Finitary semantics and regular languages of \-terms

Vincent Moreau, joint work with Tito Nguyén

GT SCALP
November the 27th, 2023

IRIF, Université Paris Cité, Inria Paris

Introduction & motivations

The Church encoding

Any finite word can be encoded as a A-term through the Church encoding:

abbe {a,b}* ~ ANa:o=o0)Ab:0o=0)Ae:0).b(b(ae)) .

The type of words over a two-letter alphabet {a, b} is

Churchf,py = (0=o0)=(0c=0)= o = o .
) ! ~— ~—
3 b input output

More generally, any finite ranked tree can be encoded as a A-term:
e e
/ / ~ Ma:o=o0=0)\e:0)ae(aee)
a——a——e

— The simply typed)-calculus generalizes finite words and trees.

1/15

Languages of \-terms: the semantic side

If @ is a finite set, then any t € Ag,(Churchy, »1) can be interpreted as

[tlg € (@=Q)=Q=Q)=Q=>Q.

Foralld,: Q = Q, 0p: @ = @ and gg € Q, then
[Na.Ab.Ac.b(b(ac))]o(da06,90) = 65(05(da(0))) .

so interpreting the encoding of a word amounts to running an automaton over it. The

same observation holds for finite ranked trees.

— Semantics of \-calculus in finite sets generalize the interpretation in DFAs.

2/15

Language)\-terms: the syntactic side

We consider the type
Bool = o=o0=o0

whose only inhabitants, up to Sn-conversion, are
true := A(x:0).A(y:o).x and false := A(x:0).A(y:0).y.
An automaton can be encoded as a A-term
emc~ WIRINEE Bil=aiB=aB) =5 — BV="Bool}

for some simple type B representing the set of finite states.

— Regular languages can be recovered syntactically from the \-calculus.

3/15

This work

Both semantic and syntactic languages of A-terms yield back regular languages for the

simple type of finite words.

— We show that semantic and syntactic languages of \-terms coincide at

every simple type, demonstrating its robustness.

We can reason by proving the three following implications:

Regular for some finitary CCC

Syntactically regular TR TR Regular for FinSet

To achive this, we will crucially use a new technique called squeezing.
4/15

Languages of \-terms

The universal property of \-terms

The category Lam has as objects the simple types built on the base type © and as
morphisms from A to B the A-terms of type A = B. It is the free CCC on one object:

Lam
q{ \\\[H]c for any CCC C and object c.

This unique CCC functor [—]_ : Lam — C verifies the following equalities:
[A= Bl. = [Al. = [Bl. [e]. = ¢
[Ax 8], = [Al x 8], [, =1
The action on morphisms restricts to a function on closed A-terms

[Fle = AsplA) — CL[AL) -
——

—Lam(1,A) 5/15

Semantic languages of \-terms

In the case of words, any homomorphism ¢ : ¥* — M into a finite monoid, together
with a subset F C M, induces the regular language of finite words

L = {weX*|o(w)eF}.

The notion of regular language of A-terms has been introduced by Salvati.

Let A be a simple type. For any object ¢ and any subset F C C(1, [A],), we define
Lr = {tehs(A [t F) .

Definition. A language of A-terms is recognizable by C if it is of the form L.

Interpreting in FinSet yields the deterministic automata semantics.

6/15

Syntactic languages of \-terms

When we take C = Lam itself, any choice of a simple type B gives a CCC functor

Lam
q \\\(—)[B]

~

oL

1T>Lam

If Ais a simple type, then A[B] is the substitution of B for o in A. On A-terms,

(A(x: A).t)[B] = Mx:A[B]).t[B] (tu)[B] = t[B]u[B] x[B] = x

For any simple type B, any A-term r : A[B] = Bool induces a language

L, et ehgalA) | t[B] =g, truel.

Definition. A language of A-terms is syntactically regular if it is of the form L,.

7/15

Logical relations and squeezing

Sconing in a nutshell: the unary case

Definition. Let C be a CCC. The category P(C) of logical predicates has

e as objects the pairs (¢, X) where X C C(1,¢),

e as morphisms from (c, X) to (d, Y) the f € C(c, d) such that for all x € C(1, ¢),

if xe X, thenfoxeY.

Then, P(C) is a CCC and the forgetful functor P(C) — C respects the CCC structure.

Lam
T m‘ commutes for any object (¢, X) of P(C).

