as

morphisms from A to B the λ-terms of type A ⇒ B. It is the free CCC on one object:

Lam

1 C

o

c

J−Kc for any CCC C and object c .

This unique CCC functor J−Kc : Lam → C verifies the following equalities:

JA ⇒ BKc = JAKc ⇒ JBKc JoKc = c

JA× BKc = JAKc × JBKc J1Kc = 1

The action on morphisms restricts to a function on closed λ-terms

J−Kc : Λβη⟨A⟩︸ ︷︷ ︸
=Lam(1,A)

−→ C(1, JAKc) .

5/15



Semantic languages of λ-terms

In the case of words, any homomorphism φ : Σ∗ → M into a finite monoid, together

with a subset F ⊆ M, induces the regular language of finite words

LF := {w ∈ Σ∗ | φ(w) ∈ F} .

The notion of regular language of λ-terms has been introduced by Salvati.

Let A be a simple type. For any object c and any subset F ⊆ C(1, JAKc), we define

LF := {t ∈ Λβη⟨A⟩ | JtKc ∈ F} .

Definition. A language of λ-terms is recognizable by C if it is of the form LF .

Interpreting in FinSet yields the deterministic automata semantics.

6/15



Syntactic languages of λ-terms

When we take C = Lam itself, any choice of a simple type B gives a CCC functor

Lam

1 Lam

o

B

(−)[B]

If A is a simple type, then A[B] is the substitution of B for o in A. On λ-terms,

(λ(x : A).t) [B] = λ(x : A[B]).t[B] (t u) [B] = t[B] u[B] x [B] = x

For any simple type B, any λ-term r : A[B] ⇒ Bool induces a language

Lr := {t ∈ Λβη⟨A⟩ | r t[B] =βη true} .

Definition. A language of λ-terms is syntactically regular if it is of the form Lr .

7/15



Logical relations and squeezing



Sconing in a nutshell: the unary case

Definition. Let C be a CCC. The category P(C) of logical predicates has

• as objects the pairs (c,X ) where X ⊆ C(1, c),

• as morphisms from (c,X ) to (d ,Y ) the f ∈ C(c, d) such that for all x ∈ C(1, c),

if x ∈ X , then f ◦ x ∈ Y .

Then, P(C ) is a CCC and the forgetful functor P(C) → C respects the CCC structure.

Lam

1 P(C) C
(c,X )

J−K(c,X )

J−Kc

o commutes for any object (c ,X ) of P(C).

More concretely, if A is any simple type and (c,X ) is in P(C), then

JAK(c,X ) = (JAKc ,X
A) for some XA ⊆ C(1, JAKc) .

8/15



Sconing in a nutshell: the binary case

Property. Let C and D be CCCs. The category P(C×D) has

• as objects the triples (c, d ,⊩) where ⊩ ⊆ C(1, c)×D(1, d),

• as morphisms from (c , d ,⊩) to (c ′, d ′,⊩′) the pairs (f , g) which are parametric:

for all x ∈ C(1, c) and y ∈ D(1, d), if x ⊩ y , then f ◦ x ⊩′ g ◦ y . .

The same universal property of Lam gives directly that if A is a simple type, then

JAK(c,d ,⊩) = (JAKc , JAKd ,⊩
A) for some ⊩A ⊆ C(1, JAKc)×D(1, JAKd)

and we have a lemma of logical relations: for all t ∈ Λβη⟨A⟩,

JtKc ⊩A JtKd .

9/15



Squeezing structure

Definition. A squeezing structure on a CCC C is the data of

• two wide subcategories Cleft and Cright of C with associated notations
l−→ and

r−→
for morphisms, which are stable under finite cartesian products and such that for

all u : cl
l−→ c ′l and v : cr

r−→ c ′r ,

v ⇒ u : c ′r ⇒ cl
l−→ cr ⇒ c ′l and u ⇒ v : c ′l ⇒ cr

r−→ cl ⇒ c ′r .

