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Logical foundations of the Squirrel prover

Squirrel is a proof assistant for
verifying cryptographic protocols
in the computational model.

It is based on the CCSA approach.

[3 Gergei Bana & Hubert Comon. A Computationally Complete Symbolic Attacker for
Equivalence Properties. CCS 2014.

Outline
e Brief introduction to cryptography and CCSA logics.
e A proof-system for synthesizing cryptographic reductions.

e Proof systems for CCSA logics,
including completeness results for propositional/modal fragments.




Background: formal proofs of security protocols

0 Background: formal proofs of security protocols
@ Cryptographic assumptions as games
@ Protocols and security properties



Unforgeability as a game

A cryptographic hash function H(m, key) is unforgeable when
one cannot produce valid hashes without knowing key.



Unforgeability as a game

A cryptographic hash function H(m, key) is unforgeable when
one cannot produce valid hashes without knowing key.

Init: key ¢ {0,1}7; £ «+ 0;
—> (’)hash(m) =

-~ L+ m: L

return H(m, key)

Ochallenge(ma h) =
win if m & £ and h = H(m, key)

For any probabilistic polynomial-time Turing machine (PPTM) -§,,
the probability that tg wins is negligible in 7,
i.e., asymptotically smaller than the inverse of any positive polynomial.
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Unforgeability as a pair of games

Init: key < {0,1}7; £ + 0;
Ohash(m) =

— 0 L+~ m:L;

1 return H(m, key)
Ochallenge(’”v h) =

m ¢ L and h = H(m, key)
return
false

(Gleft)
(Gright)

The advantage of any PPTM 4, is negligible in 7:

Advg('§) = | Pr (tgleft —0) —Pr (x‘)gright _0)|

We say that Giert and Giighe are computationally indistinguishable.
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Pseudo-randomness as a pair of games

A cryptographic hash function H(m, key) is pseudorandom when
one cannot distinguish new hashes from random values.

Init: key < {0,1}7; L + 0;

Ohash(m) =
assert m¢ L;
L+ m:L;
: return H(m, key)
t _» Oreal-or-random(m) =
. | assert m¢L;
L+ m:L;

random < {0, 1}%;

H(m7 key) (g|eft)
return
random (Gright)
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Example protocol (1/3)
I Each tag (T;) owns a secret key k;.
R — T; : ngp

T,' - R h(nR,k,-)
R — T; : ok

Scenario under consideration:
erolesR, Ty, ..., Tp;

Reader (R) knows all legitimate keys.
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Example protocol (2/3)

(nr,h(nr, k))
ok

Security properties:
v/ Unlinkability: adversary cannot distinguish T;, T; from T;, T;
77 Authentication: snd(input@R/) = h(fst(input@R/), k;) = 3. input@R/ = output@Tf',.



Example protocol (2/3)
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Example protocol (2/3)

(nr,h(nr, k))
ok

Security properties:

v/ Unlinkability: adversary cannot distinguish T;, T; from T;, T;

v/ Authentication: snd(input@R/) = h(fst(input@R’), k;) = 3j’. input@R/ = output@Tf',.

X Injective auth.: two sessions of R cannot accept with the same input
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Example protocol (3/3)

R — T; : ng
Ti — R (n7,h({nr,n7), k))
R — T; : ok

Security properties:
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Example protocol (3/3)

R — T, nR
T, — R <nT7h(<nR7nT>7kf)>
R — T,; ok

Security properties:
v/ Unlinkability: adversary cannot distinguish T;, T; from T;, T;
v/ Authentication: R/ accepts = 3j’. input@R/ = output@TIJ’.

v/ Injective auth.: two sessions of R cannot accept with the same input



Formal proofs of protocols: summary

We have seen the main ingredients for provable security of protocols,
i.e. for formal proofs of protocols in the computational model.
As opposed to the symbolic/Dolev-Yao model used e.g. in Proverif and Tamarin.

Cryptographic assumptions about primitives
e Generally expressed as indistinguishability between two games.

e Sometimes as negligible chance of winning at single game.

