
Jean Goubault-Larrecq

Is there any trouble with the
probabilistic powerdomain monad?

GT Scalp, Lille, 18 novembre 2024

with: Xiaodong Jia (贾晓东),
 Clément Theron

❖ A pun on the title of a famous
paper by A. Jung and R. Tix

❖ To spoil the end of the talk:
no, there is no problem
with the probabilistic powerdomain

❖ … but there are many interesting questions

Part I: domain theory and semantics

Bugs, and verification
❖ A central problem in computer science is bugs

Bugs, and verification
❖ A central problem in computer science is bugs

❖ How do you make sure that a program M:
— computes what you want?
— computes something that satisfies a given property P?
— computes the same thing as another program N?

Bugs, and verification
❖ A central problem in computer science is bugs

❖ How do you make sure that a program M:
— computes what you want?
— computes something that satisfies a given property P?
— computes the same thing as another program N?

❖ E.g., do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

Bugs, and verification
❖ A central problem in computer science is bugs

❖ How do you make sure that a program M:
— computes what you want?
— computes something that satisfies a given property P?
— computes the same thing as another program N?

❖ E.g., do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

« draw at random
from {0,1,2}, uniformly »

Bugs, and verification
❖ A central problem in computer science is bugs

❖ How do you make sure that a program M:
— computes what you want?
— computes something that satisfies a given property P?
— computes the same thing as another program N?

❖ E.g., do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

« draw at random
from {0,1,2}, uniformly »

« draw at random
from {0,1}, uniformly »

Bugs, and verification
❖ A central problem in computer science is bugs

❖ How do you make sure that a program M:
— computes what you want?
— computes something that satisfies a given property P?
— computes the same thing as another program N?

❖ E.g., do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

❖ That would seem obvious, right?
The only difference is the order in which x and y are drawn at random.

« draw at random
from {0,1,2}, uniformly »

« draw at random
from {0,1}, uniformly »

Denotational semantics
❖ In order to settle the question,

one needs to know what programs compute

❖ This is the role of denotational semantics,
defining the value ⟦M⟧ of each program M:

⟦MN⟧ = ⟦M⟧(⟦N⟧)
⟦λx . M⟧ = (x ↦ ⟦M⟧)
[…]
⟦rec M⟧ = least fixed point supn ∈ ℕ ⟦M⟧n(⊥)
⟦M ⊕ N⟧ = ½ ⟦M⟧ + ½ ⟦N⟧

⟦ret M⟧ = δ⟦M⟧

⟦do x←M; N(x)⟧ =

 ⟦N(x)⟧() d⟦M⟧(U open ↦ ∫x
U)

Denotational semantics
❖ In order to settle the question,

one needs to know what programs compute

❖ This is the role of denotational semantics,
defining the value ⟦M⟧ of each program M:

❖ We will use a domain-theoretic semantics (… pretty old technology)

⟦MN⟧ = ⟦M⟧(⟦N⟧)
⟦λx . M⟧ = (x ↦ ⟦M⟧)
[…]
⟦rec M⟧ = least fixed point supn ∈ ℕ ⟦M⟧n(⊥)
⟦M ⊕ N⟧ = ½ ⟦M⟧ + ½ ⟦N⟧

⟦ret M⟧ = δ⟦M⟧

⟦do x←M; N(x)⟧ =

 ⟦N(x)⟧() d⟦M⟧(U open ↦ ∫x
U)

Denotational semantics
❖ In order to settle the question,

one needs to know what programs compute

❖ This is the role of denotational semantics,
defining the value ⟦M⟧ of each program M:

❖ We will use a domain-theoretic semantics (… pretty old technology)

❖ Dcpos and denotational semantics

❖ Continuous valuations, and the problem

❖ A solution

⟦MN⟧ = ⟦M⟧(⟦N⟧)
⟦λx . M⟧ = (x ↦ ⟦M⟧)
[…]
⟦rec M⟧ = least fixed point supn ∈ ℕ ⟦M⟧n(⊥)
⟦M ⊕ N⟧ = ½ ⟦M⟧ + ½ ⟦N⟧

⟦ret M⟧ = δ⟦M⟧

⟦do x←M; N(x)⟧ =

 ⟦N(x)⟧() d⟦M⟧(U open ↦ ∫x
U)

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

????##BAN##????
????#?????#????
????#?????#????
???????????#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#???U?#????
????#???T?#????
????????S??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

????##BAN##????
????#?????#????
????#?????#????
???????????#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#??NU?#????
????#??AT?#????
???????SS??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#???U?#????
????#???T?#????
????????S??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

????##BAN##????
????#?????#????
????#?????#????
???????????#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#??NU?#????
????#??AT?#????
???????SS??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#???U?#????
????#???T?#????
????????S??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

????##BAN##????
????#?????#????
????#?????#????
???????????#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

STAB##BAN##REPP
PARE#MANUL#AUER
ATEN#ALATE#EGGY
RIGHTSISSUE#EHS
###URL###CLAN##
#TORIIS#PHLOEM#
???#ENEMY#SNABS
????#SCONE#ERIN
?????#CZECH#ARY
#?????O#DHARMA#
##????###ODE###
???#RECIPIENCES
????#CABIN#T???
????#AGING#A???
????##ESS##L???

STAB##BAN##REPP
PARE#MANUL#AUER
ATEN#ALATE#EGGY
RIGHTSISSUE#EHS
###URL###CLAN##
#TORIIS#PHLOEM#
LAV#ENEMY#SNABS
ETAL#SCONE#ERIN
MULEY#CZECH#ARY
#MONACO#DHARMA#
##FORA###ODE###
KEF#RECIPIENCES
EVIE#CABIN#TAXI
KICK#AGING#ARAK
SLEE##ESS##LAMA

????##BAN##????
????#??NU?#????
????#??AT?#????
???????SS??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#???U?#????
????#???T?#????
????????S??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

????##BAN##????
????#?????#????
????#?????#????
???????????#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

STAB##BAN##REPP
PARE#MANUL#AUER
ATEN#ALATE#EGGY
RIGHTSISSUE#EHS
###URL###CLAN##
#TORIIS#PHLOEM#
???#ENEMY#SNABS
????#SCONE#ERIN
?????#CZECH#ARY
#?????O#DHARMA#
##????###ODE###
???#RECIPIENCES
????#CABIN#T???
????#AGING#A???
????##ESS##L???

STAB##BAN##REPP
PARE#MANUL#AUER
ATEN#ALATE#EGGY
RIGHTSISSUE#EHS
###URL###CLAN##
#TORIIS#PHLOEM#
LAV#ENEMY#SNABS
ETAL#SCONE#ERIN
MULEY#CZECH#ARY
#MONACO#DHARMA#
##FORA###ODE###
KEF#RECIPIENCES
EVIE#CABIN#TAXI
KICK#AGING#ARAK
SLEE##ESS##LAMA

????##BAN##????
????#??NU?#????
????#??AT?#????
???????SS??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#???U?#????
????#???T?#????
????????S??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

????##BAN##????
????#?????#????
????#?????#????
???????????#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

STAB##BAN##REPP
PARE#MANUL#AUER
ATEN#ALATE#EGGY
RIGHTSISSUE#EHS
###URL###CLAN##
#TORIIS#PHLOEM#
???#ENEMY#SNABS
????#SCONE#ERIN
?????#CZECH#ARY
#?????O#DHARMA#
##????###ODE###
???#RECIPIENCES
????#CABIN#T???
????#AGING#A???
????##ESS##L???

maximal
element

= total value

STAB##BAN##REPP
PARE#MANUL#AUER
ATEN#ALATE#EGGY
RIGHTSISSUE#EHS
###URL###CLAN##
#TORIIS#PHLOEM#
LAV#ENEMY#SNABS
ETAL#SCONE#ERIN
MULEY#CZECH#ARY
#MONACO#DHARMA#
##FORA###ODE###
KEF#RECIPIENCES
EVIE#CABIN#TAXI
KICK#AGING#ARAK
SLEE##ESS##LAMA

????##BAN##????
????#??NU?#????
????#??AT?#????
???????SS??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

????##BAN##????
????#???U?#????
????#???T?#????
????????S??#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

Dcpos, partial values, and the order of information
❖ A dcpo (= directed-complete partial order)

is a set of « partial values »
 — total values among them
 represent terminated computations

❖ partially ordered:
x≤y means « y contains more information,
 is more precise than x »

❖ with a notion of limit (=suprema) of
directed families
 giving the « value at infinity »

≤

⊥

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

????##BAN##????
????#?????#????
????#?????#????
???????????#???
###???###????##
#??????#??????#
???#?????#?????
????#?????#????
?????#?????#???
#??????#??????#
##????###???###
???#???????????
????#?????#????
????#?????#????
????##???##????

