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❖ A pun on the title of a famous 
paper by A. Jung and R. Tix

❖ To spoil the end of the talk: 
no, there is no problem 
with the probabilistic powerdomain

❖ … but there are many interesting questions



Part I: domain theory and semantics
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❖ How do you make sure that a program M: 
— computes what you want? 
— computes something that satisfies a given property P? 
— computes the same thing as another program N?

❖ E.g., do the following two programs compute the same thing? 
      do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y)) 
      do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

❖ That would seem obvious, right? 
The only difference is the order in which x and y are drawn at random.

« draw at random
from {0,1,2}, uniformly »

« draw at random
from {0,1}, uniformly »
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one needs to know what programs compute

❖ This is the role of denotational semantics, 
defining the value ⟦M⟧ of each program M:

❖ We will use a domain-theoretic semantics (… pretty old technology)

❖ Dcpos and denotational semantics

❖ Continuous valuations, and the problem

❖ A solution
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Basic dcpo constructions

❖ Given dcpos , , the following are dcpos: 
— , with componentwise ordering 
—  (space of Scott-continuous maps), with pointwise ordering

X Y
X × Y
[X → Y]

❖ Dcpo is Cartesian-closed

❖ On a pointed dcpo , every Scott-continuous map  
                         has a least fixed point 

X f : X → X
lfp( f ) = sup

n∈ℕ
f n( ⊥ )

monotonic + preserves 
directed suprema

gives semantics to the 
(simply-typed) -calculusλ

and to recursion
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❖

M, N, P, …::= x, y, z, … variables
∣ MN application
∣ λxσ . M abstraction
∣ rec(M) recursion
∣ 0 ∣ 1 ∣ 2 ∣ … natural numbers
∣ s(M) successor
∣ p(M) predecessor
∣ if M = 0 then N else P conditional

, for puristsYM

elementary 
operations on type 

nat

(simply-typed)
lambda-calculus
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❖ ⟦ ⟧    
— add a fresh , 
     representing non-termination

nat =̂ ℕ⊥
⊥

❖ ⟦ ⟧ ⟦ ⟧  ⟦ ⟧  
— space of Scott-continuous maps from ⟦ ⟧ to ⟦ ⟧

σ → τ =̂ [ σ → τ ]
σ τ

⊥
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0 : nat 1 : nat
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M : nat
s(M) : nat

M : nat
p(M) : nat
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if M = 0 then N else P : τ

N : τ P : τ
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Theorem 1.  On a pointed dcpo , 
                       every Scott-continuous map 
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❖ Expressions have 
transparent semantics 
(functions are functions, application is application, etc.)

❖ compositional semantics: 
⟦ ⟧  defined from the 
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❖ No execution 
       mechanism involved

M ρ
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❖ An abstract machine (à la Krivine) = a transition relation between 

configurations C, M

C, MN → C[_N], M
C, s(M) → C[s(_)], M
C, p(M) → C[p(_)], M

C, if M = 0 then N else P → C[if _ = 0 then N else P], M

C[_N], λx . M → C, M[x := N]
C[s(_)], n → C, n + 1

C[p(_)], n + 1 → C, n
C[if _ = 0 then N else P],0 → C, N

C[if _ = 0 then N else P], n + 1 → C, P
C, rec(M) → C, M(rec(M))

Contexts C ::= _ ∣ C[_N] ∣ C[s(_)] ∣ C[p(_)] ∣ ∣ C[if _ = 0 then N else P]

Exploration rules (looking for redexes) Computation rules
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❖ In particular, if , then ⟦ ⟧  = _, M →* _, n (n ∈ ℕ) M ρ n

❖ Theorem (adequacy).  If ⟦ ⟧  = , 
          then the machine terminates: 

M ρ n ∈ ℕ ( ≠ ⊥ )
_, M →* _, n

❖ Proof through logical relations [Plotkin 77].