Security properties of protocols
e Indistinguishability properties (e.g. unlinkability)
state that an attacker cannot distinguish between two scenarios.

e Reachability properties (e.g. authentication)
state that a condition is false with negligible probability (= is overwhelmingly true).
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The CCSA approach

© The CCSA approach
@ Reasoning about messages
@ Reasoning about protocol executions
@ Squirrel’s higher-order CCSA logic
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CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS'14]

First-order terms interpreted as PPTMs, explicit random tape p € {0,1}*>

o [t]m(17,p) € {0,1}
e Name constants n, m, k extract from p dedicated sections of length 7.

Example J

atty(m) : attacker computes first message from m.
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CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS'14]

First-order terms interpreted as PPTMs, explicit random tape p € {0,1}*>

o [t]m(17,p) € {0, 1}
e Name constants n, m, k extract from p dedicated sections of length 7.

Example

attp(m, h(atty(m), k)) : attacker computes 2"¢ message from m and hash of first message. J
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CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS'14]

First-order terms interpreted as PPTMs, explicit random tape p € {0,1}*>

o [t]m(17,p) € {0,1}
e Name constants n, m, k extract from p dedicated sections of length 7.

Example
[n]a(n, p) and [atta(m, h(atti(m), k))]a(n, p) are equal with probability < 277. J
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CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS'14]

First-order terms interpreted as PPTMs, explicit random tape p € {0,1}*>

o [t]m(17,p) € {0, 1}
e Name constants n, m, k extract from p dedicated sections of length 7.

Predicates
e [¢] where ¢ is boolean term : “¢ is true with overwhelming probability”

e t ~ t’ for two terms of the same type : “t and t’ are computationally indistinguishable”

Example
[n # atta(m, h(atty(m), k))] is valid. J
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CCSA logic: Computationally Complete Symbolic Attacker
[Bana & Comon, CCS'14]

First-order terms interpreted as PPTMs, explicit random tape p € {0,1}*>

o [t]m(17,p) € {0, 1}
e Name constants n, m, k extract from p dedicated sections of length .

Predicates
e [¢] where ¢ is boolean term : “¢ is true with overwhelming probability”

e t ~ t’ for two terms of the same type : “t and t’ are computationally indistinguishable”

Example J

[n # t] is valid for any ground term t where n does not occur.

12/44



Example formulas

Example (equality and indistinguishability)
e We have [x = y| = (x ~ y) but not the converse.
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Example formulas

Example (equality and indistinguishability)
e We have [x = y| = (x ~ y) but not the converse.
e Indeed, m ~ n but (m = n) ~ false. assuming m, n distinct

e More generally, [x = y| = (u[x] ~ v[x]) = (u[y] ~ vl]y]) is valid.

Example (relating boolean connectives)

Which of the following implications are valid?
o [pVy] <= [g]V[¥]
o [pAY] & [o] A [Y]
e [¢=9] = ([¢] = [¥])
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Cryptographic axioms

Example (Unforgeability)

In all models where h is unforgeable, we have

[u=h(v,k) = \/m:v]

meS

where u, v are ground terms only containing k as h(_, k) and S = { m | h(m, k) occurs in u, v}.
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Cryptographic axioms
Example (Unforgeability)

In all models where h is unforgeable, we have

[u=h(v,k) = \/m:v]

meS

where u, v are ground terms only containing k as h(_, k) and S = { m | h(m, k) occurs in u, v}.

Proof sketch.

Fix a model M where h is unforgeable.
The machines [u]aq and [v] s can be simulated by some attacker wrt. the unforgeability game:

e occurrences h(m, k) computed via oracle queries on m;

e k not accessed otherwise.

Submitting v, u to challenge oracle yields a win iff our formula is false. O
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Cryptographic axioms
Example (Unforgeability)

In all models where h is unforgeable, we have

[u=h(v,k) = \/m:v]

meS

where u, v are ground terms only containing k as h(_, k) and S = { m | h(m, k) occurs in u, v}.