STAB##BAN##REPP
PARE#MANUL#AUER
ATEN#ALATE#EGGY
RIGHTSISSUE#EHS
###URL###CLAN##
#TORIIS#PHLOEM#
???#ENEMY#SNABS
????#SCONE#ERIN
?????#CZECH#ARY
#?????O#DHARMA#
##????###ODE###
???#RECIPIENCES
????#CABIN#T???
????#AGING#A???
????##ESS##L???

maximal
element

= total value

non-empty + every pair of elements of has an upper bound in D D

Basic dcpo constructions

❖ Given dcpos , , the following are dcpos:
— , with componentwise ordering
— (space of Scott-continuous maps), with pointwise ordering

X Y
X × Y
[X → Y]

Basic dcpo constructions

❖ Given dcpos , , the following are dcpos:
— , with componentwise ordering
— (space of Scott-continuous maps), with pointwise ordering

X Y
X × Y
[X → Y]

monotonic + preserves
directed suprema

Basic dcpo constructions

❖ Given dcpos , , the following are dcpos:
— , with componentwise ordering
— (space of Scott-continuous maps), with pointwise ordering

X Y
X × Y
[X → Y]

❖ Dcpo is Cartesian-closed

monotonic + preserves
directed suprema

gives semantics to the
(simply-typed) -calculusλ

Basic dcpo constructions

❖ Given dcpos , , the following are dcpos:
— , with componentwise ordering
— (space of Scott-continuous maps), with pointwise ordering

X Y
X × Y
[X → Y]

❖ Dcpo is Cartesian-closed

❖ On a pointed dcpo , every Scott-continuous map
 has a least fixed point

X f : X → X
lfp(f) = sup

n∈ℕ
f n(⊥)

monotonic + preserves
directed suprema

gives semantics to the
(simply-typed) -calculusλ

and to recursion

A first, simple application: PCF
❖ Consider the higher-order, functional programming language PCF [Plotkin 77]

❖

M, N, P, …::= x, y, z, … variables
∣ MN application
∣ λxσ . M abstraction
∣ rec(M) recursion
∣ 0 ∣ 1 ∣ 2 ∣ … natural numbers
∣ s(M) successor
∣ p(M) predecessor
∣ if M = 0 then N else P conditional

A first, simple application: PCF
❖ Consider the higher-order, functional programming language PCF [Plotkin 77]

❖

M, N, P, …::= x, y, z, … variables
∣ MN application
∣ λxσ . M abstraction
∣ rec(M) recursion
∣ 0 ∣ 1 ∣ 2 ∣ … natural numbers
∣ s(M) successor
∣ p(M) predecessor
∣ if M = 0 then N else P conditional

(simply-typed)
lambda-calculus

A first, simple application: PCF
❖ Consider the higher-order, functional programming language PCF [Plotkin 77]

❖

M, N, P, …::= x, y, z, … variables
∣ MN application
∣ λxσ . M abstraction
∣ rec(M) recursion
∣ 0 ∣ 1 ∣ 2 ∣ … natural numbers
∣ s(M) successor
∣ p(M) predecessor
∣ if M = 0 then N else P conditional

, for puristsYM

(simply-typed)
lambda-calculus

A first, simple application: PCF
❖ Consider the higher-order, functional programming language PCF [Plotkin 77]

❖

M, N, P, …::= x, y, z, … variables
∣ MN application
∣ λxσ . M abstraction
∣ rec(M) recursion
∣ 0 ∣ 1 ∣ 2 ∣ … natural numbers
∣ s(M) successor
∣ p(M) predecessor
∣ if M = 0 then N else P conditional

, for puristsYM

elementary
operations on type

nat

(simply-typed)
lambda-calculus

Types
❖ PCF terms are typed: σ, τ, … ::= nat ∣ σ → τ

M : τ → τ
rec(M) : τ

M : τ
λxσ . M : τxσ : σ

M : σ → τ
MN : τ

N : σ

0 : nat 1 : nat
…

M : nat
s(M) : nat

M : nat
p(M) : nat

M : nat
if M = 0 then N else P : τ

N : τ P : τ

Types
❖ PCF terms are typed: σ, τ, … ::= nat ∣ σ → τ

❖ Semantics of types: ⟦ ⟧ will be a pointed dcpoτ M : τ → τ
rec(M) : τ

M : τ
λxσ . M : τxσ : σ

M : σ → τ
MN : τ

N : σ

0 : nat 1 : nat
…

M : nat
s(M) : nat

M : nat
p(M) : nat

M : nat
if M = 0 then N else P : τ

N : τ P : τ

Types
❖ PCF terms are typed: σ, τ, … ::= nat ∣ σ → τ

❖ Semantics of types: ⟦ ⟧ will be a pointed dcpoτ

❖ ⟦ ⟧
— add a fresh ,
 representing non-termination

nat =̂ ℕ⊥
⊥ ⊥

…
…

0 1 2 3 4 5 6 7 …

M : τ → τ
rec(M) : τ

M : τ
λxσ . M : τxσ : σ

M : σ → τ
MN : τ

N : σ

0 : nat 1 : nat
…

M : nat
s(M) : nat

M : nat
p(M) : nat

M : nat
if M = 0 then N else P : τ

N : τ P : τ

Types
❖ PCF terms are typed: σ, τ, … ::= nat ∣ σ → τ

❖ Semantics of types: ⟦ ⟧ will be a pointed dcpoτ

❖ ⟦ ⟧
— add a fresh ,
 representing non-termination

nat =̂ ℕ⊥
⊥

❖ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧
— space of Scott-continuous maps from ⟦ ⟧ to ⟦ ⟧

σ → τ =̂ [σ → τ]
σ τ

⊥

…
…

0 1 2 3 4 5 6 7 …

M : τ → τ
rec(M) : τ

M : τ
λxσ . M : τxσ : σ

M : σ → τ
MN : τ

N : σ

0 : nat 1 : nat
…

M : nat
s(M) : nat

M : nat
p(M) : nat

M : nat
if M = 0 then N else P : τ

N : τ P : τ

A denotational semantics for PCF
❖ Design (denotational) semantics ⟦ ⟧ of terms so that ⟦ ⟧ ∈ ⟦ ⟧

for every environment mapping variables to values (of the right types)
M M : τ M ρ τ

ρ

A denotational semantics for PCF
❖ Design (denotational) semantics ⟦ ⟧ of terms so that ⟦ ⟧ ∈ ⟦ ⟧

for every environment mapping variables to values (of the right types)
M M : τ M ρ τ

ρ
On :

❖ ⟦ ⟧ , ⟦ ⟧ , etc.

❖ ⟦ ⟧ ⟦ ⟧ +1,
⟦ ⟧ ⟦ ⟧ –1 if ⟦ ⟧ ≠0, ⊥
 ⊥ otherwise

❖ ⟦ ⟧
 ⟦ ⟧ if ⟦ ⟧ =0
 ⟦ ⟧ if ⟦ ⟧ ≠0, ⊥
 ⊥ if ⟦ ⟧ =⊥

nat

0 ρ =̂ 0 1 ρ =̂ 1

s(M) ρ =̂ M ρ
p(M) ρ =̂ M ρ M ρ

if M = 0 then N else P ρ =̂
N ρ M ρ
P ρ M ρ

M ρ

A denotational semantics for PCF
❖ Design (denotational) semantics ⟦ ⟧ of terms so that ⟦ ⟧ ∈ ⟦ ⟧

for every environment mapping variables to values (of the right types)
M M : τ M ρ τ

ρ
On :

❖ ⟦ ⟧ , ⟦ ⟧ , etc.

❖ ⟦ ⟧ ⟦ ⟧ +1,
⟦ ⟧ ⟦ ⟧ –1 if ⟦ ⟧ ≠0, ⊥
 ⊥ otherwise

❖ ⟦ ⟧
 ⟦ ⟧ if ⟦ ⟧ =0
 ⟦ ⟧ if ⟦ ⟧ ≠0, ⊥
 ⊥ if ⟦ ⟧ =⊥

nat

0 ρ =̂ 0 1 ρ =̂ 1

s(M) ρ =̂ M ρ
p(M) ρ =̂ M ρ M ρ

if M = 0 then N else P ρ =̂
N ρ M ρ
P ρ M ρ

M ρ

Lambda-calculus:

❖ ⟦ ⟧

❖ ⟦ ⟧ ⟦ ⟧ (⟦ ⟧)

❖ ⟦ ⟧ ⟦ ⟧

❖ ⟦ ⟧ ⟦ ⟧

x ρ =̂ ρ(x)

MN ρ =̂ M ρ N ρ

λx . M ρ =̂ (V ↦ M (ρ[x ↦ V]))

rec(M) ρ =̂ lfp(M ρ)

A denotational semantics for PCF
❖ Design (denotational) semantics ⟦ ⟧ of terms so that ⟦ ⟧ ∈ ⟦ ⟧

for every environment mapping variables to values (of the right types)
M M : τ M ρ τ

ρ
On :

❖ ⟦ ⟧ , ⟦ ⟧ , etc.

