Stéphane Aubry

Franck Butelle, Sami Evangelista, Micaela Mayero

LIPN - USPN (Paris 13) - France

GDR Scalp&Vérif, 19/11/2024, Lille

Motivations

- Formal proof of a critical verification algorithm
- Goal: CNDFS algorithm (Concurrent Nested Depth-First Search)
- First step: NDFS algorithm (Nested Depth-First Search)
- State of the art:
 - a parallel NDFS algorithm (Oortwijn & al, [TACAS2020]) proved in Vercors
 - Formal Proofs of Tarjan's Algorithm in Why3, Coq, and Isabelle (Chen & al)
- Interaction between verification, concurrency and formal proof research areas

LTL model checking using the NDFS algorithm

Formal proofs Tool choice Vercors

F*

CNDFS

Conclusion and future work

Towards an automated proof of the CNDFS algorithm └─LTL model checking using the NDFS algorithm

► accepting cycle ⇔ bad behaviour of the system

4/23

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Towards an automated proof of the CNDFS algorithm └─LTL model checking using the NDFS algorithm

NDFS algorithm — Principle

- perform nested depth-first searches:
 - a blue dfs looks for accepting states
 - before backtracking from an accepting state: initiate a red DFS
 - the red DFS looks for cycles around accepting states
- mark states to detect cycles and remember visited states:
 - cyan \Leftrightarrow state on the search stack of the blue DFS
 - ▶ blue ⇔ visited and backtracked state from the blue DFS
 - red ⇔ visited state from the red DFS
- an accepting cycle is found when the red DFS reaches a cyan state

5/23

Towards an automated proof of the CNDFS algorithm LTL model checking using the NDFS algorithm

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

Towards an automated proof of the CNDFS algorithm LTL model checking using the NDFS algorithm

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

 $\frac{\mathsf{red}}{\mathsf{the}} \Leftrightarrow \frac{\mathsf{entered}}{\mathsf{stack}}$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

Towards an automated proof of the CNDFS algorithm LTL model checking using the NDFS algorithm

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue ⇔ left the blue stack

 $\frac{\mathsf{red}}{\mathsf{the}} \Leftrightarrow \frac{\mathsf{entered}}{\mathsf{stack}}$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue ⇔ left the blue stack

 $\frac{\mathsf{red}}{\mathsf{the}} \Leftrightarrow \frac{\mathsf{entered}}{\mathsf{stack}}$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

 $\begin{array}{l} \mathsf{cyan} \Leftrightarrow \mathsf{on} \mathsf{ the} \\ \mathsf{blue} \mathsf{ stack} \end{array}$

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue ⇔ left the blue stack

 $\frac{\mathsf{red}}{\mathsf{the}} \Leftrightarrow \frac{\mathsf{entered}}{\mathsf{stack}}$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

cyan ⇔ on the blue stack

blue ⇔ left the blue stack

 $\frac{\mathsf{red}}{\mathsf{the}} \Leftrightarrow \frac{\mathsf{entered}}{\mathsf{stack}}$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

cyan ⇔ on the blue stack

blue ⇔ left the blue stack

 $\frac{\mathsf{red}}{\mathsf{the}} \Leftrightarrow \frac{\mathsf{entered}}{\mathsf{stack}}$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

cyan ⇔ on the blue stack

blue \Leftrightarrow left the blue stack

Red DFS reaches a cyan state \Rightarrow accepting cycle detected !!!

- Tool choice

Table of contents

LTL model checking using the NDFS algorithm

Formal proofs Tool choice Vercors F*

CNDFS

Conclusion and future work

Formal proofs

L Tool choice

Tool choice

	000
Pros	Cons
proof assistant	not suitable for concurrency
possible extraction	termination of functions
v	VHY3
Pros	Cons
easy to write program	not suitable for concurrency
VE	RCORS
Pros	Cons
suitable for concurrency	significant overhead
	(permissions)
cf state of the art	some too generic error messages
F* (in	progress)
Pros	Cons
suitable for concurrency pulse ?	??
	< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ > < < つ > < < つ > < < つ > < < つ > < < つ > < < つ > < < < > < < つ > < < < > < < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < < <

Table of contents

LTL model checking using the NDFS algorithm

Formal proofs Tool choice Vercors F*

CNDFS

Conclusion and future work

L_Vercors

Presentation of VerCors

- verification tool that uses static analysis
- ▶ it allows us to prove partial correctness of a given piece of code