Example (Pseudo-randomness)

In all models where h is pseudorandom, we have

v, h(t,k) ~ v, if \/ m = t then h(t, k) else
meS

where S is the set of hashes in V, t, n is fresh and V, t are ground terms only using k as h(_, k).
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Verifying protocols along fixed traces: an example

Authentication along trace R\ .. 77 1o Riosr-

nR

<nT7 H(<nR7 nT>7 kl')>

ok/ko

(\/ snd(in@RL.,) = H((nf, fst(in@RL.,)), k) = (in@R..

tes

. =out@T7 V inQR.

tes

. = out@ Tg’)

i
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Verifying protocols along fixed traces: an example

Authentication along trace R\ .. 77 1o Riosr-

nR

(n1, H({nRs nT), k1))

ok/ko

in@Ty = attz(outOR ey, 0ut@T7)

OUt©T83 = <n?7"7 (<m@T8anT> k8)>

iR, = att3(out@R/, ..., 0ut@77, 0out@Ty)

(\/ snd(in@RL.,) = H((nf, fst(in@RL,)), k) = (in@RL., = out@T; V in@R

tes

. = out@ Tg)

i
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nR
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Verifying protocols along fixed traces: an example

Authentication along trace R\ .. 77 1o Riosr-

1
OUt@R challenge — ng

nR

in@ T7 = attl(OUt©R<}hallenge)
(nt, H((ng, n7), k1))

out@T? = (i}, H(In@TZ, 17}), k7))
ok/ko

in@Ty = attz(outO@R ey, 0ut@T7)

OUt©T83 = <n?7"7 (<m@T8anT> k8)>

inOR., = att3(out@R/, ..., 0ut@77, 0ut@Ty)

(\/ snd(in@RL.,) = H((nf, fst(in@RL.,)), k) = (in@RL., = out@T; V in@R.., = out@T})

i
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Verifying protocols along all traces: CCSA meta-logic
With Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Soléne Moreau [SP'21,CSF'22]
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Verifying protocols along all traces: CCSA meta-logic

With Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos and Soléne Moreau [SP'21,CSF'22]

Example (Local meta-logic formulas)
e output@A(/,j) = h(input@A(i, ), k(1)) + indexed timestamps and names
e Vk. cond®B(k) = 3i,j. A(i,j) < B(k) A input@B(k) = output@A(J, )

Reasoning over all trace models T for protocol P, and all computational models M.

Meta-logic term t —+  base logic term ()" M, PPTM returning bitstring

Local meta-logic formula ¢ Ty base logic term ()" Mo ppTM returning boolean

Eliminating timestamps and indices in (¢)”
e Indices and timestamps interpreted in finite domains.

e Quantifications become finite boolean combinations.
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Higher-order CCSA logic (1/2)

With Adrien Koutsos and Joseph Lallemand [LICS'23]

Letting go (at first) of PTIME, computability, bitstrings, protocols. . .

Terms of the old base logic: Terms of the new logic:
probabilistic polynomial-time machines. n-indexed families of random variables.

[tla(n, p) € {0,1}" [tlat(n, p) € [7]ra(n)
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Letting go (at first) of PTIME, computability, bitstrings, protocols. . .

Terms of the old base logic: Terms of the new logic:
probabilistic polynomial-time machines. n-indexed families of random variables.
[tIam(n, p) € {0, 1} [tIam(n, p) € [7]ra(n)
Benefits

e Ability to talk about useful non-PTIME functions, e.g. log.

e Quantifiers at all types in local formulas:
[Vx : 7. #]%4(n, p) = true  when  [@]% " (n, p) = true for all a € [7]aq

e Express abstract reasoning schemes (e.g. hybrid argument) using higher-order logic.
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Higher-order CCSA logic (2/2)
With Adrien Koutsos and Joseph Lallemand [LICS'23]

Recursive definitions
Terms are A-terms with (well-founded) recursive definitions,
which allows to recover the protocol modelling “macros” in@T, out@T. ..
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Recursive definitions
Terms are A-terms with (well-founded) recursive definitions,
which allows to recover the protocol modelling “macros” in@T, out@T. ..
Local/global formulas
e Local formulas are boolean terms, seen as higher-order formulas.

e Global formulas are first-order formulas over u ~ v and [¢] where ¢ is local.
We allow order-1 functions in computational indistinguishability.