❖ ⟦ ⟧ ⟦ ⟧ +1,
⟦ ⟧ ⟦ ⟧ –1 if ⟦ ⟧ ≠0, ⊥
 ⊥ otherwise

❖ ⟦ ⟧
 ⟦ ⟧ if ⟦ ⟧ =0
 ⟦ ⟧ if ⟦ ⟧ ≠0, ⊥
 ⊥ if ⟦ ⟧ =⊥

nat

0 ρ =̂ 0 1 ρ =̂ 1

s(M) ρ =̂ M ρ
p(M) ρ =̂ M ρ M ρ

if M = 0 then N else P ρ =̂
N ρ M ρ
P ρ M ρ

M ρ

Lambda-calculus:

❖ ⟦ ⟧

❖ ⟦ ⟧ ⟦ ⟧ (⟦ ⟧)

❖ ⟦ ⟧ ⟦ ⟧

❖ ⟦ ⟧ ⟦ ⟧

x ρ =̂ ρ(x)

MN ρ =̂ M ρ N ρ

λx . M ρ =̂ (V ↦ M (ρ[x ↦ V]))

rec(M) ρ =̂ lfp(M ρ)

Theorem 1. On a pointed dcpo ,
 every Scott-continuous map
 has a least fixed point.

X

f : X → X

A denotational semantics for PCF
❖ Design (denotational) semantics ⟦ ⟧ of terms so that ⟦ ⟧ ∈ ⟦ ⟧

for every environment mapping variables to values (of the right types)
M M : τ M ρ τ

ρ
On :

❖ ⟦ ⟧ , ⟦ ⟧ , etc.

❖ ⟦ ⟧ ⟦ ⟧ +1,
⟦ ⟧ ⟦ ⟧ –1 if ⟦ ⟧ ≠0, ⊥
 ⊥ otherwise

❖ ⟦ ⟧
 ⟦ ⟧ if ⟦ ⟧ =0
 ⟦ ⟧ if ⟦ ⟧ ≠0, ⊥
 ⊥ if ⟦ ⟧ =⊥

nat

0 ρ =̂ 0 1 ρ =̂ 1

s(M) ρ =̂ M ρ
p(M) ρ =̂ M ρ M ρ

if M = 0 then N else P ρ =̂
N ρ M ρ
P ρ M ρ

M ρ

Lambda-calculus:

❖ ⟦ ⟧

❖ ⟦ ⟧ ⟦ ⟧ (⟦ ⟧)

❖ ⟦ ⟧ ⟦ ⟧

❖ ⟦ ⟧ ⟦ ⟧

x ρ =̂ ρ(x)

MN ρ =̂ M ρ N ρ

λx . M ρ =̂ (V ↦ M (ρ[x ↦ V]))

rec(M) ρ =̂ lfp(M ρ)

Theorem 1. On a pointed dcpo ,
 every Scott-continuous map
 has a least fixed point.

X

f : X → X

❖ Expressions have
transparent semantics
(functions are functions, application is application, etc.)

❖ compositional semantics:
⟦ ⟧ defined from the
semantics of immediate
 subterms of

❖ No execution
 mechanism involved

M ρ

M

An operational semantics for PCF
❖ An abstract machine (à la Krivine) = a transition relation between

configurations C, M
Contexts C ::= _ ∣ C[_N] ∣ C[s(_)] ∣ C[p(_)] ∣ ∣ C[if _ = 0 then N else P]

An operational semantics for PCF
❖ An abstract machine (à la Krivine) = a transition relation between

configurations C, M

C, MN → C[_N], M
C, s(M) → C[s(_)], M
C, p(M) → C[p(_)], M

C, if M = 0 then N else P → C[if _ = 0 then N else P], M

Contexts C ::= _ ∣ C[_N] ∣ C[s(_)] ∣ C[p(_)] ∣ ∣ C[if _ = 0 then N else P]

Exploration rules (looking for redexes)

An operational semantics for PCF
❖ An abstract machine (à la Krivine) = a transition relation between

configurations C, M

C, MN → C[_N], M
C, s(M) → C[s(_)], M
C, p(M) → C[p(_)], M

C, if M = 0 then N else P → C[if _ = 0 then N else P], M

C[_N], λx . M → C, M[x := N]
C[s(_)], n → C, n + 1

C[p(_)], n + 1 → C, n
C[if _ = 0 then N else P],0 → C, N

C[if _ = 0 then N else P], n + 1 → C, P
C, rec(M) → C, M(rec(M))

Contexts C ::= _ ∣ C[_N] ∣ C[s(_)] ∣ C[p(_)] ∣ ∣ C[if _ = 0 then N else P]

Exploration rules (looking for redexes) Computation rules

❖ Theorem (soundness). If then ⟦ ⟧ = ⟦ ⟧C, M →* C′ , M′ C[M] ρ C′ [M′] ρ

The two semantics are related

❖ Theorem (soundness). If then ⟦ ⟧ = ⟦ ⟧C, M →* C′ , M′ C[M] ρ C′ [M′] ρ

❖ In particular, if , then ⟦ ⟧ = _, M →* _, n (n ∈ ℕ) M ρ n

The two semantics are related

❖ Theorem (soundness). If then ⟦ ⟧ = ⟦ ⟧C, M →* C′ , M′ C[M] ρ C′ [M′] ρ

❖ In particular, if , then ⟦ ⟧ = _, M →* _, n (n ∈ ℕ) M ρ n

❖ Theorem (adequacy). If ⟦ ⟧ = ,
 then the machine terminates:

M ρ n ∈ ℕ (≠ ⊥)
_, M →* _, n

The two semantics are related

❖ Theorem (soundness). If then ⟦ ⟧ = ⟦ ⟧C, M →* C′ , M′ C[M] ρ C′ [M′] ρ

❖ In particular, if , then ⟦ ⟧ = _, M →* _, n (n ∈ ℕ) M ρ n

❖ Theorem (adequacy). If ⟦ ⟧ = ,
 then the machine terminates:

M ρ n ∈ ℕ (≠ ⊥)
_, M →* _, n

❖ Proof through logical relations [Plotkin 77].

The two semantics are related

Probabilistic PCF

❖

M, N, P, …::= … (as in PCF)
∣ M ⊕ N probabilistic choice
∣ ret M monad unit
∣ do xσ = M; N sequential composition

Probabilistic PCF

❖

M, N, P, …::= … (as in PCF)
∣ M ⊕ N probabilistic choice
∣ ret M monad unit
∣ do xσ = M; N sequential composition

❖ Types:
 : monadic types [Moggi 91]

σ, τ, … ::= nat ∣ unit ∣ σ → τ ∣ Tτ
Tτ

 = type of (first-class) distributionsTτ

M : τ
ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

* : unit

Probabilistic PCF

❖

M, N, P, …::= … (as in PCF)
∣ M ⊕ N probabilistic choice
∣ ret M monad unit
∣ do xσ = M; N sequential composition

❖ Types:
 : monadic types [Moggi 91]

σ, τ, … ::= nat ∣ unit ∣ σ → τ ∣ Tτ
Tτ

❖ New operational rules:

 = type of (first-class) distributionsTτ

M : τ
ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

* : unit

C, do x = M; N → C[do x = _; N], M
_, ret M → ret _, M

C[do x = _; N], ret M → C, N[x := M]
C, M ⊕ N →1/2 M
C, M ⊕ N →1/2 N

Exploration rules Computation rules

Denotational semantics for probabilistic PCF
❖ Introduced in Claire Jones’ PhD thesis [Jones 90]

❖ ⟦ ⟧ ⟦ ⟧ dcpo of subprobability valuations on ⟦ ⟧
 (~ think « subprobability measures »)
Tτ =̂ V≤1(τ) τ

Denotational semantics for probabilistic PCF
❖ Introduced in Claire Jones’ PhD thesis [Jones 90]