The two semantics are related
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❖

M, N, P, …::= … (as in PCF)
∣ M ⊕ N probabilistic choice
∣ ret M monad unit
∣ do xσ = M; N sequential composition

❖ Types:      
                                     : monadic types [Moggi 91]

σ, τ, … ::= nat ∣ unit ∣ σ → τ ∣ Tτ
Tτ

❖ New operational rules:

 = type of (first-class) distributionsTτ

M : τ
ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

* : unit

C, do x = M; N → C[do x = _; N], M
_, ret M → ret _, M

C[do x = _; N], ret M → C, N[x := M]
C, M ⊕ N →1/2 M
C, M ⊕ N →1/2 N

Exploration rules Computation rules
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Denotational semantics for probabilistic PCF
❖ Introduced in Claire Jones’ PhD thesis [Jones 90]

❖ ⟦ ⟧ ⟦ ⟧       dcpo of subprobability valuations on ⟦ ⟧ 
                                    (~ think « subprobability measures »)
Tτ =̂ V≤1( τ ) τ

❖ ⟦ ⟧  ⟦ ⟧ ⟦ ⟧M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

❖ ⟦ ⟧  ⟦ ⟧  

⟦ ⟧  ⟦ ⟧  d⟦ ⟧

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ↦ ∫x
N ρ(U) M ρ)

❖ … by the way, soundness and adequacy will still hold

M : τ
ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

Let us define all that first!



Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let  denote the lattice of open subsets of a space 𝒪X X

❖ Definition.  A continuous valuation  on  is a map  satisfying:ν X ν : 𝒪X → ℝ+



Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let  denote the lattice of open subsets of a space 𝒪X X

❖ Definition.  A continuous valuation  on  is a map  satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0



Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let  denote the lattice of open subsets of a space 𝒪X X

❖ Definition.  A continuous valuation  on  is a map  satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0

❖ modularity: ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)

U V



Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let  denote the lattice of open subsets of a space 𝒪X X

❖ Definition.  A continuous valuation  on  is a map  satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0

❖ modularity: ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)

❖ Scott-continuity:  monotonic + .ν ν(⋃
↑

i
Ui) = sup↑

i ν(Ui)

U V



Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let  denote the lattice of open subsets of a space 𝒪X X

❖ Definition.  A continuous valuation  on  is a map  satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0

❖ modularity: ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)

❖ Scott-continuity:  monotonic + .ν ν(⋃
↑

i
Ui) = sup↑

i ν(Ui)

U V

I will concentrate on subprobability 
valuations: ν(X) ≤ 1
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Simple valuations
❖ Definition.  The Dirac valuation : 

                      

is a continuous valuation.

δx

δx(U) =̂ {1 if x ∈ U
0 otherwise

❖ If you draw at random with respect to , you will get  all the time.δx x

❖
Definition.  A simple valuation is , where 

n

∑
i=1

aiδxi
ai ∈ ℝ+

❖ … draws each  with probability   (assuming  pairwise distinct)xi ai xi

❖ There are many other continuous valuations
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Really defines a 
strong monad 

on Dcpo
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is not known to be commutative
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❖ Do the following two programs compute the same thing? 
      do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y)) 
      do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

There is a very subtle issue here 
… as Fubini-Tonelli holds on 
the larger category  😖Top

Solved by giving semantics in other categories, e.g., 
— quasi-Borel predomains [Vákár, Kammar, Staton 21]

— measurable cones [Ehrhard,Pagani, Tasson 17]
— measurable spaces + geometry of interaction [Dal Lago, Hoshino 19] 
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❖ In Top:  has the product topology, 

             open sets = unions of open rectangles , 

❖ In Dcpo:  has the Scott topology of 

X × Y
U × V U ∈ 𝒪X, V ∈ 𝒪Y

X × Y ≤ × ≤
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Xσ, Yσ

take Scott
topologies

form
product
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X × Y

form
product
in Top

take Scott
topology

(X × Y )σ
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Note:  
if  or  continuous dcpo

Xσ × Yσ = (X × Y )σ
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More generally:
— if  or  is core-compact [Gierz,Hofmann,Keimel,Lawson,Mislove 03]
— if  and  are first-countable [de Brecht, priv. comm., 19] 
— if  and  are -dcpos [Lawson, Xu 24]

Xσ Yσ
Xσ Yσ
X Y lcω
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Fubini-Tonelli holds on Cont



Continuous dcpos, a.k.a. domains
❖ Motto: the continuous dcpos are the nice dcpos, 

             where (almost) every property you wish for is true

Let us skip that.