Advanced axioms
e In base logic, [t # n] is valid for any closed term t that doesn't contain n.
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Higher-order CCSA logic (2/2)

With Adrien Koutsos and Joseph Lallemand [LICS'23]

Terms are A-terms with (well-founded) recursive definitions,
which allows to recover the protocol modelling “macros” in@T, out@T. ..

e Local formulas are boolean terms, seen as higher-order formulas.

e Global formulas are first-order formulas over u ~ v and [¢] where ¢ is local.
We allow order-1 functions in computational indistinguishability.

e In higher-order logic, [¢p = t # n(i)] is valid if
in all models and n, p such that ¢ holds,
(7) cannot occur in t through unfoldings of recursive definitions.
e For cryptographic axioms, need to ensure that some functions are PPTM-computable:
adv(_) predicate.
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Universal quantifications

Definition (Formulas)
M0 =EV(x:7).® when M, o{x — A} = ® for any random variable A on [7] J
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Universal quantifications

Definition (Formulas)
Mo EV(x:T1).® when

M, o{x — A} = ® for any random variable A on [7]

Definition (Boolean terms)
IV(x : T).(b]]y\’/ﬁg =1 when
M, o = [¢] when

[¢ %,U{XHa} =1 for any constant a € [7]

(n = Pro[ [¥]}f, = 1]) overwhelming.

(slight abuse)
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Universal quantifications

Definition (Formulas)
M0 =EV(x:7).® when M, o{x — A} = ® for any random variable A on [7]

Definition (Boolean terms)

[V(x:7).¢l%f, =1 when [[qﬁ]]j]\’fl’g{XHa} =1 for any constant a € [7] (slight abuse)
M, o = [Y] when (n = Pro[ [¥]}f, = 1]) overwhelming.
Theorem

For any ¢ : bool, and because all probability spaces are discrete, we have:

M,o =EVY(x:7).[d] iff  M,o = [V(x:7).¢]
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Foundations for cryptographic reductions in CCSA logics
With Adrien Koutsos' and Justine Sauvage [CCS'24]

© Foundations for cryptographic reductions in CCSA logics
@ Bi-deduction and its proof system
@ Proof-search implementation in Squirrel

LCredits to Adrien for the slides.
20/44



Recall: unforgeability as a pair of games

Cryptographic hash function H(_, key) is unforgeable when
the two games below are indistinguishable:

Init: key < {0,1}7; £ <+ 0;

Ohash(m) =
- L+ m:L;
1 " | return H(m, key)
: Ochallenge(m7 h) =

m¢ L and h=H(m, key)  (Grr)
return
false (Gright)

Let Advyg('§,) be the adversary’s advantage for this pair of games.
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Hardness assumption: example

Example
c"(H(O,k), H(l,k)> =H(mk) = m=0V m=1

Proof by reduction

Build an adversary “§, against unforgeability (UF):
e compute hy < Opash(0) and hy < Ohash(1);
e call § to compute h < §(ho, h1);
e compute m; (must be computable, cf. syntactic condition)

o return Ochallenge(m, h).

Advyg('8,) is the probability that our formula is false: it must be negligible.
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From hardness assumptions to logical rules, by hand

Until recently:

e Squirrel supported a limited set of hardness assumptions
(symmetric/asymmetric encryption, signature, hash, DH, ...)

e Built-in tactics for each such assumptions:

hardness assumption (imperative, stateful programs)
()
reasoning rules (pure, logic)

e Adding rules for new hardness assumptions is:
tedious, error-prone, and not in user-space (Ocaml code).
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From hardness assumptions to logical rules, formalized

Systematically translate hardness assumptions into cryptographic rules.

Inputs:

e An (imperative, stateful) hardness assumption Gy ~ G .

e A (pure) indistinguishability property wup ~ uj to prove.

Goal:

e Synthesize PPTM § such that sY9i = [ ui] for each i € {0,1}.
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From hardness assumptions to logical rules, formalized

Systematically translate hardness assumptions into cryptographic rules.

Inputs:

e An (imperative, stateful) hardness assumption Gy ~ G .

e A (pure) indistinguishability property wup ~ uj to prove.

Goal:

e Synthesize PPTM § such that sY9i = [ ui] for each i € {0,1}.
o Ensure Adv,yy, (&) = Advg,~g, (& o S) and is thus negligible.
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Bi-deduction

Bi-Terms

The bi-terms uy = #(uo; u1) represent a pair of left/right scenarios.
Factorize common behavior, e.g. (v, #(uo; u1)) = #(f(v, uo); f(v, u1))
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Bi-deduction

Bi-Terms

The bi-terms uy = #(uo; u1) represent a pair of left/right scenarios.

