
Journées 2024 GT Scalp & GT Vérif, Lille

Proof-Theoretical Investigations around Squirrel and CCSA logics

David Baelde and many co-authors

Univ Rennes, CNRS, IRISA

1/44

Logical foundations of the Squirrel prover

Squirrel is a proof assistant for

verifying cryptographic protocols

in the computational model.

It is based on the CCSA approach.

Gergei Bana & Hubert Comon. A Computationally Complete Symbolic Attacker for
Equivalence Properties. CCS 2014.

Outline

• Brief introduction to cryptography and CCSA logics.

• A proof-system for synthesizing cryptographic reductions.

• Proof systems for CCSA logics,
including completeness results for propositional/modal fragments.

2/44

Background: formal proofs of security protocols

1 Background: formal proofs of security protocols
Cryptographic assumptions as games
Protocols and security properties

2 The CCSA approach

3 Foundations for cryptographic reductions in CCSA logics

4 Proof systems for CCSA logics

5 Conclusion

3/44

Unforgeability as a game

A cryptographic hash function H(m, key) is unforgeable when
one cannot produce valid hashes without knowing key.

Init: key $← {0, 1}η; L ← ∅;

Ohash(m) :=
L ← m :: L;
return H(m, key)

Ochallenge(m, h) :=

win if m ̸∈ L and h = H(m, key)

· · ·

For any probabilistic polynomial-time Turing machine (PPTM) ,

the probability that G wins is negligible in η,
i.e., asymptotically smaller than the inverse of any positive polynomial.

4/44

Unforgeability as a game

A cryptographic hash function H(m, key) is unforgeable when
one cannot produce valid hashes without knowing key.

Init: key $← {0, 1}η; L ← ∅;

Ohash(m) :=
L ← m :: L;
return H(m, key)

Ochallenge(m, h) :=

win if m ̸∈ L and h = H(m, key)

· · ·

For any probabilistic polynomial-time Turing machine (PPTM) ,

the probability that G wins is negligible in η,
i.e., asymptotically smaller than the inverse of any positive polynomial.

4/44

Unforgeability as a pair of games

Init: key $← {0, 1}η; L ← ∅;

Ohash(m) :=
L ← m :: L;
return H(m, key)

Ochallenge(m, h) :=

return

{
m ̸∈ L and h = H(m, key) (Gleft)
false (Gright)

· · ·

The advantage of any PPTM is negligible in η:

AdvG() = |Pr
(Gleft = 0

)
− Pr

(Gright = 0
)
|

We say that Gleft and Gright are computationally indistinguishable.

5/44

Pseudo-randomness as a pair of games
A cryptographic hash function H(m, key) is pseudorandom when
one cannot distinguish new hashes from random values.

Init: key $← {0, 1}η; L ← ∅;

Ohash(m) :=
assert m ̸∈ L;
L ← m :: L;
return H(m, key)

Oreal-or-random(m) :=
assert m ̸∈ L;
L ← m :: L;
random $← {0, 1}k ;

return

{
H(m, key) (Gleft)
random (Gright)

· · ·

6/44

Example protocol (1/3)

Each tag (Ti) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki)
R → Ti : ok

Scenario under consideration:

• roles R

j

, T

j

1, . . . , T

j

n;

arbitrary number of sessions j for each role

• attacker can intercept messages, inject new messages

Security properties:

?? Authentication: input@R j = h(njR , ki)⇒ ∃j
′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

?? Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

7/44

Example protocol (1/3)

Each tag (Ti) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki)
R → Ti : ok

Scenario under consideration:

• roles R j , T j
1, . . . , T

j
n; arbitrary number of sessions j for each role

• attacker can intercept messages, inject new messages

Security properties:

?? Authentication: input@R j = h(njR , ki)⇒ ∃j
′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

?? Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

7/44

Example protocol (1/3)

Each tag (Ti) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki)
R → Ti : ok

Scenario under consideration:

• roles R j , T j
1, . . . , T

j
n; arbitrary number of sessions j for each role

• attacker can intercept messages, inject new messages

Security properties:

?? Authentication: input@R j = h(njR , ki)⇒ ∃j
′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

?? Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

7/44

Example protocol (1/3)

Each tag (Ti) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki)
R → Ti : ok

Scenario under consideration:

• roles R j , T j
1, . . . , T

j
n; arbitrary number of sessions j for each role

• attacker can intercept messages, inject new messages

Security properties:

?? Authentication: input@R j = h(njR , ki)⇒ ∃j
′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

?? Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

7/44

Example protocol (1/3)

Each tag (Ti) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki)
R → Ti : ok

Scenario under consideration:

• roles R j , T j
1, . . . , T

j
n; arbitrary number of sessions j for each role

• attacker can intercept messages, inject new messages

Security properties:

✓ Authentication: input@R j = h(njR , ki)⇒ ∃j
′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

?? Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

7/44

Example protocol (1/3)

Each tag (Ti) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki)
R → Ti : ok

Scenario under consideration:

• roles R j , T j
1, . . . , T

j
n; arbitrary number of sessions j for each role

• attacker can intercept messages, inject new messages

Security properties:

✓ Authentication: input@R j = h(njR , ki)⇒ ∃j
′. input@R j = output@T j ′

i .

✓ Injective auth.: two sessions of R cannot accept with the same input

?? Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

7/44

Example protocol (1/3)

Each tag (Ti) owns a secret key ki .

Reader (R) knows all legitimate keys.

R → Ti : nR
Ti → R : h(nR , ki)
R → Ti : ok

Scenario under consideration:

• roles R j , T j
1, . . . , T

j
n; arbitrary number of sessions j for each role

• attacker can intercept messages, inject new messages

Security properties:

✓ Authentication: input@R j = h(njR , ki)⇒ ∃j
′. input@R j = output@T j ′

i .

✓ Injective auth.: two sessions of R cannot accept with the same input

✘ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

7/44

Example protocol (2/3)

Ti → R : ⟨nT , h(nT , ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

?? Authentication: snd(input@R j) = h(fst(input@R j), ki)⇒ ∃j ′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

8/44

Example protocol (2/3)

Ti → R : ⟨nT , h(nT , ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

?? Authentication: snd(input@R j) = h(fst(input@R j), ki)⇒ ∃j ′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

8/44

Example protocol (2/3)

Ti → R : ⟨nT , h(nT , ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

?? Authentication: snd(input@R j) = h(fst(input@R j), ki)⇒ ∃j ′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

8/44

Example protocol (2/3)

Ti → R : ⟨nT , h(nT , ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

✓ Authentication: snd(input@R j) = h(fst(input@R j), ki)⇒ ∃j ′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

8/44

Example protocol (2/3)

Ti → R : ⟨nT , h(nT , ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

✓ Authentication: snd(input@R j) = h(fst(input@R j), ki)⇒ ∃j ′. input@R j = output@T j ′

i .