❖ ⟦ ⟧ ⟦ ⟧ dcpo of subprobability valuations on ⟦ ⟧
 (~ think « subprobability measures »)
Tτ =̂ V≤1(τ) τ

❖ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

M : τ
ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

Denotational semantics for probabilistic PCF
❖ Introduced in Claire Jones’ PhD thesis [Jones 90]

❖ ⟦ ⟧ ⟦ ⟧ dcpo of subprobability valuations on ⟦ ⟧
 (~ think « subprobability measures »)
Tτ =̂ V≤1(τ) τ

❖ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

❖ ⟦ ⟧ ⟦ ⟧

⟦ ⟧ ⟦ ⟧ d⟦ ⟧

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ↦ ∫x
N ρ(U) M ρ) M : τ

ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

Denotational semantics for probabilistic PCF
❖ Introduced in Claire Jones’ PhD thesis [Jones 90]

❖ ⟦ ⟧ ⟦ ⟧ dcpo of subprobability valuations on ⟦ ⟧
 (~ think « subprobability measures »)
Tτ =̂ V≤1(τ) τ

❖ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

❖ ⟦ ⟧ ⟦ ⟧

⟦ ⟧ ⟦ ⟧ d⟦ ⟧

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ↦ ∫x
N ρ(U) M ρ)

❖ … by the way, soundness and adequacy will still hold

M : τ
ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

Denotational semantics for probabilistic PCF
❖ Introduced in Claire Jones’ PhD thesis [Jones 90]

❖ ⟦ ⟧ ⟦ ⟧ dcpo of subprobability valuations on ⟦ ⟧
 (~ think « subprobability measures »)
Tτ =̂ V≤1(τ) τ

❖ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

❖ ⟦ ⟧ ⟦ ⟧

⟦ ⟧ ⟦ ⟧ d⟦ ⟧

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ↦ ∫x
N ρ(U) M ρ)

❖ … by the way, soundness and adequacy will still hold

M : τ
ret M : Tτ

M : Tτ
M ⊕ N : Tτ

N : Tτ

M : Tσ
do xσ = M; N : Tτ

N : Tτ

Let us define all that first!

Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let denote the lattice of open subsets of a space 𝒪X X

❖ Definition. A continuous valuation on is a map satisfying:ν X ν : 𝒪X → ℝ+

Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let denote the lattice of open subsets of a space 𝒪X X

❖ Definition. A continuous valuation on is a map satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0

Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let denote the lattice of open subsets of a space 𝒪X X

❖ Definition. A continuous valuation on is a map satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0

❖ modularity: ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)

U V

Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let denote the lattice of open subsets of a space 𝒪X X

❖ Definition. A continuous valuation on is a map satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0

❖ modularity: ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)

❖ Scott-continuity: monotonic + .ν ν(⋃
↑

i
Ui) = sup↑

i ν(Ui)

U V

Continuous valuations
❖ First studied by [SahebDjahromi 80]: gives mass to Scott-open subsets

❖ Makes sense on every topological space—in particular, dcpos with the Scott topology

❖ Let denote the lattice of open subsets of a space 𝒪X X

❖ Definition. A continuous valuation on is a map satisfying:ν X ν : 𝒪X → ℝ+

❖ strictness: ν(∅) = 0

❖ modularity: ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)

❖ Scott-continuity: monotonic + .ν ν(⋃
↑

i
Ui) = sup↑

i ν(Ui)

U V

I will concentrate on subprobability
valuations: ν(X) ≤ 1

Simple valuations
❖ Definition. The Dirac valuation :

is a continuous valuation.

δx

δx(U) =̂ {1 if x ∈ U
0 otherwise

❖ If you draw at random with respect to , you will get all the time.δx x

Simple valuations
❖ Definition. The Dirac valuation :

is a continuous valuation.

δx

δx(U) =̂ {1 if x ∈ U
0 otherwise

❖ If you draw at random with respect to , you will get all the time.δx x

❖
Definition. A simple valuation is , where

n

∑
i=1

aiδxi
ai ∈ ℝ+

Simple valuations
❖ Definition. The Dirac valuation :

is a continuous valuation.

δx

δx(U) =̂ {1 if x ∈ U
0 otherwise

❖ If you draw at random with respect to , you will get all the time.δx x

❖
Definition. A simple valuation is , where

n

∑
i=1

aiδxi
ai ∈ ℝ+

❖ … draws each with probability (assuming pairwise distinct)xi ai xi

Simple valuations
❖ Definition. The Dirac valuation :

is a continuous valuation.

δx

δx(U) =̂ {1 if x ∈ U
0 otherwise

❖ If you draw at random with respect to , you will get all the time.δx x

❖
Definition. A simple valuation is , where

n

∑
i=1

aiδxi
ai ∈ ℝ+

❖ … draws each with probability (assuming pairwise distinct)xi ai xi

❖ There are many other continuous valuations

The probabilistic powerdomain
❖ The probabilistic powerdomain of a space is

the dcpo of all subprobability (continuous) valuations on
V≤1X X

ν X

The probabilistic powerdomain
❖ The probabilistic powerdomain of a space is

the dcpo of all subprobability (continuous) valuations on
V≤1X X

ν X

i.e., ν(X) ≤ 1

The probabilistic powerdomain
❖ The probabilistic powerdomain of a space is

the dcpo of all subprobability (continuous) valuations on
V≤1X X

ν X

❖ ordered by iff for every , μ ≤ ν U ∈ 𝒪X μ(U) ≤ ν(U)
i.e., ν(X) ≤ 1

The probabilistic powerdomain
❖ The probabilistic powerdomain of a space is

the dcpo of all subprobability (continuous) valuations on
V≤1X X

ν X

❖ ordered by iff for every , μ ≤ ν U ∈ 𝒪X μ(U) ≤ ν(U)

❖ We can now define (as promised):
— ⟦ ⟧ ⟦ ⟧ first-class subprobability distributions

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ d⟦ ⟧

Tτ =̂ V≤1(τ)

M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ∈ 𝒪(σ) ↦ ∫x
N ρ(U) M ρ)

i.e., ν(X) ≤ 1

The probabilistic powerdomain
❖ The probabilistic powerdomain of a space is

the dcpo of all subprobability (continuous) valuations on
V≤1X X

ν X

❖ ordered by iff for every , μ ≤ ν U ∈ 𝒪X μ(U) ≤ ν(U)

❖ We can now define (as promised):
— ⟦ ⟧ ⟦ ⟧ first-class subprobability distributions

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ d⟦ ⟧

Tτ =̂ V≤1(τ)

M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ∈ 𝒪(σ) ↦ ∫x
N ρ(U) M ρ)

i.e., ν(X) ≤ 1

Really defines a
strong monad

on Dcpo

The problem
❖ Remember this question?

❖ The answer is yes in this particular case, but…

❖ It is unknown whether, in general (with not free in , not free in)
 ⟦ ⟧ = ⟦ ⟧

x N y M

do x = M; do y = N; P do y = N; do x = M; P

❖ Do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

The problem
❖ Remember this question?

❖ The answer is yes in this particular case, but…

❖ It is unknown whether, in general (with not free in , not free in)
 ⟦ ⟧ = ⟦ ⟧

x N y M

do x = M; do y = N; P do y = N; do x = M; P

❖ the monad on
is not known to be commutative

V≤1 Dcpo

❖ Do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

The problem
❖ Remember this question?

❖ The answer is yes in this particular case, but…

❖ It is unknown whether, in general (with not free in , not free in)
 ⟦ ⟧ = ⟦ ⟧

x N y M

do x = M; do y = N; P do y = N; do x = M; P

❖ the monad on
is not known to be commutative

V≤1 Dcpo

❖ Do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

Solved by giving semantics in other categories, e.g.,
— quasi-Borel predomains [Vákár, Kammar, Staton 21]

— measurable cones [Ehrhard,Pagani, Tasson 17]
— measurable spaces + geometry of interaction [Dal Lago, Hoshino 19]

The problem
❖ Remember this question?

❖ The answer is yes in this particular case, but…

❖ It is unknown whether, in general (with not free in , not free in)
 ⟦ ⟧ = ⟦ ⟧

x N y M

do x = M; do y = N; P do y = N; do x = M; P

❖ the monad on
is not known to be commutative

V≤1 Dcpo

❖ equivalently, the integral interchange (Fubini-Tonelli)
theorem is not known to hold for continuous valuations
on Dcpo

❖ Do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

Solved by giving semantics in other categories, e.g.,
— quasi-Borel predomains [Vákár, Kammar, Staton 21]

— measurable cones [Ehrhard,Pagani, Tasson 17]
— measurable spaces + geometry of interaction [Dal Lago, Hoshino 19]

The problem
❖ Remember this question?

