Finitary semantics and regular languages of λ -terms

Vincent Moreau, joint work with Tito Nguyễn

GT SCALP November the 27th. 2023

IRIF, Université Paris Cité, Inria Paris

Introduction & motivations

The Church encoding

Any finite word can be encoded as a λ -term through the Church encoding: $abb \in \{a, b\}^* \quad \rightsquigarrow \quad \lambda(a : o \Rightarrow o).\lambda(b : o \Rightarrow o).\lambda(e : o).b(b(ae))$. The type of words over a two-letter alphabet $\{a, b\}$ is

More generally, any finite ranked tree can be encoded as a λ -term:

ightarrow The simply typed λ -calculus generalizes finite words and trees.

Languages of λ -terms: the semantic side

If Q is a finite set, then any $t \in \Lambda_{\beta\eta} \langle \mathsf{Church}_{\{a,b\}} \rangle$ can be interpreted as

$$\llbracket t \rrbracket_Q \in (Q \Rightarrow Q) \Rightarrow (Q \Rightarrow Q) \Rightarrow Q \Rightarrow Q$$

For all $\delta_a: Q \rightarrow Q$, $\delta_b: Q \rightarrow Q$ and $q_0 \in Q$, then

$$\llbracket \lambda a. \lambda b. \lambda c. b(b(ac)) \rrbracket_Q(\delta_a, \delta_b, q_0) = \delta_b(\delta_b(\delta_a(q_0))) ,$$

so interpreting the encoding of a word amounts to running an automaton over it. The same observation holds for finite ranked trees.

 \rightarrow Semantics of λ -calculus in finite sets generalize the interpretation in DFAs.

Language λ -terms: the syntactic side

We consider the type

Bool := $0 \Rightarrow 0 \Rightarrow 0$

whose only inhabitants, up to $\beta\eta$ -conversion, are

true := $\lambda(x: \mathfrak{o}) \cdot \lambda(y: \mathfrak{o}) \cdot x$ and false := $\lambda(x: \mathfrak{o}) \cdot \lambda(y: \mathfrak{o}) \cdot y$.

An automaton can be encoded as a λ -term

$$r \in \Lambda_{\beta\eta} \langle ((B \Rightarrow B) \Rightarrow (B \Rightarrow B) \Rightarrow B \Rightarrow B) \Rightarrow \mathsf{Bool} \rangle$$

for some simple type B representing the set of finite states.

 \rightarrow Regular languages can be recovered syntactically from the λ -calculus.

This work

Both semantic and syntactic languages of λ -terms yield back regular languages for the simple type of finite words.

 \rightarrow We show that semantic and syntactic languages of λ -terms coincide at every simple type, demonstrating its robustness.

We can reason by proving the three following implications:

Regular for some finitary CCC

To achive this, we will crucially use a new technique called squeezing.

Languages of λ -terms

The universal property of $\lambda\text{-terms}$

The category **Lam** has as objects the simple types built on the base type o and as morphisms from A to B the λ -terms of type $A \Rightarrow B$. It is the free CCC on one object:

This unique CCC functor $\llbracket - \rrbracket_c : \mathbf{Lam} \to \mathbf{C}$ verifies the following equalities: $\llbracket A \Rightarrow B \rrbracket_c = \llbracket A \rrbracket_c \Rightarrow \llbracket B \rrbracket_c \qquad \llbracket \bullet \rrbracket_c = c$ $\llbracket A \times B \rrbracket_c = \llbracket A \rrbracket_c \times \llbracket B \rrbracket_c \qquad \llbracket 1 \rrbracket_c = 1$

The action on morphisms restricts to a function on closed λ -terms

$$\llbracket - \rrbracket_c : \bigwedge_{\beta \eta \langle A \rangle} \longrightarrow \mathsf{C}(1, \llbracket A \rrbracket_c) .$$

Semantic languages of λ -terms

In the case of words, any homomorphism $\varphi : \Sigma^* \to M$ into a finite monoid, together with a subset $F \subseteq M$, induces the regular language of finite words

$$L_F$$
 := { $w \in \Sigma^* \mid \varphi(w) \in F$ }.

The notion of regular language of λ -terms has been introduced by Salvati.

Let A be a simple type. For any object c and any subset $F \subseteq \mathbf{C}(1, \llbracket A \rrbracket_c)$, we define

$$L_{F}$$
 := $\{t\in \Lambda_{eta\eta}\langle A
angle \mid \llbracket t
rbracket_{c}\in F\}$.