✘ Injective auth.: two sessions of R cannot accept with the same input

8/44

Example protocol (3/3)

R → Ti : nR
Ti → R : ⟨nT , h(⟨nR , nT ⟩, ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

?? Authentication: R j accepts ⇒ ∃j ′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

9/44

Example protocol (3/3)

R → Ti : nR
Ti → R : ⟨nT , h(⟨nR , nT ⟩, ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

?? Authentication: R j accepts ⇒ ∃j ′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

9/44

Example protocol (3/3)

R → Ti : nR
Ti → R : ⟨nT , h(⟨nR , nT ⟩, ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

?? Authentication: R j accepts ⇒ ∃j ′. input@R j = output@T j ′

i .

?? Injective auth.: two sessions of R cannot accept with the same input

9/44

Example protocol (3/3)

R → Ti : nR
Ti → R : ⟨nT , h(⟨nR , nT ⟩, ki)⟩
R → Ti : ok

Security properties:

✓ Unlinkability: adversary cannot distinguish Ti ,Ti from Ti ,Tj

✓ Authentication: R j accepts ⇒ ∃j ′. input@R j = output@T j ′

i .

✓ Injective auth.: two sessions of R cannot accept with the same input

9/44

Formal proofs of protocols: summary

We have seen the main ingredients for provable security of protocols,
i.e. for formal proofs of protocols in the computational model.
As opposed to the symbolic/Dolev-Yao model used e.g. in Proverif and Tamarin.

Cryptographic assumptions about primitives

• Generally expressed as indistinguishability between two games.

• Sometimes as negligible chance of winning at single game.

Security properties of protocols

• Indistinguishability properties (e.g. unlinkability)
state that an attacker cannot distinguish between two scenarios.

• Reachability properties (e.g. authentication)
state that a condition is false with negligible probability (= is overwhelmingly true).

10/44

The CCSA approach

1 Background: formal proofs of security protocols

2 The CCSA approach
Reasoning about messages
Reasoning about protocol executions
Squirrel’s higher-order CCSA logic

3 Foundations for cryptographic reductions in CCSA logics

4 Proof systems for CCSA logics

5 Conclusion

11/44

CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS’14]

First-order terms interpreted as PPTMs, explicit random tape ρ ∈ {0, 1}∞

• JtKM(1η, ρ) ∈ {0, 1}∗

• Name constants n,m, k extract from ρ dedicated sections of length η.

Predicates

• [ϕ] where ϕ is boolean term : “ϕ is true with overwhelming probability”

• t ∼ t ′ for two terms of the same type : “t and t ′ are computationally indistinguishable”

Example

att1(m) : attacker computes first message from m.

12/44

CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS’14]

First-order terms interpreted as PPTMs, explicit random tape ρ ∈ {0, 1}∞

• JtKM(1η, ρ) ∈ {0, 1}∗

• Name constants n,m, k extract from ρ dedicated sections of length η.

Predicates

• [ϕ] where ϕ is boolean term : “ϕ is true with overwhelming probability”

• t ∼ t ′ for two terms of the same type : “t and t ′ are computationally indistinguishable”

Example

att2(m, h(att1(m), k)) : attacker computes 2nd message from m and hash of first message.

12/44

CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS’14]

First-order terms interpreted as PPTMs, explicit random tape ρ ∈ {0, 1}∞

• JtKM(1η, ρ) ∈ {0, 1}∗

• Name constants n,m, k extract from ρ dedicated sections of length η.

Predicates

• [ϕ] where ϕ is boolean term : “ϕ is true with overwhelming probability”

• t ∼ t ′ for two terms of the same type : “t and t ′ are computationally indistinguishable”

Example

JnKM(η, ρ) and Jatt2(m, h(att1(m), k))KM(η, ρ) are equal with probability ≤ 2−η.

12/44

CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS’14]

First-order terms interpreted as PPTMs, explicit random tape ρ ∈ {0, 1}∞

• JtKM(1η, ρ) ∈ {0, 1}∗

• Name constants n,m, k extract from ρ dedicated sections of length η.

Predicates

• [ϕ] where ϕ is boolean term : “ϕ is true with overwhelming probability”

• t ∼ t ′ for two terms of the same type : “t and t ′ are computationally indistinguishable”

Example

[n ̸= att2(m, h(att1(m), k))] is valid.

12/44

CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS’14]

First-order terms interpreted as PPTMs, explicit random tape ρ ∈ {0, 1}∞

• JtKM(1η, ρ) ∈ {0, 1}∗

• Name constants n,m, k extract from ρ dedicated sections of length η.

Predicates

• [ϕ] where ϕ is boolean term : “ϕ is true with overwhelming probability”

• t ∼ t ′ for two terms of the same type : “t and t ′ are computationally indistinguishable”

Example

[n ̸= t] is valid for any ground term t where n does not occur.

12/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ?⇔ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ?⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ]
?⇔ ([ϕ]⇒ [ψ])

13/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ?⇔ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ?⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ]
?⇔ ([ϕ]⇒ [ψ])

13/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ?⇔ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ?⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ]
?⇔ ([ϕ]⇒ [ψ])

13/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ?⇔ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ?⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ]
?⇔ ([ϕ]⇒ [ψ])

13/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ?⇔ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ?⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ]
?⇔ ([ϕ]⇒ [ψ])

13/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ⇐ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ?⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ]
?⇔ ([ϕ]⇒ [ψ])

13/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ⇐ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ]
?⇔ ([ϕ]⇒ [ψ])

13/44

Example formulas

Example (equality and indistinguishability)

• We have [x = y]⇒ (x ∼ y) but not the converse.

• Indeed, m ∼ n but (m = n) ∼ false. assuming m, n distinct

• More generally, [x = y]⇒ (u[x] ∼ v [x])⇒ (u[y] ∼ v [y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?

• [ϕ ∨ ψ] ⇐ [ϕ] ∨ [ψ]

• [ϕ ∧ ψ] ⇔ [ϕ] ∧ [ψ]

• [ϕ⇒ ψ] ⇒ ([ϕ]⇒ [ψ])

13/44

Cryptographic axioms

Example (Unforgeability)

In all models where h is unforgeable, we have

[u = h(v , k) ⇒
∨
m∈S

m = v]

where u, v are ground terms only containing k as h(, k) and S = { m | h(m, k) occurs in u, v}.

14/44

Cryptographic axioms

Example (Unforgeability)

In all models where h is unforgeable, we have

[u = h(v , k) ⇒
∨
m∈S

m = v]

where u, v are ground terms only containing k as h(, k) and S = { m | h(m, k) occurs in u, v}.

Proof sketch.
Fix a modelM where h is unforgeable.
The machines JuKM and JvKM can be simulated by some attacker wrt. the unforgeability game:

• occurrences h(m, k) computed via oracle queries on m;

• k not accessed otherwise.

Submitting v , u to challenge oracle yields a win iff our formula is false.

14/44

Cryptographic axioms

Example (Unforgeability)

In all models where h is unforgeable, we have

[u = h(v , k) ⇒
∨
m∈S

m = v]

where u, v are ground terms only containing k as h(, k) and S = { m | h(m, k) occurs in u, v}.

Example (Pseudo-randomness)

In all models where h is pseudorandom, we have

v⃗ , h(t, k) ∼ v⃗ , if
∨
m∈S

m = t then h(t, k) else n

where S is the set of hashes in v⃗ , t, n is fresh and v⃗ , t are ground terms only using k as h(, k).