Factorize common behavior, e.g. (v, #(uo; u1)) = #(f(v, uo); f(v, u1))
Bi-deduction
New judgment uy >go~g, vy which means:

Go o
HSePPTM.{ S*([wl ) =[]
and Sgl( [r1])=[w1]
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Bi-deduction

Bi-Terms

The bi-terms uy = #(uo; u1) represent a pair of left/right scenarios.
Factorize common behavior, e.g. (v, #(uo; u1)) = #(f(v, uo); f(v, u1))

Bi-deduction
New judgment uy >go~g, vy which means:

S9([uo] ) =[wol

3S € PPTM. {
and S9([u1] ) = [w ]

Inference Rule
0 >gong, #(uo; u1)
up ~ U1

BI-DEDUCE
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Bi-deduction: rules

A few simple bi-deduction rules:

o Transitivity

Uy D> vy Uge, Ve > Wy _(__) P ;2(([/') ‘7)

return (V, w)

L_f# > \7#, V_I;#
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Bi-deduction: rules

A few simple bi-deduction rules:
e Transitivity

J#DV# ﬁ#,V#DM_}#

L_f# > \7#, V_I;#

e Function application

LT# > \7# adv(f)
LT# > f(V#)

S(0) = vV« S1(0)
o W SZ(LT, \7)
return (V, w)

S(d) = 7+ S1(0)
T x4 M(V)
return x
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Bi-deduction: rules

Bi-deduction rules handling randomness:

ORACLE
lj# > Vs
LT# > H(V#, k)

NAME
LT# > Vi
LT# > n(v#)

S(d) == V< Si(id)
o X <i Ohash(v)
return x
S(@) = v+ S (i)

x < Mm(v’ Ph )
return x
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Bi-deduction: rules

Bi-deduction rules handling randomness:

A S(@) 1= 7 51(7)
Ty > H(vg, k) X € Onash(V)
Uy B (V#’ ) return x
N‘l}MED § S(@) == v+ Si(d)
- T X EML(v, )
g > 1 (V)

return x

Problem: the NAME rule allows S to read k!
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Bi-deduction: constraints

e Problem: S should not access the game secret keys.

e Solution: track randomness usage using logical constraints.
E.g. ensures that S does not directly use key.

e Enriched bi-deduction judgment:

ORACLE

- J# > vy NAME

(k:T) by > H(vg, k) (n:Ts) by >n
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Bi-deduction: constraints

Eventually, check that the constraints are valid :

CH 0> #(uo; ur) = [Valid(C)]

up ~ U1

BI-DEDUCE

Example:
B [Valid((k : TgY), (k : Ts))]
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Bi-deduction: constraints

Eventually, check that the constraints are valid :

CH 0> #(uo; ur) = [Valid(C)]

up ~ U1

BI-DEDUCE

Example:
B [Valid((k : TgY), (k : Ts))]

Some additional difficulties:

e We need to handle indexednames and conditions :

(n,i,o:T)

e Non-well-founded constraints must be avoided, e.g. when condition relies on name itself.
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Bi-deduction: statefulness

We also need to account for G's statefulness.

Init: key < {0,1}7; £+ 0;

Ohash(m) =
— 0 L+ m:L;
" “| return H(m, key)
: Ochallenge(m7 h) =

m¢ L and h=H(m,key)  (Gierr)
return
false (Gright)
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Bi-deduction: statefulness
We track the state of G:

e Add Hoare pre- and post- conditions:

(¢, V) Fuy>vy

e Semantics:

3Se PPTM.Vu = ¢.  (S)9(u) = (i, [vi])
where 1/ =

(Vie{0,1})
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Bi-deduction: statefulness
We track the state of G:

e Add Hoare pre- and post- conditions:
(¢, V) Fugtvy
e Semantics:
IS € PPTM.Vu = ¢ (S)(uw) = (i, [w]) (Vi€ {0,1})
where 1/ =
e Modified proof-system:

(gb,?/})l—ﬁ#bv#,vv#

TRANS
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Wrapping up on bi-deduction
With Adrien Koutsos and Justine Sauvage [CCS'24]

e Framework for reducing logical indistinguishability to cryptographic assumptions.
e Proof-system for bi-deduction.

e Proof-search algorithm for deriving bi-deduction proofs, implemented in Squirrel.
Includes induction rule, whose invariant is synthesized.

e Bi-deduction (without oracles) is also used in Squirrel to prove implications between

indistinguishabilities in the logic. Single-deduction also used to reason about secrecy.

e Can we synthesize crypto reductions in other settings, e.g. Easycrypt?

e Relate to proof-as-program paradigm, e.g. relational typing?