❖ The answer is yes in this particular case, but…

❖ It is unknown whether, in general (with not free in , not free in)
 ⟦ ⟧ = ⟦ ⟧

x N y M

do x = M; do y = N; P do y = N; do x = M; P

❖ the monad on
is not known to be commutative

V≤1 Dcpo

❖ equivalently, the integral interchange (Fubini-Tonelli)
theorem is not known to hold for continuous valuations
on Dcpo

❖ Do the following two programs compute the same thing?
 do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y))
 do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

There is a very subtle issue here
… as Fubini-Tonelli holds on
the larger category 😖Top

Solved by giving semantics in other categories, e.g.,
— quasi-Borel predomains [Vákár, Kammar, Staton 21]

— measurable cones [Ehrhard,Pagani, Tasson 17]
— measurable spaces + geometry of interaction [Dal Lago, Hoshino 19]

Fubini-Tonelli theorems

Fubini-Tonelli for continuous valuations
❖ Theorem [Jones 90; JGL, Jia 23]. Let , be arbitrary topological spaces.

 for every lower semicontinuous map

X Y

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

Fubini-Tonelli for continuous valuations
❖ Theorem [Jones 90; JGL, Jia 23]. Let , be arbitrary topological spaces.

 for every lower semicontinuous map

X Y

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

=continuous to (, Scott topology)
Note: lsc between dcpos

=Scott-continuous

ℝ+

Fubini-Tonelli for continuous valuations
❖ Theorem [Jones 90; JGL, Jia 23]. Let , be arbitrary topological spaces.

 for every lower semicontinuous map

X Y

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

=continuous to (, Scott topology)
Note: lsc between dcpos

=Scott-continuous

ℝ+

i.e., is commutative
on Top

V≤1

Fubini-Tonelli for continuous valuations
❖ Theorem [Jones 90; JGL, Jia 23]. Let , be arbitrary topological spaces.

 for every lower semicontinuous map

X Y

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

❖ Unknown. Let , be arbitrary dcpos.

 for every Scott-continuous map

X Y

∫x (∫y
h(x, y)dν) dμ =? ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

=continuous to (, Scott topology)
Note: lsc between dcpos

=Scott-continuous

ℝ+

i.e., is commutative
on Top

V≤1

Fubini-Tonelli for continuous valuations
❖ Theorem [Jones 90; JGL, Jia 23]. Let , be arbitrary topological spaces.

 for every lower semicontinuous map

X Y

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

❖ Unknown. Let , be arbitrary dcpos.

 for every Scott-continuous map

X Y

∫x (∫y
h(x, y)dν) dμ =? ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

=continuous to (, Scott topology)
Note: lsc between dcpos

=Scott-continuous

ℝ+

The issue: products differ
in Top and in Dcpo

(the symbol is ambiguous)×

i.e., is commutative
on Top

V≤1

Fubini-Tonelli for continuous valuations
❖ Theorem [Jones 90; JGL, Jia 23]. Let , be arbitrary topological spaces.

 for every lower semicontinuous map

X Y

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

❖ Unknown. Let , be arbitrary dcpos.

 for every Scott-continuous map

X Y

∫x (∫y
h(x, y)dν) dμ =? ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

=continuous to (, Scott topology)
Note: lsc between dcpos

=Scott-continuous

ℝ+

The issue: products differ
in Top and in Dcpo

(the symbol is ambiguous)×

in Top

i.e., is commutative
on Top

V≤1

Fubini-Tonelli for continuous valuations
❖ Theorem [Jones 90; JGL, Jia 23]. Let , be arbitrary topological spaces.

 for every lower semicontinuous map

X Y

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

❖ Unknown. Let , be arbitrary dcpos.

 for every Scott-continuous map

X Y

∫x (∫y
h(x, y)dν) dμ =? ∫y (∫x

h(x, y)dμ) dν

h : X × Y → ℝ+

=continuous to (, Scott topology)
Note: lsc between dcpos

=Scott-continuous

ℝ+

The issue: products differ
in Top and in Dcpo

(the symbol is ambiguous)×

in Top

in Dcpo

i.e., is commutative
on Top

V≤1

Products in Top, products in Dcpo
❖ In Top: has the product topology,

 open sets = unions of open rectangles ,

❖ In Dcpo: has the Scott topology of

X × Y
U × V U ∈ 𝒪X, V ∈ 𝒪Y

X × Y ≤ × ≤

dcpos
X, Y

spaces
Xσ, Yσ

take Scott
topologies

form
product
in Dcpo

dcpo
X × Y

form
product
in Top

take Scott
topology

(X × Y)σ

Xσ × Yσ

Products in Top, products in Dcpo
❖ In Top: has the product topology,

 open sets = unions of open rectangles ,

❖ In Dcpo: has the Scott topology of

X × Y
U × V U ∈ 𝒪X, V ∈ 𝒪Y

X × Y ≤ × ≤

dcpos
X, Y

spaces
Xσ, Yσ

take Scott
topologies

form
product
in Dcpo

dcpo
X × Y

form
product
in Top

take Scott
topology

(X × Y)σ

Xσ × Yσ

Note:
if or continuous dcpo

Xσ × Yσ = (X × Y)σ
X Y

Products in Top, products in Dcpo
❖ In Top: has the product topology,

 open sets = unions of open rectangles ,

❖ In Dcpo: has the Scott topology of

X × Y
U × V U ∈ 𝒪X, V ∈ 𝒪Y

X × Y ≤ × ≤

dcpos
X, Y

spaces
Xσ, Yσ

take Scott
topologies

form
product
in Dcpo

dcpo
X × Y

form
product
in Top

take Scott
topology

(X × Y)σ

Xσ × Yσ

Note:
if or continuous dcpo

Xσ × Yσ = (X × Y)σ
X Y

Whence [Jones 90]:
Fubini-Tonelli holds on Cont

Products in Top, products in Dcpo
❖ In Top: has the product topology,

 open sets = unions of open rectangles ,

❖ In Dcpo: has the Scott topology of

X × Y
U × V U ∈ 𝒪X, V ∈ 𝒪Y

X × Y ≤ × ≤

dcpos
X, Y

spaces
Xσ, Yσ

take Scott
topologies

form
product
in Dcpo

dcpo
X × Y

form
product
in Top

take Scott
topology

(X × Y)σ

Xσ × Yσ

Note:
if or continuous dcpo

Xσ × Yσ = (X × Y)σ
X Y

More generally:
— if or is core-compact [Gierz,Hofmann,Keimel,Lawson,Mislove 03]
— if and are first-countable [de Brecht, priv. comm., 19]
— if and are -dcpos [Lawson, Xu 24]

Xσ Yσ
Xσ Yσ
X Y lcω

Whence [Jones 90]:
Fubini-Tonelli holds on Cont

Continuous dcpos, a.k.a. domains
❖ Motto: the continuous dcpos are the nice dcpos,

 where (almost) every property you wish for is true

Let us skip that.

Continuous dcpos, a.k.a. domains
❖ Motto: the continuous dcpos are the nice dcpos,

 where (almost) every property you wish for is true

❖ Let (way-below) iff
 implies

x ≪ y x y
y ≤ sup↑

i zi ∃i, x ≤ zi

❖ Definition. A dcpo is continuous iff
 every point is the supremum
 of some directed family of points way-below .

x
x

∙

≤

∙

≤

∙

≤

∙

≤
≤

∙

…
…

sup↑
i zi

zi

z0

z1

z2

…

∙ x

∙ y

≤
≤

≤

Let us skip that.

Fubini-Tonelli for continuous valuations

Fubini-Tonelli for continuous valuations
❖ if or continuous dcpoXσ × Yσ = (X × Y)σ X Y

Fubini-Tonelli for continuous valuations
❖ if or continuous dcpoXσ × Yσ = (X × Y)σ X Y

❖ Hence, on the full subcategory Cont
of continuous dcpos,
Fubini-Tonelli holds

Fubini-Tonelli for continuous valuations
❖ if or continuous dcpoXσ × Yσ = (X × Y)σ X Y

❖ Hence, on the full subcategory Cont
of continuous dcpos,
Fubini-Tonelli holds

❖ Good news [Jones89]: restricts to a (commutative) monad on ContV≤1

Fubini-Tonelli for continuous valuations
❖ if or continuous dcpoXσ × Yσ = (X × Y)σ X Y

❖ Hence, on the full subcategory Cont
of continuous dcpos,
Fubini-Tonelli holds

❖ Good news [Jones89]: restricts to a (commutative) monad on ContV≤1

❖ Bad news: Cont is not Cartesian-closed (had been known for a long time)

Fubini-Tonelli for continuous valuations
❖ if or continuous dcpoXσ × Yσ = (X × Y)σ X Y

❖ Hence, on the full subcategory Cont
of continuous dcpos,
Fubini-Tonelli holds

❖ Good news [Jones89]: restricts to a (commutative) monad on ContV≤1

❖ Bad news: Cont is not Cartesian-closed (had been known for a long time)

❖ Research took the path of looking for Cartesian-closed subcategories of Cont
 on which restrictsV≤1

❖ There are other Cartesian-closed categories of domains:
L-domains, RB-domains, FS-domains, etc.