14/44

Verifying protocols along fixed traces: an example

Authentication along trace R1
challenge.T

2
7 .T

3
8 .R

1
test.

out@R1
challenge = n1R

in@T 2
7 = att1(out@R

1
challenge)

out@T 2
7 = ⟨n2T ,H(⟨in@T 2

7 , n
2
T ⟩, k7)⟩

in@T 3
8 = att2(out@R

1
challenge, out@T

2
7)

out@T 3
8 = ⟨n3T ,H(⟨in@T 3

8 , n
3
T ⟩, k8)⟩

in@R1
test = att3(out@R

1
challenge, out@T

2
7 , out@T

3
8)

(∨
i

snd(in@R1
test) = H(⟨n1R , fst(in@R1

test)⟩, ki)
)
⇒

(
in@R1

test = out@T 2
7 ∨ in@R1

test = out@T 3
8

)

R T

nR

⟨nT,H(⟨nR, nT⟩, ki)⟩

ok/ko

15/44

Verifying protocols along fixed traces: an example

Authentication along trace R1
challenge.T

2
7 .T

3
8 .R

1
test.

out@R1
challenge = n1R

in@T 2
7 = att1(out@R

1
challenge)

out@T 2
7 = ⟨n2T ,H(⟨in@T 2

7 , n
2
T ⟩, k7)⟩

in@T 3
8 = att2(out@R

1
challenge, out@T

2
7)

out@T 3
8 = ⟨n3T ,H(⟨in@T 3

8 , n
3
T ⟩, k8)⟩

in@R1
test = att3(out@R

1
challenge, out@T

2
7 , out@T

3
8)(∨

i

snd(in@R1
test) = H(⟨n1R , fst(in@R1

test)⟩, ki)
)
⇒

(
in@R1

test = out@T 2
7 ∨ in@R1

test = out@T 3
8

)

R T

nR

⟨nT,H(⟨nR, nT⟩, ki)⟩

ok/ko

15/44

Verifying protocols along fixed traces: an example

Authentication along trace R1
challenge.T

2
7 .T

3
8 .R

1
test.

out@R1
challenge = n1R

in@T 2
7 = att1(out@R

1
challenge)

out@T 2
7 = ⟨n2T ,H(⟨in@T 2

7 , n
2
T ⟩, k7)⟩

in@T 3
8 = att2(out@R

1
challenge, out@T

2
7)

out@T 3
8 = ⟨n3T ,H(⟨in@T 3

8 , n
3
T ⟩, k8)⟩

in@R1
test = att3(out@R

1
challenge, out@T

2
7 , out@T

3
8)(∨

i

snd(in@R1
test) = H(⟨n1R , fst(in@R1

test)⟩, ki)
)
⇒

(
in@R1

test = out@T 2
7 ∨ in@R1

test = out@T 3
8

)

R T

nR

⟨nT,H(⟨nR, nT⟩, ki)⟩

ok/ko

15/44

Verifying protocols along fixed traces: an example

Authentication along trace R1
challenge.T

2
7 .T

3
8 .R

1
test.

out@R1
challenge = n1R

in@T 2
7 = att1(out@R

1
challenge)

out@T 2
7 = ⟨n2T ,H(⟨in@T 2

7 , n
2
T ⟩, k7)⟩

in@T 3
8 = att2(out@R

1
challenge, out@T

2
7)

out@T 3
8 = ⟨n3T ,H(⟨in@T 3

8 , n
3
T ⟩, k8)⟩

in@R1
test = att3(out@R

1
challenge, out@T

2
7 , out@T

3
8)(∨

i

snd(in@R1
test) = H(⟨n1R , fst(in@R1

test)⟩, ki)
)
⇒

(
in@R1

test = out@T 2
7 ∨ in@R1

test = out@T 3
8

)

R T

nR

⟨nT,H(⟨nR, nT⟩, ki)⟩

ok/ko

15/44

Verifying protocols along fixed traces: an example

Authentication along trace R1
challenge.T

2
7 .T

3
8 .R

1
test.

out@R1
challenge = n1R

in@T 2
7 = att1(out@R

1
challenge)

out@T 2
7 = ⟨n2T ,H(⟨in@T 2

7 , n
2
T ⟩, k7)⟩

in@T 3
8 = att2(out@R

1
challenge, out@T

2
7)

out@T 3
8 = ⟨n3T ,H(⟨in@T 3

8 , n
3
T ⟩, k8)⟩

in@R1
test = att3(out@R

1
challenge, out@T

2
7 , out@T

3
8)(∨

i

snd(in@R1
test) = H(⟨n1R , fst(in@R1

test)⟩, ki)
)
⇒

(
in@R1

test = out@T 2
7 ∨ in@R1

test = out@T 3
8

)

R T

nR

⟨nT,H(⟨nR, nT⟩, ki)⟩

ok/ko

15/44

Verifying protocols along fixed traces: an example

Authentication along trace R1
challenge.T

2
7 .T

3
8 .R

1
test.

out@R1
challenge = n1R

in@T 2
7 = att1(out@R

1
challenge)

out@T 2
7 = ⟨n2T ,H(⟨in@T 2

7 , n
2
T ⟩, k7)⟩

in@T 3
8 = att2(out@R

1
challenge, out@T

2
7)

out@T 3
8 = ⟨n3T ,H(⟨in@T 3

8 , n
3
T ⟩, k8)⟩

in@R1
test = att3(out@R

1
challenge, out@T

2
7 , out@T

3
8)(∨

i

snd(in@R1
test) = H(⟨n1R , fst(in@R1

test)⟩, ki)
)
⇒

(
in@R1

test = out@T 2
7 ∨ in@R1

test = out@T 3
8

)

R T

nR

⟨nT,H(⟨nR, nT⟩, ki)⟩

ok/ko

15/44

Verifying protocols along all traces: CCSA meta-logic
With Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Solène Moreau [SP’21,CSF’22]

Example (Local meta-logic formulas)

• output@A(i , j) = h(input@A(i , j), k(i)) ← indexed timestamps and names

• ∀k . cond@B(k)⇒ ∃i , j . A(i , j) < B(k) ∧ input@B(k) = output@A(i , j)

Reasoning over all trace models T for protocol P, and all computational modelsM.

Meta-logic term t
T−→ base logic term (t)T

M−→ PPTM returning bitstring

Local meta-logic formula ϕ
T−→ base logic term (ϕ)T

M−→ PPTM returning boolean

Eliminating timestamps and indices in (ϕ)T

• Indices and timestamps interpreted in finite domains.

• Quantifications become finite boolean combinations.

16/44

Verifying protocols along all traces: CCSA meta-logic
With Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Solène Moreau [SP’21,CSF’22]

Example (Local meta-logic formulas)

• output@A(i , j) = h(input@A(i , j), k(i)) ← indexed timestamps and names

• ∀k . cond@B(k)⇒ ∃i , j . A(i , j) < B(k) ∧ input@B(k) = output@A(i , j)

Reasoning over all trace models T for protocol P, and all computational modelsM.

Meta-logic term t
T−→ base logic term (t)T

M−→ PPTM returning bitstring

Local meta-logic formula ϕ
T−→ base logic term (ϕ)T

M−→ PPTM returning boolean

Eliminating timestamps and indices in (ϕ)T

• Indices and timestamps interpreted in finite domains.