Continuous dcpos, a.k.a. domains
❖ Motto: the continuous dcpos are the nice dcpos, 

             where (almost) every property you wish for is true

❖ Let  (  way-below ) iff 
        implies 

x ≪ y x y
y ≤ sup↑

i zi ∃i, x ≤ zi

❖ Definition.  A dcpo is continuous iff 
   every point  is the supremum 
   of some directed family of points way-below .

x
x

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

sup↑
i zi

zi

z0

z1

z2

…

∙ x

∙ y

≤
≤

≤

Let us skip that.
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Fubini-Tonelli for continuous valuations
❖  if  or  continuous dcpoXσ × Yσ = (X × Y)σ X Y

❖ Hence, on the full subcategory Cont 
of continuous dcpos, 
Fubini-Tonelli holds

❖ Good news [Jones89]:  restricts to a (commutative) monad on ContV≤1

❖ Bad news: Cont is not Cartesian-closed        (had been known for a long time)

❖ Research took the path of looking for Cartesian-closed subcategories of Cont 
                          on which  restrictsV≤1
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❖ There are other Cartesian-closed categories of domains: 
L-domains, RB-domains, FS-domains, etc.

❖ 😕 None is known to be closed under V≤1

❖ As of 2023, the best results are 
still those of [Jung,Tix 98] 
 
 
apart from [JGL 12] ( (QRB-domain) is a QRB-domain) 
        or [Mislove 20] ( (chain) is a continuous lattice) 
               or [JGL 22] ( (quasi-cont. dcpo) is quasi-continuous)

V≤1
V≤1
V≤1

The state of the art

closed under V≤1

continuous dcpos

algebraic
bc-domains
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algebraic complete 
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complete lattices

bifinite domains
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continuous 
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quasi-continuous 
dcpos

?
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closed under : 
unknown

V≤1



A solution to the problem
❖ Replace  by appropriate submonads:

❖ Minimal valuations [JLMZ 21; JGL, Jia 23]

❖ Point-continuous valuations [Heckmann 97; JLMZ 21]

❖ In general, K-valuations [JLMZ=Jia,Lindenhovius,Mislove,Zamdzhiev 21]

❖ Central valuations [Jia, Mislove, Zamdzhiev 21]

V≤1

⊆
⊆

⊆
⊆

Continuous valuations

All commutative monads 
on the Cartesian-closed category Dcpo
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❖ Central valuations [Jia, Mislove, Zamdzhiev 21]

V≤1

⊆
⊆

⊆
⊆

Continuous valuations

All commutative monads 
on the Cartesian-closed category Dcpo

Let me concentrate on these
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Minimal valuations
❖ Let VfinX ≝ {simple valuations in V≤1X}

❖ The smallest subdcpo MX of V≤1X containing VfinX 
                   is the dcpo of minimal valuations

❖ Explicitly, a minimal valuation is 
a directed supremum of directed suprema of … of simple valuations 
                  (iterated transfinitely)

❖ Prop [Jia,Lindenhovius,Mislove,Zamdzhiev 21; JGL, Jia 23]. 
     Fubini-Tonelli holds on Dcpo if one of the valuations is minimal.

❖ Proof sketch: Integration commutes with directed suprema. 
                      This reduces the question to the case of simple valuations, 
                      where commutation is easy.



Minimal valuations are enough for semantics
❖ We (re)define: 

— ⟦ ⟧ ⟦ ⟧                                minimal subprobability distributions 

— ⟦ ⟧  ⟦ ⟧ ⟦ ⟧  

— ⟦ ⟧  ⟦ ⟧  

— ⟦ ⟧  ⟦ ⟧ ⟦ ⟧  d⟦ ⟧

Tτ =̂M τ )

M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ∈ 𝒪( σ ) ↦ ∫x
N ρ(U) M ρ)
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Minimal valuations are enough for semantics
❖ We (re)define: 

— ⟦ ⟧ ⟦ ⟧                                minimal subprobability distributions 

— ⟦ ⟧  ⟦ ⟧ ⟦ ⟧  

— ⟦ ⟧  ⟦ ⟧  

— ⟦ ⟧  ⟦ ⟧ ⟦ ⟧  d⟦ ⟧

Tτ =̂M τ )

M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ∈ 𝒪( σ ) ↦ ∫x
N ρ(U) M ρ)

❖ Even accommodates continuous distributions 
e.g., Lebesgue measure on exact real numbers [JGL, Jia 23], leading to 
         ISPCF = PCF + exact real numbers + continuous distributions + soft conditioning