The state of the art
continuous dcpos

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

quasi-continuous
dcpos

Cartesian-closed

❖ There are other Cartesian-closed categories of domains:
L-domains, RB-domains, FS-domains, etc.

❖ 😕 None is known to be closed under V≤1

The state of the art

closed under V≤1

continuous dcpos

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

quasi-continuous
dcpos

?

Cartesian-closed

closed under :
unknown

V≤1

❖ There are other Cartesian-closed categories of domains:
L-domains, RB-domains, FS-domains, etc.

❖ 😕 None is known to be closed under V≤1

❖ As of 2023, the best results are
still those of [Jung,Tix 98]

apart from [JGL 12] ((QRB-domain) is a QRB-domain)
 or [Mislove 20] ((chain) is a continuous lattice)
 or [JGL 22] ((quasi-cont. dcpo) is quasi-continuous)

V≤1
V≤1
V≤1

The state of the art

closed under V≤1

continuous dcpos

algebraic
bc-domains

bc-domains

algebraic complete
lattices

continuous
complete lattices

bifinite domains

RB-domains

FS-domains

L-domains

continuous
coherent dcpos

quasi-continuous
dcpos

?

Cartesian-closed

closed under :
unknown

V≤1

A solution to the problem
❖ Replace by appropriate submonads:

❖ Minimal valuations [JLMZ 21; JGL, Jia 23]

❖ Point-continuous valuations [Heckmann 97; JLMZ 21]

❖ In general, K-valuations [JLMZ=Jia,Lindenhovius,Mislove,Zamdzhiev 21]

❖ Central valuations [Jia, Mislove, Zamdzhiev 21]

V≤1

⊆
⊆

⊆
⊆

Continuous valuations

All commutative monads
on the Cartesian-closed category Dcpo

A solution to the problem
❖ Replace by appropriate submonads:

❖ Minimal valuations [JLMZ 21; JGL, Jia 23]

❖ Point-continuous valuations [Heckmann 97; JLMZ 21]

❖ In general, K-valuations [JLMZ=Jia,Lindenhovius,Mislove,Zamdzhiev 21]

❖ Central valuations [Jia, Mislove, Zamdzhiev 21]

V≤1

⊆
⊆

⊆
⊆

Continuous valuations

All commutative monads
on the Cartesian-closed category Dcpo

Let me concentrate on these

Minimal valuations
❖ Let VfinX ≝ {simple valuations in V≤1X}

❖ The smallest subdcpo MX of V≤1X containing VfinX
 is the dcpo of minimal valuations

Minimal valuations
❖ Let VfinX ≝ {simple valuations in V≤1X}

❖ The smallest subdcpo MX of V≤1X containing VfinX
 is the dcpo of minimal valuations

❖ Explicitly, a minimal valuation is
a directed supremum of directed suprema of … of simple valuations
 (iterated transfinitely)

Minimal valuations
❖ Let VfinX ≝ {simple valuations in V≤1X}

❖ The smallest subdcpo MX of V≤1X containing VfinX
 is the dcpo of minimal valuations

❖ Explicitly, a minimal valuation is
a directed supremum of directed suprema of … of simple valuations
 (iterated transfinitely)

❖ Prop [Jia,Lindenhovius,Mislove,Zamdzhiev 21; JGL, Jia 23].
 Fubini-Tonelli holds on Dcpo if one of the valuations is minimal.

❖ Proof sketch: Integration commutes with directed suprema.
 This reduces the question to the case of simple valuations,
 where commutation is easy.

Minimal valuations are enough for semantics
❖ We (re)define:

— ⟦ ⟧ ⟦ ⟧ minimal subprobability distributions

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ d⟦ ⟧

Tτ =̂M τ)

M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ∈ 𝒪(σ) ↦ ∫x
N ρ(U) M ρ)

Minimal valuations are enough for semantics
❖ We (re)define:

— ⟦ ⟧ ⟦ ⟧ minimal subprobability distributions

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ d⟦ ⟧

Tτ =̂M τ)

M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ∈ 𝒪(σ) ↦ ∫x
N ρ(U) M ρ)

These constructions
preserve minimality

Minimal valuations are enough for semantics
❖ We (re)define:

— ⟦ ⟧ ⟦ ⟧ minimal subprobability distributions

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧

— ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ d⟦ ⟧

Tτ =̂M τ)

M ⊕ N ρ =̂
1
2

M ρ+
1
2

N ρ

ret M ρ =̂ δ M ρ

do xσ = M; N ρ =̂ (U ∈ 𝒪(σ) ↦ ∫x
N ρ(U) M ρ)

❖ Even accommodates continuous distributions
e.g., Lebesgue measure on exact real numbers [JGL, Jia 23], leading to
 ISPCF = PCF + exact real numbers + continuous distributions + soft conditioning

These constructions
preserve minimality

Beyond simple valuations
❖ Example: Lebesgue measure on ,

through embedding into ≝ {intervals [a, b]}, ⊇
 a classical dcpo for exact real arithmetic

ℝ
Iℝ 0

ℝ
1

Beyond simple valuations
❖ Example: Lebesgue measure on ,

through embedding into ≝ {intervals [a, b]}, ⊇
 a classical dcpo for exact real arithmetic

ℝ
Iℝ

❖ E.g., (uniform measure on),

where

 (there is a similar formula for itself,
 but I wish to show you a probability valuation)

λ|[0,1] = sup↑
n∈ℕ λn [0,1]

λn =̂
2n

∑
i=1

1
2n

δ[i − 1
2n , i

2n]

λ

0
ℝ

1

Beyond simple valuations
❖ Example: Lebesgue measure on ,

through embedding into ≝ {intervals [a, b]}, ⊇
 a classical dcpo for exact real arithmetic

ℝ
Iℝ

❖ E.g., (uniform measure on),

where

 (there is a similar formula for itself,
 but I wish to show you a probability valuation)

λ|[0,1] = sup↑
n∈ℕ λn [0,1]

λn =̂
2n

∑
i=1

1
2n

δ[i − 1
2n , i

2n]

λ

0
ℝ

1

[0,1], prob. 1:λ0

Beyond simple valuations
❖ Example: Lebesgue measure on ,

through embedding into ≝ {intervals [a, b]}, ⊇
 a classical dcpo for exact real arithmetic

ℝ
Iℝ

❖ E.g., (uniform measure on),

where

 (there is a similar formula for itself,
 but I wish to show you a probability valuation)

λ|[0,1] = sup↑
n∈ℕ λn [0,1]

λn =̂
2n

∑
i=1

1
2n

δ[i − 1
2n , i

2n]

λ

0
ℝ

1

[0,1], prob. 1:λ0

[0, 1/2],
prob. 1/2

[1/2, 1],
prob. 1/2

:λ1

1
2

Beyond simple valuations
❖ Example: Lebesgue measure on ,

through embedding into ≝ {intervals [a, b]}, ⊇
 a classical dcpo for exact real arithmetic

ℝ
Iℝ

❖ E.g., (uniform measure on),

where

 (there is a similar formula for itself,
 but I wish to show you a probability valuation)

λ|[0,1] = sup↑
n∈ℕ λn [0,1]

λn =̂
2n

∑
i=1

1
2n

δ[i − 1
2n , i

2n]

λ

0
ℝ

1

[0,1], prob. 1:λ0

[0, 1/2],
prob. 1/2

[1/2, 1],
prob. 1/2

:λ1

1
2

1
4

3
4

[0, 1/4],
prob. 1/4

[1/4, 1/2],
prob. 1/4

[1/2, 3/4],
prob. 1/4

[3/4, 1],
prob. 1/4:λ2

Interval Statistical PCF (ISPCF)

❖

❖ Types:

M, N, P, …::= … (as in PCF)
∣ ret M monad unit
∣ do xσ = M; N sequential composition
∣ M ⊕ N probabilistic choice
∣ sample[0,1] (λ|[0,1])
∣ r (real constants, r ∈ ℝ)
∣ f(M1, ⋯, Mn) (f ∈ { + , − , > , ⋯})

σ, τ, … ::= nat ∣ unit ∣ real ∣ σ → τ ∣ Tτ

(subsumed by
)sample[0,1]

Interval Statistical PCF (ISPCF)

❖

❖ Types:

M, N, P, …::= … (as in PCF)
∣ ret M monad unit
∣ do xσ = M; N sequential composition
∣ M ⊕ N probabilistic choice
∣ sample[0,1] (λ|[0,1])
∣ r (real constants, r ∈ ℝ)
∣ f(M1, ⋯, Mn) (f ∈ { + , − , > , ⋯})

σ, τ, … ::= nat ∣ unit ∣ real ∣ σ → τ ∣ Tτ

(subsumed by
)sample[0,1]

Distribution on exact reals

Interval Statistical PCF (ISPCF)

❖

❖ Types:

M, N, P, …::= … (as in PCF)
∣ ret M monad unit
∣ do xσ = M; N sequential composition
∣ M ⊕ N probabilistic choice
∣ sample[0,1] (λ|[0,1])
∣ r (real constants, r ∈ ℝ)
∣ f(M1, ⋯, Mn) (f ∈ { + , − , > , ⋯})

σ, τ, … ::= nat ∣ unit ∣ real ∣ σ → τ ∣ Tτ

(subsumed by
)sample[0,1]

Distribution on exact reals

Exact real arithmetic

ISPCF, v2
❖ ⟦ ⟧ , ⟦ ⟧ , ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ , ⟦ ⟧

 ⟦ ⟧ ⟦ ⟧

❖ ⟦ ⟧
⟦ ⟧ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

nat =̂ ℕ⊥ unit =̂ { ⊥ , * } σ → τ =̂ [σ → τ] real =̂ Iℝ⊥
Tτ =̂ M τ

sample[0,1] ρ =̂ λ|[0,1]
r ρ =̂ [r, r] f(M1, ⋯, Mn) ρ =̂ f̌(M1 ρ, ⋯, Mn ρ)

Instead of ⟦ ⟧
(this is the only change!)

V≤1 τ

ISPCF, v2
❖ ⟦ ⟧ , ⟦ ⟧ , ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ , ⟦ ⟧

 ⟦ ⟧ ⟦ ⟧

❖ ⟦ ⟧
⟦ ⟧ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

nat =̂ ℕ⊥ unit =̂ { ⊥ , * } σ → τ =̂ [σ → τ] real =̂ Iℝ⊥
Tτ =̂ M τ

sample[0,1] ρ =̂ λ|[0,1]
r ρ =̂ [r, r] f(M1, ⋯, Mn) ρ =̂ f̌(M1 ρ, ⋯, Mn ρ)

Instead of ⟦ ⟧
(this is the only change!)

V≤1 τ

That is a minimal valuation

⊥

ISPCF, v2
❖ ⟦ ⟧ , ⟦ ⟧ , ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ , ⟦ ⟧

 ⟦ ⟧ ⟦ ⟧

❖ ⟦ ⟧
⟦ ⟧ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

nat =̂ ℕ⊥ unit =̂ { ⊥ , * } σ → τ =̂ [σ → τ] real =̂ Iℝ⊥
Tτ =̂ M τ

sample[0,1] ρ =̂ λ|[0,1]
r ρ =̂ [r, r] f(M1, ⋯, Mn) ρ =̂ f̌(M1 ρ, ⋯, Mn ρ)

Instead of ⟦ ⟧
(this is the only change!)

V≤1 τ

❖ Theorem (soundness, adequacy).
⟦ ⟧ ({n})

 (at type)
Pr[C, M ↓ n] = C[M] ρ

nat

Operational semantics
is unchanged

That is a minimal valuation

⊥

ISPCF, v2
❖ ⟦ ⟧ , ⟦ ⟧ , ⟦ ⟧ ⟦ ⟧ ⟦ ⟧ , ⟦ ⟧

 ⟦ ⟧ ⟦ ⟧

❖ ⟦ ⟧
⟦ ⟧ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧

nat =̂ ℕ⊥ unit =̂ { ⊥ , * } σ → τ =̂ [σ → τ] real =̂ Iℝ⊥
Tτ =̂ M τ

sample[0,1] ρ =̂ λ|[0,1]
r ρ =̂ [r, r] f(M1, ⋯, Mn) ρ =̂ f̌(M1 ρ, ⋯, Mn ρ)

Instead of ⟦ ⟧
(this is the only change!)

V≤1 τ

❖ Theorem (soundness, adequacy).
⟦ ⟧ ({n})

 (at type)
Pr[C, M ↓ n] = C[M] ρ

nat

Operational semantics
is unchanged

❖ ⟦ ⟧
= ⟦ ⟧
 (not free in , not free in)

do x = M; do y = N; P
do y = N; do x = M; P

x N y M

 is a commutative monadM

That is a minimal valuation

⊥

What does this compute?
longest_decreasing_run =̂ rec(λfreal→int→T int . λxreal . λnint .

do u = sample[0,1];
if u > x then ret n

else f u (s(n)))

Von_Neumann =̂ do x = sample[0,1];
rec(λfreal→T real . λℓreal .

do n = longest_decreasing_run x 0;
if odd n then f(ℓ + 1.0)

else ret ℓ) x

What does this compute?
longest_decreasing_run =̂ rec(λfreal→int→T int . λxreal . λnint .

do u = sample[0,1];
if u > x then ret n

else f u (s(n)))

Von_Neumann =̂ do x = sample[0,1];
rec(λfreal→T real . λℓreal .

do n = longest_decreasing_run x 0;
if odd n then f(ℓ + 1.0)

else ret ℓ) x

 =
length of longest decreasing prefix

where are drawn in
i.i.d. uniformly

longest_decreasing_run x 0
k
x = x0 > x1 > ⋯ > xk

x1, …, xk, … [0,1]

The probability that ⟦ ⟧ is true here

is

odd n

∑
n odd (xn−1

(n − 1)!
−

xn

n!) = exp(−x)

printing slowed down for
enhanced dramatic effect

What does this compute?
longest_decreasing_run =̂ rec(λfreal→int→T int . λxreal . λnint .

do u = sample[0,1];
if u > x then ret n

else f u (s(n)))

Von_Neumann =̂ do x = sample[0,1];
rec(λfreal→T real . λℓreal .

do n = longest_decreasing_run x 0;
if odd n then f(ℓ + 1.0)

else ret ℓ) x

 =
length of longest decreasing prefix

where are drawn in
i.i.d. uniformly

longest_decreasing_run x 0
k
x = x0 > x1 > ⋯ > xk

x1, …, xk, … [0,1]

The probability that ⟦ ⟧ is true here

is

odd n

∑
n odd (xn−1

(n − 1)!
−

xn

n!) = exp(−x)

❖ … the exponential
distribution
[von Neumann 49]

exp(−x) dλ

printing slowed down for
enhanced dramatic effect

What does this compute?
longest_decreasing_run =̂ rec(λfreal→int→T int . λxreal . λnint .

do u = sample[0,1];
if u > x then ret n

else f u (s(n)))

Von_Neumann =̂ do x = sample[0,1];
rec(λfreal→T real . λℓreal .

do n = longest_decreasing_run x 0;
if odd n then f(ℓ + 1.0)

else ret ℓ) x

 =
length of longest decreasing prefix

where are drawn in
i.i.d. uniformly

longest_decreasing_run x 0
k
x = x0 > x1 > ⋯ > xk

x1, …, xk, … [0,1]

The probability that ⟦ ⟧ is true here

is

odd n

∑
n odd (xn−1

(n − 1)!
−

xn

n!) = exp(−x)

❖ … the exponential
distribution
[von Neumann 49]

exp(−x) dλ

-1
00
0 0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

1⋅
10
4

1,
1⋅
10
4

100

101

102

103

104

105

106

100 000 samples

bins [
k

1024
,

k + 1
1024

]

y-axis is log scale

y = Pr[Von_Neumann>x]
y = exp(–x)

0 1 2 3 4

1

0.1

0.01

5

0.001

printing slowed down for
enhanced dramatic effect

What does this compute?
longest_decreasing_run =̂ rec(λfreal→int→T int . λxreal . λnint .

do u = sample[0,1];
if u > x then ret n

else f u (s(n)))