• Quantifications become finite boolean combinations.

16/44

Verifying protocols along all traces: CCSA meta-logic
With Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Solène Moreau [SP’21,CSF’22]

Example (Local meta-logic formulas)

• output@A(i , j) = h(input@A(i , j), k(i)) ← indexed timestamps and names

• ∀k . cond@B(k)⇒ ∃i , j . A(i , j) < B(k) ∧ input@B(k) = output@A(i , j)

Reasoning over all trace models T for protocol P, and all computational modelsM.

Meta-logic term t
T−→ base logic term (t)T

M−→ PPTM returning bitstring

Local meta-logic formula ϕ
T−→ base logic term (ϕ)T

M−→ PPTM returning boolean

Eliminating timestamps and indices in (ϕ)T

• Indices and timestamps interpreted in finite domains.

• Quantifications become finite boolean combinations.

16/44

Verifying protocols along all traces: CCSA meta-logic
With Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Solène Moreau [SP’21,CSF’22]

Example (Local meta-logic formulas)

• output@A(i , j) = h(input@A(i , j), k(i)) ← indexed timestamps and names

• ∀k . cond@B(k)⇒ ∃i , j . A(i , j) < B(k) ∧ input@B(k) = output@A(i , j)

Reasoning over all trace models T for protocol P, and all computational modelsM.

Meta-logic term t
T−→ base logic term (t)T

M−→ PPTM returning bitstring

Local meta-logic formula ϕ
T−→ base logic term (ϕ)T

M−→ PPTM returning boolean

Eliminating timestamps and indices in (ϕ)T

• Indices and timestamps interpreted in finite domains.

• Quantifications become finite boolean combinations.

16/44

Verifying protocols along all traces: CCSA meta-logic
With Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Solène Moreau [SP’21,CSF’22]

Example (Local meta-logic formulas)

• output@A(i , j) = h(input@A(i , j), k(i)) ← indexed timestamps and names

• ∀k . cond@B(k)⇒ ∃i , j . A(i , j) < B(k) ∧ input@B(k) = output@A(i , j)

Reasoning over all trace models T for protocol P, and all computational modelsM.

Meta-logic term t
T−→ base logic term (t)T

M−→ PPTM returning bitstring

Local meta-logic formula ϕ
T−→ base logic term (ϕ)T

M−→ PPTM returning boolean

Eliminating timestamps and indices in (ϕ)T

• Indices and timestamps interpreted in finite domains.

• Quantifications become finite boolean combinations.

16/44

Higher-order CCSA logic (1/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Letting go (at first) of PTIME, computability, bitstrings, protocols. . .

Terms of the old base logic: Terms of the new logic:
probabilistic polynomial-time machines. η-indexed families of random variables.

JtKM(η, ρ) ∈ {0, 1}∗ JtKM(η, ρ) ∈ JτKM(η)

Benefits

• Ability to talk about useful non-PTIME functions, e.g. log.

• Quantifiers at all types in local formulas:

J∀x : τ. ϕKσM(η, ρ) = true when JϕKσ,x 7→a
M (η, ρ) = true for all a ∈ JτKM

• Express abstract reasoning schemes (e.g. hybrid argument) using higher-order logic.

17/44

Higher-order CCSA logic (1/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Letting go (at first) of PTIME, computability, bitstrings, protocols. . .

Terms of the old base logic: Terms of the new logic:
probabilistic polynomial-time machines. η-indexed families of random variables.

JtKM(η, ρ) ∈ {0, 1}∗ JtKM(η, ρ) ∈ JτKM(η)

Benefits

• Ability to talk about useful non-PTIME functions, e.g. log.

• Quantifiers at all types in local formulas:

J∀x : τ. ϕKσM(η, ρ) = true when JϕKσ,x 7→a
M (η, ρ) = true for all a ∈ JτKM

• Express abstract reasoning schemes (e.g. hybrid argument) using higher-order logic.

17/44

Higher-order CCSA logic (1/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Letting go (at first) of PTIME, computability, bitstrings, protocols. . .

Terms of the old base logic: Terms of the new logic:
probabilistic polynomial-time machines. η-indexed families of random variables.

JtKM(η, ρ) ∈ {0, 1}∗ JtKM(η, ρ) ∈ JτKM(η)

Benefits

• Ability to talk about useful non-PTIME functions, e.g. log.

• Quantifiers at all types in local formulas:

J∀x : τ. ϕKσM(η, ρ) = true when JϕKσ,x 7→a
M (η, ρ) = true for all a ∈ JτKM

• Express abstract reasoning schemes (e.g. hybrid argument) using higher-order logic.

17/44

Higher-order CCSA logic (1/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Letting go (at first) of PTIME, computability, bitstrings, protocols. . .

Terms of the old base logic: Terms of the new logic:
probabilistic polynomial-time machines. η-indexed families of random variables.

JtKM(η, ρ) ∈ {0, 1}∗ JtKM(η, ρ) ∈ JτKM(η)

Benefits

• Ability to talk about useful non-PTIME functions, e.g. log.

• Quantifiers at all types in local formulas:

J∀x : τ. ϕKσM(η, ρ) = true when JϕKσ,x 7→a
M (η, ρ) = true for all a ∈ JτKM

• Express abstract reasoning schemes (e.g. hybrid argument) using higher-order logic.

17/44

Higher-order CCSA logic (2/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Recursive definitions
Terms are λ-terms with (well-founded) recursive definitions,
which allows to recover the protocol modelling “macros” in@T , out@T . . .

Local/global formulas

• Local formulas are boolean terms, seen as higher-order formulas.

• Global formulas are first-order formulas over u ∼ v and [ϕ] where ϕ is local.
We allow order-1 functions in computational indistinguishability.

18/44

Higher-order CCSA logic (2/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Recursive definitions
Terms are λ-terms with (well-founded) recursive definitions,
which allows to recover the protocol modelling “macros” in@T , out@T . . .

Local/global formulas

• Local formulas are boolean terms, seen as higher-order formulas.

• Global formulas are first-order formulas over u ∼ v and [ϕ] where ϕ is local.
We allow order-1 functions in computational indistinguishability.

18/44

Higher-order CCSA logic (2/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Recursive definitions
Terms are λ-terms with (well-founded) recursive definitions,
which allows to recover the protocol modelling “macros” in@T , out@T . . .

Local/global formulas

• Local formulas are boolean terms, seen as higher-order formulas.

• Global formulas are first-order formulas over u ∼ v and [ϕ] where ϕ is local.
We allow order-1 functions in computational indistinguishability.

Advanced axioms

• In base logic, [t ̸= n] is valid for any closed term t that doesn’t contain n.

18/44

Higher-order CCSA logic (2/2)
With Adrien Koutsos and Joseph Lallemand [LICS’23]

Recursive definitions
Terms are λ-terms with (well-founded) recursive definitions,
which allows to recover the protocol modelling “macros” in@T , out@T . . .

Local/global formulas

• Local formulas are boolean terms, seen as higher-order formulas.