Definition. A language of λ -terms is **recognizable by C** if it is of the form L_F . Interpreting in **FinSet** yields the deterministic automata semantics.

Syntactic languages of λ -terms

When we take C = Lam itself, any choice of a simple type B gives a CCC functor

If A is a simple type, then A[B] is the substitution of B for \circ in A. On λ -terms, $(\lambda(x : A).t)[B] = \lambda(x : A[B]).t[B]$ $(t \ u)[B] = t[B] \ u[B]$ x[B] = xFor any simple type B, any λ -term $r : A[B] \Rightarrow$ Bool induces a language

$$L_r \quad := \quad \{t \in \Lambda_{eta\eta} \langle A
angle \mid r \; t[B] \; =_{eta\eta} \; ext{true} \} \; .$$

Definition. A language of λ -terms is syntactically regular if it is of the form L_r .

Logical relations and squeezing

Sconing in a nutshell: the unary case

Definition. Let **C** be a CCC. The category P(C) of logical predicates has

- as objects the pairs (c, X) where $X \subset \mathbf{C}(1, c)$,
- as morphisms from (c, X) to (d, Y) the $f \in \mathbf{C}(c, d)$ such that for all $x \in \mathbf{C}(1, c)$,

if $x \in X$, then $f \circ x \in Y$.

Then, P(C) is a CCC and the forgetful functor $P(C) \rightarrow C$ respects the CCC structure.

More concretely, if A is any simple type and (c, X) is in P(C), then

 $\llbracket A \rrbracket_{(c,X)} = (\llbracket A \rrbracket_c, X^A) \quad \text{for some } X^A \subseteq \mathbf{C}(1, \llbracket A \rrbracket_c) .$

Sconing in a nutshell: the binary case

Property. Let **C** and **D** be CCCs. The category $P(\mathbf{C} \times \mathbf{D})$ has

- as objects the triples (c, d, \Vdash) where $\Vdash \subseteq C(1, c) \times D(1, d)$,
- as morphisms from (c, d, \Vdash) to (c', d', \Vdash') the pairs (f, g) which are parametric:

for all $x \in \mathbf{C}(1, c)$ and $y \in \mathbf{D}(1, d)$, if $x \Vdash y$, then $f \circ x \Vdash' g \circ y$.

The same universal property of Lam gives directly that if A is a simple type, then

 $\llbracket A \rrbracket_{(c,d,\Vdash)} = (\llbracket A \rrbracket_c, \llbracket A \rrbracket_d, \Vdash^A) \text{ for some } \Vdash^A \subseteq \mathsf{C}(1, \llbracket A \rrbracket_c) \times \mathsf{D}(1, \llbracket A \rrbracket_d)$

and we have a lemma of logical relations: for all $t \in \Lambda_{\beta\eta}\langle A \rangle$,

$$\llbracket t \rrbracket_c \quad \Vdash^A \quad \llbracket t \rrbracket_d .$$

Squeezing structure

Definition. A squeezing structure on a CCC C is the data of

• two wide subcategories C_{left} and C_{right} of C with associated notations \xrightarrow{l} and \xrightarrow{r} for morphisms, which are stable under finite cartesian products and such that for all $u : c_l \xrightarrow{l} c'_l$ and $v : c_r \xrightarrow{r} c'_r$,

$$v \Rightarrow u : c'_r \Rightarrow c_l \stackrel{l}{\longrightarrow} c_r \Rightarrow c'_l$$
 and $u \Rightarrow v : c'_l \Rightarrow c_r \stackrel{r}{\longrightarrow} c_l \Rightarrow c'_r$.

 for every object c of C, two objects L_c and R_c of C such that there exists morphisms:

$$\begin{array}{ccc} L_1 \stackrel{l}{\longrightarrow} 1 & & L_{c \times c'} \stackrel{l}{\longrightarrow} L_c \times L_{c'} & & L_{c \Rightarrow c'} \stackrel{l}{\longrightarrow} R_c \Rightarrow L_{c'} \\ 1 \stackrel{r}{\longrightarrow} R_1 & & R_c \times R_{c'} \stackrel{r}{\longrightarrow} R_{c \times c'} & & L_c \Rightarrow R_{c'} \stackrel{r}{\longrightarrow} R_{c \Rightarrow c'} \,. \end{array}$$

If C comes with a squeezing structure, then we define Sqz(C) to be the full subcategory of C whose objects are the *c* such that there exists morphisms

$$u : L_c \xrightarrow{\mathsf{l}} c \quad \text{and} \quad v : c \xrightarrow{\mathsf{r}} R_c .$$

Theorem. Sqz(C) is a sub-CCC of C.