• for every object c of C, two objects Lc and Rc of C such that there exists

morphisms:

L1
l−→ 1 Lc×c ′

l−→ Lc × Lc ′ Lc⇒c ′
l−→ Rc ⇒ Lc ′

1
r−→ R1 Rc × Rc ′

r−→ Rc×c ′ Lc ⇒ Rc ′
r−→ Rc⇒c ′ .

10/15



The squeezing category

If C comes with a squeezing structure, then we define Sqz(C) to be the full

subcategory of C whose objects are the c such that there exists morphisms

u : Lc
l−→ c and v : c

r−→ Rc .

Theorem. Sqz(C) is a sub-CCC of C.

Therefore, for any object c of Sqz(C) and any type A, there exists maps

uA : LJAKc
l−→ JAKc and v : JAKc

r−→ RJAKc .

11/15



Types, finite sets and their squeezing structure

We consider the category P(Lam× FinSet), whose objects are triples (B,Q,⊩).

We have a functor F(−) : FinSet → Lam defined as

FQ := o
|Q| ⇒ o

and we note ∼Q the graph of the bijection Λβη⟨FQ⟩ ≃ Q.

For any (B,Q,⊩), we define L(B,Q,⊩) and R(B,Q,⊩) to be (FQ ,Q,∼Q). We define left

and right morphisms to be pairs (t, IdQ), which gives a squeezing structure.

By taking (FQ ,Q,∼Q) as the interpretation of o, we get for any type A two λ-terms

uA : FJAKQ −→ A[FQ ] and vA : A[FQ ] −→ FJAKQ

such that (uA, IdQ) and (vA, IdQ) are morphisms of logical relations.

12/15



A plan of the situation

Lam

1

Sqz(P(Lam× FinSet))

Lam P(Lam× FinSet) FinSet

o

(B,Q,⊩)
B Q

J−K(B,Q,⊩)(−)[B] J−KQ

13/15



Encoding semantic languages into syntactic ones

Let F ⊆ JAKQ represented by χ : JAKQ → 2 = {⊥,⊤}. It induces a morphism

(Fχ, χ) : (FJAKQ , JAKQ ,∼JAKQ ) −→ (F2, 2,∼2)

By precomposing with (vA, IdJAKQ ), we obtain a morphism

(Fχ ◦ vA︸ ︷︷ ︸
r

, χ) : (A[FQ ], JAKQ ,∼JAKQ ) −→ (F2, 2,∼2)

For any t : A, we then have that (Fχ ◦ vA) t[FQ ] ∼2 χ(JtKQ), so

(Fχ ◦ vA) t[FQ ] =βη true ⇐⇒ JtKQ ∈ F .

Theorem. Any FinSet-recognizable language is syntactically regular.

14/15



Conclusion

Future work:

• Finitary intensional models of the simply typed λ-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.

• Study different calculi, e.g. linear, polymorphic, with effects.

• Study what kind of conditions can be encoded as regular languages of

higher-order terms.

Thank you for your attention!

Any questions?

15/15



Conclusion

Future work:

• Finitary intensional models of the simply typed λ-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.

• Study different calculi, e.g. linear, polymorphic, with effects.

• Study what kind of conditions can be encoded as regular languages of

higher-order terms.

Thank you for your attention!

Any questions?

15/15



Bibliography

[HK96] Gerd G. Hillebrand and Paris C. Kanellakis. “On the Expressive Power of

Simply Typed and Let-Polymorphic Lambda Calculi”. In: Proceedings,

11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New

Jersey, USA, July 27-30, 1996. IEEE Computer Society, 1996, pp. 253–263. doi:

10.1109/LICS.1996.561337.

[Mel17] Paul-André Melliès. “Higher-order parity automata”. In: Proceedings of the

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,

Reykjavik, Iceland, 2017. 2017, pp. 1–12.

[Sal09] Sylvain Salvati. “Recognizability in the Simply Typed

Lambda-Calculus”. In: 16th Workshop on Logic, Language, Information and

Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan:

Springer, 2009, pp. 48–60.

https://doi.org/10.1109/LICS.1996.561337

	Introduction & motivations
	Languages of -terms
	Logical relations and squeezing
	Appendix