• Global formulas are first-order formulas over u ∼ v and [ϕ] where ϕ is local.
We allow order-1 functions in computational indistinguishability.

Advanced axioms

• In higher-order logic, [ϕ ⇒ t ̸= n(i)] is valid if
in all models and η, ρ such that ϕ holds,
n(i) cannot occur in t through unfoldings of recursive definitions.

• For cryptographic axioms, need to ensure that some functions are PPTM-computable:
adv() predicate.

18/44

Universal quantifications

Definition (Formulas)

M, σ |= ∀(x : τ).Φ when M, σ{x 7→ A} |= Φ for any random variable A on JτK

Definition (Boolean terms)

J∀(x : τ).ϕKη,ρM,σ = 1 when JϕKη,ρM,σ{x 7→a} = 1 for any constant a ∈ JτK (slight abuse)

M, σ |= [ψ] when (η 7→ Prρ[JψKη,ρM,σ = 1]) overwhelming.

Theorem

For any ϕ : bool, and because all probability spaces are discrete, we have:

M, σ |= ∀(x : τ).[ϕ] iff M, σ |= [∀(x : τ).ϕ]

19/44

Universal quantifications

Definition (Formulas)

M, σ |= ∀(x : τ).Φ when M, σ{x 7→ A} |= Φ for any random variable A on JτK

Definition (Boolean terms)

J∀(x : τ).ϕKη,ρM,σ = 1 when JϕKη,ρM,σ{x 7→a} = 1 for any constant a ∈ JτK (slight abuse)

M, σ |= [ψ] when (η 7→ Prρ[JψKη,ρM,σ = 1]) overwhelming.

Theorem

For any ϕ : bool, and because all probability spaces are discrete, we have:

M, σ |= ∀(x : τ).[ϕ] iff M, σ |= [∀(x : τ).ϕ]

19/44

Universal quantifications

Definition (Formulas)

M, σ |= ∀(x : τ).Φ when M, σ{x 7→ A} |= Φ for any random variable A on JτK

Definition (Boolean terms)

J∀(x : τ).ϕKη,ρM,σ = 1 when JϕKη,ρM,σ{x 7→a} = 1 for any constant a ∈ JτK (slight abuse)

M, σ |= [ψ] when (η 7→ Prρ[JψKη,ρM,σ = 1]) overwhelming.

Theorem

For any ϕ : bool, and because all probability spaces are discrete, we have:

M, σ |= ∀(x : τ).[ϕ] iff M, σ |= [∀(x : τ).ϕ]

19/44

Foundations for cryptographic reductions in CCSA logics
With Adrien Koutsos1 and Justine Sauvage [CCS’24]

1 Background: formal proofs of security protocols

2 The CCSA approach

3 Foundations for cryptographic reductions in CCSA logics
Bi-deduction and its proof system
Proof-search implementation in Squirrel

4 Proof systems for CCSA logics

5 Conclusion

1Credits to Adrien for the slides.
20/44

Recall: unforgeability as a pair of games

Cryptographic hash function H(, key) is unforgeable when
the two games below are indistinguishable:

Init: key $← {0, 1}η; L ← ∅;

Ohash(m) :=
L ← m :: L;
return H(m, key)

Ochallenge(m, h) :=

return

{
m ̸∈ L and h = H(m, key) (Gleft)
false (Gright)

· · ·

Let AdvUF() be the adversary’s advantage for this pair of games.

21/44

Hardness assumption: example

Example (
H(0, k),H(1, k)

)
= H(m, k) ⇒ m = 0 ∨ m = 1

Proof by reduction
Build an adversary against unforgeability (UF):

• compute h0 ← Ohash(0) and h1 ← Ohash(1);

• call to compute h← (h0, h1);

• compute m; (must be computable, cf. syntactic condition)

• return Ochallenge(m, h).

AdvUF() is the probability that our formula is false: it must be negligible.

22/44

From hardness assumptions to logical rules, by hand

Until recently:

• Squirrel supported a limited set of hardness assumptions
(symmetric/asymmetric encryption, signature, hash, DH, . . .)

• Built-in tactics for each such assumptions:

hardness assumption (imperative, stateful programs)

⇐

reasoning rules (pure, logic)

• Adding rules for new hardness assumptions is:
tedious, error-prone, and not in user-space (Ocaml code).

23/44

From hardness assumptions to logical rules, formalized

Systematically translate hardness assumptions into cryptographic rules.

Inputs:

• An (imperative, stateful) hardness assumption G0 ≈ G1 .
• A (pure) indistinguishability property u0 ∼ u1 to prove.

Goal:

• Synthesize PPTM S such that S Gi = J ui K for each i ∈ {0, 1}.

• Ensure Advu0∼u1() = AdvG0≈G1(◦ S) and is thus negligible.

24/44

From hardness assumptions to logical rules, formalized

Systematically translate hardness assumptions into cryptographic rules.

Inputs:

• An (imperative, stateful) hardness assumption G0 ≈ G1 .
• A (pure) indistinguishability property u0 ∼ u1 to prove.

Goal:

• Synthesize PPTM S such that S Gi = J ui K for each i ∈ {0, 1}.
• Ensure Advu0∼u1() = AdvG0≈G1(◦ S) and is thus negligible.

24/44

Bi-deduction

Bi-Terms
The bi-terms u# = #(u0; u1) represent a pair of left/right scenarios.
Factorize common behavior, e.g. f (v ,#(u0; u1)) = #(f (v , u0); f (v , u1))

Bi-deduction
New judgment u# ▷G0≈G1 v# which means:

∃S ∈ PPTM.

{
SG0(Ju0K) = J v0 K

and SG1(Ju1K) = J v1 K

Inference Rule
∅▷G0≈G1 #(u0; u1)

u0 ∼ u1
Bi-Deduce

25/44

Bi-deduction

Bi-Terms
The bi-terms u# = #(u0; u1) represent a pair of left/right scenarios.
Factorize common behavior, e.g. f (v ,#(u0; u1)) = #(f (v , u0); f (v , u1))

Bi-deduction
New judgment u# ▷G0≈G1 v# which means:

∃S ∈ PPTM.

{
SG0(Ju0K) = J v0 K

and SG1(Ju1K) = J v1 K

Inference Rule
∅▷G0≈G1 #(u0; u1)

u0 ∼ u1
Bi-Deduce

25/44

Bi-deduction

Bi-Terms
The bi-terms u# = #(u0; u1) represent a pair of left/right scenarios.
Factorize common behavior, e.g. f (v ,#(u0; u1)) = #(f (v , u0); f (v , u1))

Bi-deduction
New judgment u# ▷G0≈G1 v# which means:

∃S ∈ PPTM.