Therefore, for any object c of Sqz(C) and any type A, there exists maps

$$u_A : L_{\llbracket A \rrbracket_c} \xrightarrow{\mathsf{I}} \llbracket A \rrbracket_c \text{ and } v : \llbracket A \rrbracket_c \xrightarrow{\mathsf{r}} R_{\llbracket A \rrbracket_c}$$

Types, finite sets and their squeezing structure

We consider the category $P(\text{Lam} \times \text{FinSet})$, whose objects are triples (B, Q, \Vdash) . We have a functor $F_{(-)}$: FinSet \rightarrow Lam defined as

$$F_Q := o^{|Q|} \Rightarrow o$$

and we note \sim_Q the graph of the bijection $\Lambda_{\beta\eta}\langle F_Q \rangle \simeq Q$.

For any (B, Q, \Vdash) , we define $L_{(B,Q, \Vdash)}$ and $R_{(B,Q, \Vdash)}$ to be (F_Q, Q, \sim_Q) . We define left and right morphisms to be pairs (t, Id_Q) , which gives a squeezing structure.

By taking (F_Q, Q, \sim_Q) as the interpretation of o, we get for any type A two λ -terms

$$u_A : F_{\llbracket A \rrbracket_Q} \longrightarrow A[F_Q]$$
 and $v_A : A[F_Q] \longrightarrow F_{\llbracket A \rrbracket_Q}$
such that $(u_A, \operatorname{Id}_Q)$ and $(v_A, \operatorname{Id}_Q)$ are morphisms of logical relations.

A plan of the situation

Encoding semantic languages into syntactic ones

Let $F \subseteq \llbracket A \rrbracket_Q$ represented by $\chi : \llbracket A \rrbracket_Q \to 2 = \{ \bot, \top \}$. It induces a morphism $(F_{\chi}, \chi) : (F_{\llbracket A \rrbracket_Q}, \llbracket A \rrbracket_Q, \sim_{\llbracket A \rrbracket_Q}) \longrightarrow (F_2, 2, \sim_2)$

By precomposing with $(v_A, Id_{\llbracket A \rrbracket_O})$, we obtain a morphism

$$(\underbrace{F_{\chi} \circ v_{A}}_{r}, \chi) \quad : \quad (A[F_{Q}], \llbracket A \rrbracket_{Q}, \sim_{\llbracket A \rrbracket_{Q}}) \quad \longrightarrow \quad (F_{2}, 2, \sim_{2})$$

For any t : A, we then have that $(F_{\chi} \circ v_A) t[F_Q] \sim_2 \chi(\llbracket t \rrbracket_Q)$, so

$$(F_{\chi} \circ v_A) t[F_Q] =_{\beta\eta} \text{true} \iff \llbracket t \rrbracket_Q \in F.$$

Theorem. Any FinSet-recognizable language is syntactically regular.

Conclusion

Future work:

- Finitary intensional models of the simply typed λ -calculus, e.g. sequential algorithms, some qualitative models of linear logic.
- Study different calculi, e.g. linear, polymorphic, with effects.
- Study what kind of conditions can be encoded as regular languages of higher-order terms.

Conclusion

Future work:

- Finitary intensional models of the simply typed λ -calculus, e.g. sequential algorithms, some qualitative models of linear logic.
- Study different calculi, e.g. linear, polymorphic, with effects.
- Study what kind of conditions can be encoded as regular languages of higher-order terms.

Thank you for your attention! Any questions?

Bibliography

[HK96] Gerd G. Hillebrand and Paris C. Kanellakis. "On the Expressive Power of Simply Typed and Let-Polymorphic Lambda Calculi". In: Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996. IEEE Computer Society, 1996, pp. 253–263. DOI: 10.1109/LICS.1996.561337.

[Mel17] Paul-André Melliès. "Higher-order parity automata". In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 2017. 2017, pp. 1–12.

[Sal09] Sylvain Salvati. "Recognizability in the Simply Typed Lambda-Calculus". In: 16th Workshop on Logic, Language, Information and Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan: Springer, 2009, pp. 48–60.