10/23

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- it requires users to add annotations in the code (which specifies the expected behaviour)
- it uses the permission-based Concurrent Separation Logic (CSL)
- ▶ it supports Java, C (incl. OpenMP), OpenCL and PVL

```
Towards an automated proof of the CNDFS algorithm
```

└─ Formal proofs

└─ Vercors

VerCors basic example: initializing array with zeros in PVL

```
1
    context everywhere A = null;
 2
    context everywhere
 3
       (forall * int j; 0 \le j \&\& j \le A.length; Perm(A[j], write));
 4
    ensures (\forall int j; 0 \le j \&\& j \le A.length; A[j] == 0);
    void clear(int[] A) {
 5
 6
         int i = 0:
 7
 8
       loop invariant 0 \le i \&\& i \le A length;
 9
       loop invariant (\forall int j; 0 \le j \& \& j \le i; A[j] == 0);
10
11
         while (i < A.length) {
12
              A[i] = 0;
13
              i = i + 1:
         }
14
15
```

11/23

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
Towards an automated proof of the CNDFS algorithm
└─ Formal proofs
└─ Vercors
```

```
Example: dfs-red (1/4) algorithm
```

```
procedure dfsRed(s) is
   s.red := true
   for all s' in succ(s) do
        if s'.cyan then exit(cycle)
        if not s'.red then dfsRed(s')
```


Formal proo

└─ Vercors

Example: dfs-red in PVL (2/4) without annotation

```
option<int> dfs_red (BuchiGraph g, Colors c, int s0, int s) {
 1
 2
        c.add_red(s);
 3
        seq < int > \_succ = g \_IM()[s];
 4
        int sp = 0, i = 0;
 5
        option<int> res = None;
 6
        while(res == None && i < |g_IM()[s]|) {
 7
          sp = g_{IM}()[s][i];
 8
          if (sp in c _cyan()) {res = Some(s0);}
 9
          else if (!( sp in c_red())){res = dfs_red(g, c, s0, sp);}
          if (res == None) \{i = i + 1;\}
10
11
12
        return res;
13
```

Formal proofs

-Vercors

Example: dfs-red in PVL (3/4) with annotations

class DfsRed {

constructor () {}

context everywhere g.state(); context everywhere c.state(): context everywhere q.is valid(); context everywhere g.is valid state(s); context everywhere q.is valid state(s0): context_everywhere g.is_valid_colors(c); // la racine de la dfs red (i.e., l'état d'où la dfs red a été initiée est acceptant) context everywhere s0 in q. A(): // tous les états cyans mément à la racine de la dfs red requires (\forall int x; g.is valid state(x) && x in c. cyan(); x = s0 || g.is reachable(x, s0)); ensures \old(q. A()) == q. A(); ensures \old(q, IM()) == q, IM(); // s est rouge apres l'appel ensures s in c. red(): // l'ensemble red ne peut que croitre ensures \old(c, red()) <= c, red(): // dfs_red ne change pas l'ensemble des etats bleus ni cyans ensures \old(c. blue()) == c. blue(); ensures \old(c, cvan()) == c, cvan(); // si le resultat est None (pas de cycle acceptant accessible depuis s // => tout successeur de s est rouge ensures (\result == None) ==> (\forall int t: t in q. IM()[s]: t in c. red()): requires (s == s0) || (g.is_reachable(s0, s)); //lennes finaux // si on renvoie Some alors on a un cycle autour de s0 ensures (\result != None) ==> g.acc cycle from(s0); //ensures (\result == None) ==> // (\forall int sp; g.is_valid_state(sp); g.is_reachable(s, sp) ==> sp in c._red()); option<int> dfs red (BuchiGraph g. Colors c, int s0 int s) + c.add red(s): seq<int> succ = q. IM()[s]; int sp = 0, i = 0; option<int> res = None:

```
loop invariant \old(g, IM()) == g, IM();
 loop invariant \old(g, A()) = g, A();
loop invariant \old(s) == s:
loop invariant \old(s0) == s0:
loop invariant i >= 0 66 i <= [g. IM()[s]];
 loop invariant s in c. red():
 loop invariant \old(c. red()) <= c. red();
loop invariant \old(c. blue()) == c. blue();
loop invariant \old(c, cvan()) == c, cvan();
//loop invariant (\forall int j; 0 <= j 66 j < i;
// (\forall int sp; g.is valid state(sp); g.is reachable(g. IM()[s][j], sp) => sp in c. red()));
loop invariant (s == s0) [] g.is reachable(s0, s);
 loop invariant g.is valid state(sp):
//loop_invariant g.is_reachable(s0, sp);
//loop invariant (s == s0) || is reachable(s, sp);
//loop_invariant (s == s0) || is_reachable_trans(s0, s, sp);
 loop_invariant (res != None) ==> g.acc_cycle_from(s0);
 loop invariant (res == None) ==> (\forall int j; θ <= j δδ j < i; g. IM()[s][j] in c. red());
while(res == None && i < [g. IM()[s]]) {
  sp = q, IM()[s][i];
  assert res == None;
  assert q.is valid state(sp);
  assert sp in g._IM()[s];
  assert q.path(seq<int> (s. sp), s. sp);
  assert g.lemma is reachable(s, sp);
  assert q.is reachable(s, sp);
  assert (s == s0 || g.is_reachable(s0, s));
  assert g.lemma reachability is transitive():
  assert g.is reachable(s0, sp);
  if(sp in c. cyan()) (
    assert q.is reachable(s0, sp) 66 (sp == s0 || q.is reachable(sp, s0));
    assert q.is reachable(s0, s0):
    assert q.acc cycle from(s0);
    res = Some(s0);
  else if(sp in c._red()) {
    res = dfs red(q, c, s0, sp);
  assert (sp in c. red()) || (sp in c. cyan());
  if(res == None) {
return res;
```

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

```
Towards an automated proof of the CNDFS algorithm
```

└─ Formal proofs

L_Vercors

Example: dfs-red in PVL (4/4); zoom

```
// if the result is None
 1
2
    // (no accepting cycle reachable from s)
3
     // => any successor of s is red
4
5
    ensures (\result == None) ==>
6
       (\forall int t; t in g_IM()[s]; t in c_red());
7
    requires (s == s0) \parallel (g.is_reachable(s0, s));
8
9
     // final lemmae :
     // if the result is Some _ then there is a cycle around s0
10
11
12
    ensures (\result != None) ==> g.acc_cycle_from(s0);
```

VerCors proof status

- ${\ensuremath{\overline{\mathrm{M}}}}$ blue states have blue or cyan successors
- \blacksquare at the end of NDFS algo¹, there is no more cyan state
- ☑ if dfs_red finds a cycle around a state then it is an accepting cycle
- $\hfill\square$ at the end of NDFS algo $^1\!\!$, every blue state has blue successor
- \Box red states have red successors at the end of the algorithm
- at the end of NDFS algo¹. every state is blue or an accepting cycle has been found
- ndfs() reports an accepting cycle if and only if one is reachable from the initial state

¹If NDFS terminates without reporting a cycle $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Table of contents

LTL model checking using the NDFS algorithm

Formal proofs

Tool choice Vercors F*

CNDFS

Conclusion and future work

Presentation of F*

F* is a general-purpose proof-oriented programming language

18/23

- dependent types
- proof automation based on SMT solving (based on Z3)
- tactic-based interactive theorem proving
- Steel library (or Pulse) allows us to prove concurrent programs

```
Towards an automated proof of the CNDFS algorithm
└─ Formal proofs
└─ F*
```

Example: dfs-red in F* (work in progress)

```
1
    let rec dfs_red' (g: graph) (s: state) (l: list state) (e: env)
 2
        : Dv env
 3
        = match 1 with
 4
          [] —> e
5
        | s' ∷ todo ->
6
            if is_cyan s'e
 7
            then set result e
8
            else
9
                let e = dfs_red' g s todo e
10
                in let e = dfs_redgs'le
11
                in e
12
    and dfs_red (g: graph) (s: state) (l: list state) (e: env)
13
        : Dv env
14
        = let e' = put_red s e
15
        in dfs_red'g s (g succ s) e'
```

Table of contents

LTL model checking using the NDFS algorithm

Formal proofs Tool choice Vercors F*

CNDFS

Conclusion and future work

Towards an automated proof of the CNDFS algorithm \square CNDFS

Principle of CNDFS:

- Iaunch several instances of NDFS
- randomly exploring the graph
- and synchronising through shared variables

21/23

lssues:

- deal with threads
- deal with randomness
- deal with deadlocks

What was done and what remains to be done

- intermediate proofs for dfs_red in VerCors
- intermediate proofs for dfs_blue in verCors
- NDFS written in F*
- (FW) complete NDFS proof in VerCors
- (FW) continue investigation with F*
- (long term FW) from NDFS to CNDFS

22/23

Thank you