{
SG0(Ju0K) = J v0 K

and SG1(Ju1K) = J v1 K

Inference Rule
∅▷G0≈G1 #(u0; u1)

u0 ∼ u1
Bi-Deduce

25/44

Bi-deduction: rules

A few simple bi-deduction rules:

• Transitivity

u⃗# ▷ v⃗# u⃗#, v⃗# ▷ w⃗#

u⃗# ▷ v⃗#, w⃗#

S(u⃗) := v⃗ ← S1(u⃗)
w⃗ ← S2(u⃗, v⃗)
return (v⃗ , w⃗)

• Function application

u⃗# ▷ v⃗# adv(f)

u⃗# ▷ f(v⃗#)

S(u⃗) := v⃗ ← S1(u⃗)
x ←Mf(v⃗)
return x

26/44

Bi-deduction: rules

A few simple bi-deduction rules:

• Transitivity

u⃗# ▷ v⃗# u⃗#, v⃗# ▷ w⃗#

u⃗# ▷ v⃗#, w⃗#

S(u⃗) := v⃗ ← S1(u⃗)
w⃗ ← S2(u⃗, v⃗)
return (v⃗ , w⃗)

• Function application

u⃗# ▷ v⃗# adv(f)

u⃗# ▷ f(v⃗#)

S(u⃗) := v⃗ ← S1(u⃗)
x ←Mf(v⃗)
return x

26/44

Bi-deduction: rules

Bi-deduction rules handling randomness:

Oracle
u⃗# ▷ v#

u⃗# ▷ H(v#, k)

S(u⃗) := v⃗ ← S1(u⃗)
x $← Ohash(v⃗)
return x

Name
u⃗# ▷ v#

u⃗# ▷ n(v#)

S(u⃗) := v ← S1(u⃗)
x $←Mnf(v , ρh)
return x

Problem: the Name rule allows S to read k!

27/44

Bi-deduction: rules

Bi-deduction rules handling randomness:

Oracle
u⃗# ▷ v#

u⃗# ▷ H(v#, k)

S(u⃗) := v⃗ ← S1(u⃗)
x $← Ohash(v⃗)
return x

Name
u⃗# ▷ v#

u⃗# ▷ n(v#)

S(u⃗) := v ← S1(u⃗)
x $←Mnf(v , ρh)
return x

Problem: the Name rule allows S to read k!

27/44

Bi-deduction: constraints

• Problem: S should not access the game secret keys.

• Solution: track randomness usage using logical constraints .
E.g. ensures that S does not directly use key.

• Enriched bi-deduction judgment:

Oracle
⊢ u⃗# ▷ v#

(k : Tkey
G) ⊢ u⃗# ▷ H(v#, k)

Name

(n : TS) ⊢ u⃗# ▷ n

28/44

Bi-deduction: constraints

Eventually, check that the constraints are valid :

C ⊢ ∅▷ #(u0; u1) |= [Valid(C)]
u0 ∼ u1

Bi-Deduce

Example:
̸|= [Valid((k : Tkey

G), (k : TS))]

Some additional difficulties:

• We need to handle indexednames and conditions :

(n, i , ϕ : T)

• Non-well-founded constraints must be avoided, e.g. when condition relies on name itself.

29/44

Bi-deduction: constraints

Eventually, check that the constraints are valid :

C ⊢ ∅▷ #(u0; u1) |= [Valid(C)]
u0 ∼ u1

Bi-Deduce

Example:
̸|= [Valid((k : Tkey

G), (k : TS))]

Some additional difficulties:

• We need to handle indexednames and conditions :

(n, i , ϕ : T)

• Non-well-founded constraints must be avoided, e.g. when condition relies on name itself.

29/44

Bi-deduction: statefulness

We also need to account for G’s statefulness.

Init: key $← {0, 1}η; L ← ∅;

Ohash(m) :=
L ← m :: L;
return H(m, key)

Ochallenge(m, h) :=

return

{
m ̸∈ L and h = H(m, key) (Gleft)
false (Gright)

· · ·

30/44

Bi-deduction: statefulness

We track the state of G:
• Add Hoare pre- and post- conditions:

(ϕ , ψ) ⊢ u# ▷ v#

• Semantics:

∃S ∈ PPTM. ∀µ |= ϕ . LSMGi
µ (ui) = (µ′, JviK) (∀i ∈ {0, 1})

where µ′ |= ψ

• Modified proof-system:

(ϕ , χ) ⊢ u⃗# ▷ v⃗# (χ , ψ) ⊢ u⃗#, v⃗# ▷ w⃗#

(ϕ , ψ) ⊢ u⃗# ▷ v⃗#, w⃗#
Trans

31/44

Bi-deduction: statefulness

We track the state of G:
• Add Hoare pre- and post- conditions:

(ϕ , ψ) ⊢ u# ▷ v#

• Semantics:

∃S ∈ PPTM. ∀µ |= ϕ . LSMGi
µ (ui) = (µ′, JviK) (∀i ∈ {0, 1})

where µ′ |= ψ

• Modified proof-system:

(ϕ , χ) ⊢ u⃗# ▷ v⃗# (χ , ψ) ⊢ u⃗#, v⃗# ▷ w⃗#

(ϕ , ψ) ⊢ u⃗# ▷ v⃗#, w⃗#
Trans

31/44

Wrapping up on bi-deduction
With Adrien Koutsos and Justine Sauvage [CCS’24]

In summary

• Framework for reducing logical indistinguishability to cryptographic assumptions.

• Proof-system for bi-deduction.

• Proof-search algorithm for deriving bi-deduction proofs, implemented in Squirrel.
Includes induction rule, whose invariant is synthesized.

Further topics

• Bi-deduction (without oracles) is also used in Squirrel to prove implications between
indistinguishabilities in the logic. Single-deduction also used to reason about secrecy.

• Can we synthesize crypto reductions in other settings, e.g. Easycrypt?

• Relate to proof-as-program paradigm, e.g. relational typing?

32/44

Proof systems for CCSA logics
With Antoine, Delaune, Koutsos, Lallemand and Moreau [CSF’22,LICS’23,CSL’25]

1 Background: formal proofs of security protocols

2 The CCSA approach

3 Foundations for cryptographic reductions in CCSA logics

4 Proof systems for CCSA logics
Higher-order CCSA logic
Propositional logics of overwhelming truth

5 Conclusion

33/44

Higher-order CCSA sequents

The proof system relies on two kinds of sequents.

universally quantified variables

Σ;Θ ⊢ Φ and Σ;Θ; Γ ⊢ ϕ

global formulas local formulas

Semantics given by ∀Σ. (∧Θ)⇒ Φ and ∀Σ. (∧Θ)⇒ [(∧Γ)⇒ ϕ].

Proof system features rules for deriving the two kinds of sequents.
Each kind can be useful to derive the other kind.