Proof systems for CCSA logics
With Antoine, Delaune, Koutsos, Lallemand and Moreau [CSF'22,LICS’23,CSL'25]

@ Proof systems for CCSA logics
@ Higher-order CCSA logic
@ Propositional logics of overwhelming truth
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Higher-order CCSA sequents

The proof system relies on two kinds of sequents.

unlversally quantified variables

Y,0F® and Z@I‘I—g[)

"\

global formulas local formulas

Semantics given by VE. (NO) = and VE. (AO) = [(AlN) = ¢].

Proof system features rules for deriving the two kinds of sequents.
Each kind can be useful to derive the other kind.
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Proof system (1)

Purely global reasoning using classical inferences:

1,0, 01Ty ¥,0, 9T EY Y OF ~F

T;0, &1V oy ;T Hp T,0F F

2,0, 01V L0, O FV Y x:OF F
2,0, 0, Vo, FV >, 0F Vx.F

X€x
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Proof system (1)

Purely global reasoning using classical inferences:

Y,0,91;THy X0, 0T H9 Y-OF ——F
50,01V dy Ty T0F F

2,0, 01V L0, O FV Y x:OF F
2,0, 0, Vo, FV >, 0F Vx.F

X€x

Purely local reasoning using classical inferences, for instance:

20, o1 FyY L0, HY X, x;0,THF ¢ g
20,1, p1 Vo o 0T+ Vx.cbx
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Proof system (2)

From global to local hypotheses:
>:0; ¢,

Y, 0, [0 THY

Some (ugly) inferences require that ¢ is deterministic:

Y, 0, (6] THY ;0,0 FV X0, [¢] WV

Y0 ¢9,THY Y0, [pVy] FW
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Proof system (2)

From global to local hypotheses:
>:0; ¢,

L0, o ;THv

Some (ugly) inferences require that ¢ is deterministic:

Y, 0, (6] THY ;0,0 FV X0, [¢] WV
¥,0;,¢, T Y0, [pVvy] HW

These rules can be derived when X; © - [¢] V [-¢] is valid (= ¢ is determined).
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Proof system (3)

From reachability to equivalence properties:

YOk u=v X0k [CV]~T

Y. 0F [Clu]] ~

From equivalence to reachability properties:

YL,0F [d~V] %;,0;T[V] F ¢[v]
2;0; Id] - o[d]

I, » without names
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Towards completeness
With Thibaut Antoine [CSL'25]

Problem
The gradual, organic growth of our proof system is unsatisfying.

> Look for well-behaved and complete proof system, for a fragment of the logic.

Non-trivial even if forget about protocols, messages, quantifiers. . .
keeping only a propositional local logic, and [¢] atoms in the global logic.

e Why don’t we need a mixed reductio ad absurdum rule?

T OF b Y, 0;TF =g Y, 0F =l = ¢
Ti0F o T 0Tk ¢ Y0 ko

e How to incorporate determinism assumptions in the proof system?
Adding [P] \V [-P] as hypotheses yields exponential blowup.
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Modal logic of overwhelming truth
Syntax

pr=Llple=¢ |Op wherepeP
Models

Cryptographic structures S given by

A, V, {...as syntactic sugar

e for each n € N, a set of tapes X,; several inessential variants in the paper

e for each p € P and 1 € N, a random variable p, : X, — {0, 1}.

Satisfaction

S,np EP iff  py(p) =1
Snp Fe=v iff SnpFpimpliesS,n,pE
S,.,. EOp iff (1= Pry(S,n,p = ¢)) is overwhelming
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Modal logic of overwhelming truth

Syntax
pr=Llple=¢ |Op wherepeP
Models
Cryptographic structures S given by
e for each n € N, a set of tapes X,; several inessential variants in the paper
e for each p € P and 1 € N, a random variable p, : X, — {0, 1}.