1 T P(C) — C

More concretely, if A is any simple type and (¢, X) is in P(C), then
[[A]](c,x) = ([Al., X" for some X* C C(1, [A],) -

8/15

Sconing in a nutshell: the binary case

Property. Let C and D be CCCs. The category P(C x D) has

e as objects the triples (c, d,IF) where IF C C(1,c) x D(1,d),

e as morphisms from (c, d,I) to (¢’, d’,I’) the pairs (f, g) which are parametric:

for all x € C(1,¢) and y € D(1,d), if xIFy, then foxIFH goy..
The same universal property of Lam gives directly that if A is a simple type, then
[Aleas, = (Al [Alg) forsome 1K C C(L,[A]) x D(L, [Al,)

and we have a lemma of logical relations: for all t € Ag, (A),

[P 5 P

9/15

Squeezing structure

Definition. A squeezing structure on a CCC C is the data of

. . : . . [
e two wide subcategories Cier and Ciigne of C with associated notations — and et
for morphisms, which are stable under finite cartesian products and such that for
[
all w: ¢/ — ¢ and o c B

| r
v=u:c=¢—c¢=¢c and TERE b — [AEES . N . ()

e for every object ¢ of C, two objects L. and R, of C such that there exists

morphisms:
s s g Lo — S R
15 Ry Re X R — Rexer Le = Ry — Rewser .

10/15

The squeezing category

If C comes with a squeezing structure, then we define Sqz(C) to be the full
subcategory of C whose objects are the ¢ such that there exists morphisms

[
e B E. —3e and vkl | O e

Theorem. Sqz(C) is a sub-CCC of C.

Therefore, for any object ¢ of Sqz(C) and any type A, there exists maps

ua L, Al and v o [AlL -5 Ry, -

11/15

Types, finite sets and their squeezing structure

We consider the category P(Lam x FinSet), whose objects are triples (B, Q, IF).
We have a functor F(_y : FinSet — Lam defined as

[Fell &= ol = o
and we note ~¢q the graph of the bijection Ag,(Fq) ~ Q.

For any (B, Q,IF), we define L(g g) and R(g,q,+) to be (Fq, Q,~q). We define left
and right morphisms to be pairs (t,ldg), which gives a squeezing structure.

By taking (Fq, Q,~¢q) as the interpretation of o, we get for any type A two A-terms
ua ; F[[A]]Q S— A[FQ] and VA : A[FQ] — F[[A]]Q
such that (ua,ldg) and (va,ldg) are morphisms of logical relations.

12/15

A plan of the situation

(B,Q,F)

Sqz(P(Lam X FinSet))

Lam «— P(Lam x FinSet) —— FinSet

13/15

Encoding semantic languages into syntactic ones
Let F C [A]o represented by x : [A]o — 2 = {1, T}. It induces a morphism
(Fox) = (Fag, [Ale ~pal,) — (F2,2,~2)
By precomposing with (va, Id[[A]]Q), we obtain a morphism

(Fxova,x) : (A[FQ]aHA]]Qv'V[[A]]Q) Sra e, ~2)
~—

r

For any t : A, we then have that (F, o va) t[Fq] ~2 x([t]g). so

(FXOVA) t[FQ] =gy true <— [[t]]Q e F.

Theorem. Any FinSet-recognizable language is syntactically regular.

14/15

Conclusion

Future work:

e Finitary intensional models of the simply typed A-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.
e Study different calculi, e.g. linear, polymorphic, with effects.

e Study what kind of conditions can be encoded as regular languages of

higher-order terms.

15/15

Conclusion

Future work:

e Finitary intensional models of the simply typed A-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.
e Study different calculi, e.g. linear, polymorphic, with effects.

e Study what kind of conditions can be encoded as regular languages of

higher-order terms.

Thank you for your attention!

Any questions?

15/15

Bibliography

[HK96]

[Mel17]

[Sal0g]

Gerd G. Hillebrand and Paris C. Kanellakis. “On the Expressive Power of
Simply Typed and Let-Polymorphic Lambda Calculi’. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, July 27-30, 1996. |IEEE Computer Society, 1996, pp. 253-263. DOI:
10.1109/LICS.1996.561337.

Paul-André Mellies. “Higher-order parity automata”. In: Proceedings of the
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, 2017. 2017, pp. 1-12.

Sylvain Salvati. “Recognizability in the Simply Typed
Lambda-Calculus”. In: 16th Workshop on Logic, Language, Information and
Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan:
Springer, 2009, pp. 48—-60.

https://doi.org/10.1109/LICS.1996.561337

	Introduction & motivations
	Languages of -terms
	Logical relations and squeezing
	Appendix