34/44

Proof system (1)

Purely global reasoning using classical inferences:

Σ;Θ, Φ1 ; Γ ⊢ ψ Σ;Θ, Φ2 ; Γ ⊢ ψ
Σ;Θ, Φ1 ∨ Φ2 ; Γ ⊢ ψ

Σ;Θ ⊢ ¬¬F
Σ;Θ ⊢ F

Σ;Θ, Φ1 ⊢ Ψ Σ;Θ, Φ2 ⊢ Ψ

Σ;Θ, Φ1 ∨ Φ2 ⊢ Ψ

Σ, x ; Θ ⊢ F

Σ;Θ ⊢ ∀x .F
x ̸∈ Σ

Purely local reasoning using classical inferences, for instance:

Σ;Θ; Γ, ϕ1 ⊢ ψ Σ;Θ; Γ, ϕ2 ⊢ ψ
Σ;Θ; Γ, ϕ1 ∨ ϕ2 ⊢ ψ

Σ, x ; Θ; Γ ⊢ ϕ

Σ;Θ; Γ ⊢ ∀x .ϕ
x ̸∈ Σ

35/44

Proof system (1)

Purely global reasoning using classical inferences:

Σ;Θ, Φ1 ; Γ ⊢ ψ Σ;Θ, Φ2 ; Γ ⊢ ψ
Σ;Θ, Φ1 ∨ Φ2 ; Γ ⊢ ψ

Σ;Θ ⊢ ¬¬F
Σ;Θ ⊢ F

Σ;Θ, Φ1 ⊢ Ψ Σ;Θ, Φ2 ⊢ Ψ

Σ;Θ, Φ1 ∨ Φ2 ⊢ Ψ

Σ, x ; Θ ⊢ F

Σ;Θ ⊢ ∀x .F
x ̸∈ Σ

Purely local reasoning using classical inferences, for instance:

Σ;Θ; Γ, ϕ1 ⊢ ψ Σ;Θ; Γ, ϕ2 ⊢ ψ
Σ;Θ; Γ, ϕ1 ∨ ϕ2 ⊢ ψ

Σ, x ; Θ; Γ ⊢ ϕ

Σ;Θ; Γ ⊢ ∀x .ϕ
x ̸∈ Σ

35/44

Proof system (2)

From global to local hypotheses:
Σ;Θ; ϕ , Γ ⊢ ψ

Σ;Θ, [ϕ] ; Γ ⊢ ψ

Some (ugly) inferences require that ϕ is deterministic:

Σ;Θ, [ϕ] ; Γ ⊢ ψ

Σ;Θ; ϕ , Γ ⊢ ψ

Σ;Θ, [ϕ] ⊢ Ψ Σ;Θ, [ψ] ⊢ Ψ

Σ;Θ, [ϕ ∨ ψ] ⊢ Ψ

These rules can be derived when Σ;Θ ⊢ [ϕ] ∨ [¬ϕ] is valid (= ϕ is determined).

36/44

Proof system (2)

From global to local hypotheses:
Σ;Θ; ϕ , Γ ⊢ ψ

Σ;Θ, [ϕ] ; Γ ⊢ ψ

Some (ugly) inferences require that ϕ is deterministic:

Σ;Θ, [ϕ] ; Γ ⊢ ψ

Σ;Θ; ϕ , Γ ⊢ ψ

Σ;Θ, [ϕ] ⊢ Ψ Σ;Θ, [ψ] ⊢ Ψ

Σ;Θ, [ϕ ∨ ψ] ⊢ Ψ

These rules can be derived when Σ;Θ ⊢ [ϕ] ∨ [¬ϕ] is valid (= ϕ is determined).

36/44

Proof system (3)

From reachability to equivalence properties:

Σ;Θ;⊢ u = v Σ;Θ ⊢ [C⃗ [v]] ∼ t⃗

Σ;Θ ⊢ [C⃗ [u]] ∼ t⃗

From equivalence to reachability properties:

Σ;Θ ⊢ [u⃗ ∼ v⃗] Σ;Θ; Γ[v⃗] ⊢ ϕ[v⃗]

Σ;Θ; Γ[u⃗] ⊢ ϕ[u⃗]
Γ, ϕ without names

37/44

Towards completeness
With Thibaut Antoine [CSL’25]

Problem

The gradual, organic growth of our proof system is unsatisfying.

¬ Look for well-behaved and complete proof system, for a fragment of the logic.

Non-trivial even if forget about protocols, messages, quantifiers. . .
keeping only a propositional local logic, and [ϕ] atoms in the global logic.

• Why don’t we need a mixed reductio ad absurdum rule?

Σ;Θ ⊢ ¬¬Φ
Σ;Θ ⊢ Φ

Σ;Θ; Γ ⊢ ¬¬ϕ
Σ;Θ; Γ ⊢ ϕ

Σ;Θ ⊢ ¬¬[Γ⇒ ϕ]

Σ;Θ; Γ ⊢ ϕ
??

• How to incorporate determinism assumptions in the proof system?
Adding [P] ∨ [¬P] as hypotheses yields exponential blowup.

38/44

Modal logic of overwhelming truth

Syntax
φ ::= ⊥ | p | φ⇒ φ′ | □φ where p ∈ P ∧, ∨, ♢. . . as syntactic sugar

Models
Cryptographic structures S given by

• for each η ∈ N, a set of tapes Xη; several inessential variants in the paper

• for each p ∈ P and η ∈ N, a random variable p̂η : Xη → {0, 1}.

Satisfaction

S, η, ρ |= p iff p̂η(ρ) = 1
S, η, ρ |= φ⇒ ψ iff S, η, ρ |= φ implies S, η, ρ |= ψ
S, , |= □φ iff (η 7→ Prρ(S, η, ρ |= φ)) is overwhelming

Formula φ is valid if S, , |= □φ for all S.

39/44

Modal logic of overwhelming truth

Syntax
φ ::= ⊥ | p | φ⇒ φ′ | □φ where p ∈ P ∧, ∨, ♢. . . as syntactic sugar

Models
Cryptographic structures S given by

• for each η ∈ N, a set of tapes Xη; several inessential variants in the paper

• for each p ∈ P and η ∈ N, a random variable p̂η : Xη → {0, 1}.

Satisfaction

S, η, ρ |= p iff p̂η(ρ) = 1
S, η, ρ |= φ⇒ ψ iff S, η, ρ |= φ implies S, η, ρ |= ψ
S, , |= □φ iff (η 7→ Prρ(S, η, ρ |= φ)) is overwhelming

Formula φ is valid if S, , |= □φ for all S.

39/44

Characterizing our modal logic

The following formulas are valid:

• □(φ⇒ ψ)⇒ (□φ⇒ □ψ)

• □φ⇒ φ

• □φ⇔ □□φ

and ♢φ⇒ □♢φ

Theorem

A formula is valid in our sense iff it is a theorem of S5.

Proof.

• Axioms defining S5 are sound in modal logic of ow. truth.

• S5 valid = valid in Kripke frames that are finite cliques.
Finite cliques can be turned into cryptographic structures.

40/44

Characterizing our modal logic

The following formulas are valid:

• □(φ⇒ ψ)⇒ (□φ⇒ □ψ)

• □φ⇒ φ

• □φ⇔ □□φ and ♢φ⇒ □♢φ

Theorem

A formula is valid in our sense iff it is a theorem of S5.

Proof.

• Axioms defining S5 are sound in modal logic of ow. truth.

• S5 valid = valid in Kripke frames that are finite cliques.
Finite cliques can be turned into cryptographic structures.

40/44

Characterizing our modal logic

The following formulas are valid:

• □(φ⇒ ψ)⇒ (□φ⇒ □ψ)

• □φ⇒ φ

• □φ⇔ □□φ and ♢φ⇒ □♢φ

Theorem

A formula is valid in our sense iff it is a theorem of S5.

Proof.

• Axioms defining S5 are sound in modal logic of ow. truth.

• S5 valid = valid in Kripke frames that are finite cliques.
Finite cliques can be turned into cryptographic structures.