A, V, {...as syntactic sugar

Satisfaction

S,np EP iff  py(p) =1
Snp Fe=v iff SnpFpimpliesS,n,pE
S,.,. EOp iff (1= Pry(S,n,p = ¢)) is overwhelming

Formula ¢ is valid if S, _, - = O for all S.
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Characterizing our modal logic

The following formulas are valid:
e Ulp =) = (Oe = 0y)
o Llp= ¢
o [p < Hly
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Characterizing our modal logic

The following formulas are valid:
e Ulp =) = (Oe = 0y)
o Llp= ¢
o o< Oy and Qp = OOy
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Characterizing our modal logic

The following formulas are valid:
e Ulp =) = (Oe = 0y)
o Llp= ¢
o o< Oy and Qp = OOy

Theorem

A formula is valid in our sense iff it is a theorem of S5.

Proof.

e Axioms defining S5 are sound in modal logic of ow. truth.

e S5 valid = valid in Kripke frames that are finite cliques.

Finite cliques can be turned into cryptographic structures.
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Hypersequents
S5 enjoys a very nice hypersequent calculus [Poggiolesi 2008].

MbEAL || Tk A, reads as \/O(Ar; = vay)

]
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Hypersequents
S5 enjoys a very nice hypersequent calculus [Poggiolesi 2008].

MbEAL || Tk A, reads as \/O(Ar; = vay)

]

Selected rules:

LT EA L THe, A L |TFA|F g

T, o F ¢, A T o= FA | THA, Op
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Hypersequents

S5 enjoys a very nice hypersequent calculus [Poggiolesi 2008].

MbEAL || Tk A, reads as \/O(Ar; = vay)
Selected rules:
LT EA L TE@, A L |TEA|F
T o F o,A T, o= FA L TEA, Op

Modified axiom yields variant that is complete for S5 + (dp Vv O-p):

T p EA|TE p, A
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Back to earth

Little hope to do better for S5. .. but we don’t need all of S5!

Propositional CCSA logic

Global formulas & == L |[g]|® = ¢’
Local formulas ¢ == L |p|lyp=¢

Two kinds of sequents, similar to previous ones but multiple-conclusion:

©1,...,0, F V., ... .V, reads as A © = V¥
©,...,0m7,...,7yFd...,0m readsas AO = O(AyHF Vo)



A sound and complete calculus for propositional CCSA logic

©,FF F.M O, 1LFnNn O, ¢+ o,A o, LFA
OF F.N ©,6+N ©,FF G.N O,r-e¢,A Iy A O ¢F ¥, A
©,F=G*HnN OF F=G.,N Ol ¢=v¢ A Ok ¢=1,A
Ol ¢okA Q-+ ¢

©,06:THFA OF O¢,N
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A sound and complete calculus for propositional CCSA logic

©,FF F.M O, 1LFnNn O, ¢+ o,A o, LFA
OF F.N ©,6+N ©,FF G.N O,r-e¢,A Iy A O ¢F ¥, A
©,F=G*HnN OF F=G.,N Ol ¢=v¢ A Ok ¢=1,A
Ol ¢okA Q-+ ¢

©,06:THFA OF O¢,N

Lemma

If [p1l, ..., [enl F (1], ..., [¥m] is valid, there exists k € [1; m] such that
©1,.---,0n Yk is classically valid.
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Conclusion

o CCSA methodology for proving cryptographic protocols.

e Over time, CCSA logics (resp. axioms) have become both more expressive (resp. precise)
and conceptually clearer.

e Opportunities for proof theory and semantics (e.g. beyond discrete proba. in HO CCSA).
Learn more on our website: papers, tutorials and interactive examples.

https://squirrel-prover.github.io/
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Conclusion

o CCSA methodology for proving cryptographic protocols.

e Over time, CCSA logics (resp. axioms) have become both more expressive (resp. precise)
and conceptually clearer.

e Opportunities for proof theory and semantics (e.g. beyond discrete proba. in HO CCSA).
Learn more on our website: papers, tutorials and interactive examples.

https://squirrel-prover.github.io/

e Proof automation, including using SMT solvers for the polymorphic, higher-order logic.
e Concrete bounds rather than asymptotic guarantees (cf. work of Théo Vignon [CSF'23]).
e Working on more complex protocols and post-quantum security.
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