These constructions 
preserve minimality
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❖ Example: Lebesgue measure on , 

through embedding into  ≝ {intervals [a, b]}, ⊇ 
                a classical dcpo for exact real arithmetic

ℝ
Iℝ

❖ E.g.,  (uniform measure on ), 

where  

      (there is a similar formula for  itself, 
       but I wish to show you a probability valuation)
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λn =̂
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∑
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1
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3
4
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Interval Statistical PCF (ISPCF)

❖

❖ Types:     

M, N, P, …::= … (as in PCF)
∣ ret M monad unit
∣ do xσ = M; N sequential composition
∣ M ⊕ N probabilistic choice
∣ sample[0,1] (λ|[0,1])
∣ r (real constants, r ∈ ℝ)
∣ f(M1, ⋯, Mn) ( f ∈ { + , − , > , ⋯})

σ, τ, … ::= nat ∣ unit ∣ real ∣ σ → τ ∣ Tτ

(subsumed by
)sample[0,1]
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Distribution on exact reals

Exact real arithmetic
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r ρ =̂ [r, r] f(M1, ⋯, Mn) ρ =̂ f̌( M1 ρ, ⋯, Mn ρ)

Instead of ⟦ ⟧ 
(this is the only change!)

V≤1 τ
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(this is the only change!)

V≤1 τ

❖ Theorem (soundness, adequacy). 
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     (at type )
Pr[C, M ↓ n] = C[M] ρ
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Operational semantics 
is unchanged
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                 (  not free in ,  not free in )

do x = M; do y = N; P
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 is a commutative monadM

That is a minimal valuation
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What does this compute?
longest_decreasing_run =̂ rec(λfreal→int→T int . λxreal . λnint .

do u = sample[0,1];
if u > x then ret n

else f u (s(n)))

Von_Neumann =̂ do x = sample[0,1];
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❖ All this is well and good, but:

❖ All measures on  induce minimal valuations on ℝ Iℝ

❖ More generally, on any -continuous dcpo X                        (such as ) 
           subprob. measure ≅ subprob. valuation = minimal valuation 

ω Iℝ

❖ Are there any non-minimal subprobability valuations on a dcpo? 
                                                  Let me give an example [JGL Jia 21].

from [Jones 90][Lawson 82, 
 Alvarez-Manilla 00, 

 de Brecht JGL Jia Lyu 19, etc.]
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—  iff 
     —  and  
     — or  and 

J
(m, n) ℕ × (ℕ ∪ {ω})

(m, n) ≤ (m′ , n′ )
m = m′ n ≤ n′ 

n ≤ m′ n′ = ω

❖ A famous counterexample in domain theory: 
not sober, not well-filtered, not locally compact, not core-compact 
       … and certainly not continuous

❖ I will write  for  with the Scott topologyJσ J



A funny valuation on J
❖ On Johnstone’s dcpo , there is a continuous valuation  

defined by: 
                     for every non-empty Scott-open set  
                    

❖ Modularity  
comes from the fact that  is hyperconnected: 
            any two non-empty open sets intersect. 
                   (Check it!  Observe that every non-empty open set contains all points  for  large enough.)

❖ We will show that  is not minimal. 

J μ

μ(U) = 1 U
μ(∅) = 0

μ(U ∪ V) + μ(U ∩ V) = μ(U) + μ(V)
Jσ

(m, ω) m

μ
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Discrete and good valuations
❖ A subprobability valuation  on  is good iff it extends to a Borel measureν X

❖
Every subprobability discrete valuation                (infinite sum, in general) 

            is good                          [Alvarez-Manilla, Edalat, Saheb-Djahromi 00]

∑
x

axδx

❖ Every subset of  is Borel.Jσ

❖ One can show that every subprobability valuation  on  
               is of the form , where 
—  is discrete (hence good) 
— 

ν Jσ
θ + r . μ

θ
r ≥ 0 Namely, 

         

θ = ∑
x∈J

ν({x}) . δx

r = ν(J) − ∑
x∈J

ν({x})

Measures the open sets Measures the Borel sets
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                I have cited some.  See also [Di Gianantonio Edalat 24], 
                                                         based on domain theory + random variables

❖ Open question:            Does Fubini-Tonelli hold on Dcpo?  [X. Jia] 
                                       i.e., is  commutative on Dcpo? 
                                       i.e., is every continuous valuation on a dcpo central?
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