40/44

Hypersequents

S5 enjoys a very nice hypersequent calculus [Poggiolesi 2008].

Γ1 ⊢ ∆1 | . . . | Γn ⊢ ∆n reads as
∨
i

□(∧Γi ⇒ ∨∆i)

Selected rules:

. . . | Γ, φ ⊢ φ ,∆

. . . | Γ, ψ ⊢ ∆ . . . | Γ ⊢ φ ,∆

. . . | Γ, φ⇒ ψ ⊢ ∆

. . . | Γ ⊢ ∆ | ⊢ φ

. . . | Γ ⊢ ∆, □φ

Modified axiom yields variant that is complete for S5 + (□p ∨□¬p):

. . . | Γ, p ⊢ ∆ | Γ′ ⊢ p ,∆′

41/44

Hypersequents

S5 enjoys a very nice hypersequent calculus [Poggiolesi 2008].

Γ1 ⊢ ∆1 | . . . | Γn ⊢ ∆n reads as
∨
i

□(∧Γi ⇒ ∨∆i)

Selected rules:

. . . | Γ, φ ⊢ φ ,∆

. . . | Γ, ψ ⊢ ∆ . . . | Γ ⊢ φ ,∆

. . . | Γ, φ⇒ ψ ⊢ ∆

. . . | Γ ⊢ ∆ | ⊢ φ

. . . | Γ ⊢ ∆, □φ

Modified axiom yields variant that is complete for S5 + (□p ∨□¬p):

. . . | Γ, p ⊢ ∆ | Γ′ ⊢ p ,∆′

41/44

Hypersequents

S5 enjoys a very nice hypersequent calculus [Poggiolesi 2008].

Γ1 ⊢ ∆1 | . . . | Γn ⊢ ∆n reads as
∨
i

□(∧Γi ⇒ ∨∆i)

Selected rules:

. . . | Γ, φ ⊢ φ ,∆

. . . | Γ, ψ ⊢ ∆ . . . | Γ ⊢ φ ,∆

. . . | Γ, φ⇒ ψ ⊢ ∆

. . . | Γ ⊢ ∆ | ⊢ φ

. . . | Γ ⊢ ∆, □φ

Modified axiom yields variant that is complete for S5 + (□p ∨□¬p):

. . . | Γ, p ⊢ ∆ | Γ′ ⊢ p ,∆′

41/44

Back to earth

Little hope to do better for S5. . . but we don’t need all of S5!

Propositional CCSA logic

Global formulas Φ ::= ⊥ | [φ] | Φ⇒ Φ′

Local formulas φ ::= ⊥ | p | φ⇒ φ′

Two kinds of sequents, similar to previous ones but multiple-conclusion:

Θ1, . . . ,Θn ⊢ Ψ1, . . . ,Ψm reads as ∧Θ⇒ ∨Ψ
Θ, . . . ,Θn; γ1, . . . , γ ⊢ δ1 . . . , δm reads as ∧Θ⇒ □(∧γ ⊢ ∨δ)

42/44

A sound and complete calculus for propositional CCSA logic

Θ, F ⊢ F ,Π Θ, ⊥ ⊢ Π

Θ ⊢ F ,Π Θ, G ⊢ Π

Θ, F ⇒ G ⊢ Π

Θ, F ⊢ G ,Π

Θ ⊢ F ⇒ G ,Π

Θ; Γ, ϕ ⊢ ϕ ,∆ Θ; Γ, ⊥ ⊢ ∆

Θ; Γ ⊢ ϕ ,∆ Θ; Γ, ψ ⊢ ∆

Θ; Γ, ϕ⇒ ψ ⊢ ∆

Θ; Γ, ϕ ⊢ ψ ,∆

Θ; Γ ⊢ ϕ⇒ ψ ,∆

Θ; Γ, ϕ ⊢ ∆

Θ, □ϕ ; Γ ⊢ ∆

Θ; · ⊢ ϕ

Θ ⊢ □ϕ ,Π

Lemma

If [φ1], . . . , [φn] ⊢ [ψ1], . . . , [ψm] is valid, there exists k ∈ [1;m] such that
φ1, . . . , φn ⊢ ψk is classically valid.

43/44

A sound and complete calculus for propositional CCSA logic

Θ, F ⊢ F ,Π Θ, ⊥ ⊢ Π

Θ ⊢ F ,Π Θ, G ⊢ Π

Θ, F ⇒ G ⊢ Π

Θ, F ⊢ G ,Π

Θ ⊢ F ⇒ G ,Π

Θ; Γ, ϕ ⊢ ϕ ,∆ Θ; Γ, ⊥ ⊢ ∆

Θ; Γ ⊢ ϕ ,∆ Θ; Γ, ψ ⊢ ∆

Θ; Γ, ϕ⇒ ψ ⊢ ∆

Θ; Γ, ϕ ⊢ ψ ,∆

Θ; Γ ⊢ ϕ⇒ ψ ,∆

Θ; Γ, ϕ ⊢ ∆

Θ, □ϕ ; Γ ⊢ ∆

Θ; · ⊢ ϕ

Θ ⊢ □ϕ ,Π

Lemma

If [φ1], . . . , [φn] ⊢ [ψ1], . . . , [ψm] is valid, there exists k ∈ [1;m] such that
φ1, . . . , φn ⊢ ψk is classically valid.

43/44

Conclusion

Summary

• CCSA methodology for proving cryptographic protocols.

• Over time, CCSA logics (resp. axioms) have become both more expressive (resp. precise)
and conceptually clearer.

• Opportunities for proof theory and semantics (e.g. beyond discrete proba. in HO CCSA).

Learn more on our website: papers, tutorials and interactive examples.

https://squirrel-prover.github.io/

Other topics

• Proof automation, including using SMT solvers for the polymorphic, higher-order logic.

• Concrete bounds rather than asymptotic guarantees (cf. work of Théo Vignon [CSF’23]).

• Working on more complex protocols and post-quantum security.

44/44

https://squirrel-prover.github.io/

Conclusion

Summary

• CCSA methodology for proving cryptographic protocols.

• Over time, CCSA logics (resp. axioms) have become both more expressive (resp. precise)
and conceptually clearer.

• Opportunities for proof theory and semantics (e.g. beyond discrete proba. in HO CCSA).

Learn more on our website: papers, tutorials and interactive examples.

https://squirrel-prover.github.io/

Other topics

• Proof automation, including using SMT solvers for the polymorphic, higher-order logic.

• Concrete bounds rather than asymptotic guarantees (cf. work of Théo Vignon [CSF’23]).

• Working on more complex protocols and post-quantum security.

44/44

https://squirrel-prover.github.io/

	Background: formal proofs of security protocols
	Cryptographic assumptions as games
	Protocols and security properties

	The CCSA approach
	Reasoning about messages
	Reasoning about protocol executions
	Squirrel's higher-order CCSA logic

	Foundations for cryptographic reductions in CCSA logics
	Bi-deduction and its proof system
	Proof-search implementation in Squirrel

	Proof systems for CCSA logics
	Higher-order CCSA logic
	Propositional logics of overwhelming truth

	Conclusion