Von_Neumann =̂ do x = sample[0,1];
rec(λfreal→T real . λℓreal .

do n = longest_decreasing_run x 0;
if odd n then f(ℓ + 1.0)

else ret ℓ) x

 =
length of longest decreasing prefix

where are drawn in
i.i.d. uniformly

longest_decreasing_run x 0
k
x = x0 > x1 > ⋯ > xk

x1, …, xk, … [0,1]

The probability that ⟦ ⟧ is true here

is

odd n

∑
n odd (xn−1

(n − 1)!
−

xn

n!) = exp(−x)

❖ … the exponential
distribution
[von Neumann 49]

exp(−x) dλ

-1
00
0 0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

1⋅
10
4

1,
1⋅
10
4

100

101

102

103

104

105

106

100 000 samples

bins [
k

1024
,

k + 1
1024

]

y-axis is log scale

y = Pr[Von_Neumann>x]
y = exp(–x)

0 1 2 3 4

1

0.1

0.01

5

0.001

printing slowed down for
enhanced dramatic effect

Part II: separating minimal valuations from
continuous valuations

Separation
❖ All this is well and good, but:

❖ All measures on induce minimal valuations on ℝ Iℝ

Separation
❖ All this is well and good, but:

❖ All measures on induce minimal valuations on ℝ Iℝ

❖ More generally, on any -continuous dcpo X (such as)
 subprob. measure ≅ subprob. valuation = minimal valuation

ω Iℝ

Separation
❖ All this is well and good, but:

❖ All measures on induce minimal valuations on ℝ Iℝ

❖ More generally, on any -continuous dcpo X (such as)
 subprob. measure ≅ subprob. valuation = minimal valuation

ω Iℝ

[Lawson 82,
 Alvarez-Manilla 00,

 de Brecht JGL Jia Lyu 19, etc.]

Separation
❖ All this is well and good, but:

❖ All measures on induce minimal valuations on ℝ Iℝ

❖ More generally, on any -continuous dcpo X (such as)
 subprob. measure ≅ subprob. valuation = minimal valuation

ω Iℝ

from [Jones 90][Lawson 82,
 Alvarez-Manilla 00,

 de Brecht JGL Jia Lyu 19, etc.]

Separation
❖ All this is well and good, but:

❖ All measures on induce minimal valuations on ℝ Iℝ

❖ More generally, on any -continuous dcpo X (such as)
 subprob. measure ≅ subprob. valuation = minimal valuation

ω Iℝ

❖ Are there any non-minimal subprobability valuations on a dcpo?
 Let me give an example [JGL Jia 21].

from [Jones 90][Lawson 82,
 Alvarez-Manilla 00,

 de Brecht JGL Jia Lyu 19, etc.]

The Johnstone dcpo J

34

❖ Johnstone’s dcpo (1981):
— Points = pairs in
— iff
 — and
 — or and

J
(m, n) ℕ × (ℕ ∪ {ω})

(m, n) ≤ (m′ , n′)
m = m′ n ≤ n′

n ≤ m′ n′ = ω

The Johnstone dcpo J

34

❖ Johnstone’s dcpo (1981):
— Points = pairs in
— iff
 — and
 — or and

J
(m, n) ℕ × (ℕ ∪ {ω})

(m, n) ≤ (m′ , n′)
m = m′ n ≤ n′

n ≤ m′ n′ = ω

The Johnstone dcpo J

34

❖ Johnstone’s dcpo (1981):
— Points = pairs in
— iff
 — and
 — or and

J
(m, n) ℕ × (ℕ ∪ {ω})

(m, n) ≤ (m′ , n′)
m = m′ n ≤ n′

n ≤ m′ n′ = ω

The Johnstone dcpo J

34

❖ Johnstone’s dcpo (1981):
— Points = pairs in
— iff
 — and
 — or and

J
(m, n) ℕ × (ℕ ∪ {ω})

(m, n) ≤ (m′ , n′)
m = m′ n ≤ n′

n ≤ m′ n′ = ω

❖ A famous counterexample in domain theory:
not sober, not well-filtered, not locally compact, not core-compact
 … and certainly not continuous

The Johnstone dcpo J

34

❖ Johnstone’s dcpo (1981):
— Points = pairs in
— iff
 — and
 — or and

J
(m, n) ℕ × (ℕ ∪ {ω})

(m, n) ≤ (m′ , n′)
m = m′ n ≤ n′

n ≤ m′ n′ = ω

❖ A famous counterexample in domain theory:
not sober, not well-filtered, not locally compact, not core-compact
 … and certainly not continuous

❖ I will write for with the Scott topologyJσ J

A funny valuation on J
❖ On Johnstone’s dcpo , there is a continuous valuation

defined by:
 for every non-empty Scott-open set

❖ Modularity
comes from the fact that is hyperconnected:
 any two non-empty open sets intersect.
 (Check it! Observe that every non-empty open set contains all points for large enough.)

❖ We will show that is not minimal.

J μ

μ(U) = 1 U
μ(∅) = 0

μ(U ∪ V) + μ(U ∩ V) = μ(U) + μ(V)
Jσ

(m, ω) m

μ

Discrete and good valuations
❖ A subprobability valuation on is good iff it extends to a Borel measureν X

Discrete and good valuations
❖ A subprobability valuation on is good iff it extends to a Borel measureν X

Measures the open sets

Discrete and good valuations
❖ A subprobability valuation on is good iff it extends to a Borel measureν X

Measures the open sets Measures the Borel sets

Discrete and good valuations
❖ A subprobability valuation on is good iff it extends to a Borel measureν X

❖
Every subprobability discrete valuation (infinite sum, in general)

 is good [Alvarez-Manilla, Edalat, Saheb-Djahromi 00]

∑
x

axδx

Measures the open sets Measures the Borel sets

Discrete and good valuations
❖ A subprobability valuation on is good iff it extends to a Borel measureν X

❖
Every subprobability discrete valuation (infinite sum, in general)

 is good [Alvarez-Manilla, Edalat, Saheb-Djahromi 00]

∑
x

axδx

❖ Every subset of is Borel.Jσ

Measures the open sets Measures the Borel sets

Discrete and good valuations
❖ A subprobability valuation on is good iff it extends to a Borel measureν X

❖
Every subprobability discrete valuation (infinite sum, in general)

 is good [Alvarez-Manilla, Edalat, Saheb-Djahromi 00]

∑
x

axδx

❖ Every subset of is Borel.Jσ

❖ One can show that every subprobability valuation on
 is of the form , where
— is discrete (hence good)
—

ν Jσ
θ + r . μ

θ
r ≥ 0 Namely,

θ = ∑
x∈J

ν({x}) . δx

r = ν(J) − ∑
x∈J

ν({x})

Measures the open sets Measures the Borel sets

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., . Ingredients:r ≠ 0 (θ + r . μ)(J) = 1
Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., . Ingredients:r ≠ 0 (θ + r . μ)(J) = 1

❖ , so tends to 1:
 for large enough
θ + r . μ = sup↑

i θi θi(J)
θi(J) > 1 − r/4 i

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., . Ingredients:r ≠ 0 (θ + r . μ)(J) = 1

❖ , so tends to 1:
 for large enough
θ + r . μ = sup↑

i θi θi(J)
θi(J) > 1 − r/4 i

❖ for each countable chain of arbitrary subsets (necessarily Borel)
 because is good

 so for large enough

Ek

θi(⋃
↑

k
Ek) = sup↑

k θi(Ek) θi

θi(↑ Dk) > 1 − r/4 k

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., . Ingredients:r ≠ 0 (θ + r . μ)(J) = 1

❖ , so tends to 1:
 for large enough
θ + r . μ = sup↑

i θi θi(J)
θi(J) > 1 − r/4 i

❖ for each countable chain of arbitrary subsets (necessarily Borel)
 because is good

 so for large enough

Ek

θi(⋃
↑

k
Ek) = sup↑

k θi(Ek) θi

θi(↑ Dk) > 1 − r/4 k

❖ (def. of)
Since , for large enough
(θ + r . μ)(Uk) ≥ rμ(Uk) = r μ

(θ + r . μ)(Uk) = sup↑
i θi(Uk) θi(Uk) > 3r/4 i

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4

Good valuations on are closed under directed supremaJ

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ , θi(↑ Dk) > 1 − r/4 θi(Uk) > 3r/4

Good valuations on are closed under directed supremaJ

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ , θi(↑ Dk) > 1 − r/4 θi(Uk) > 3r/4

❖ By modularity,
θi(↑ Dk ∩ Uk) = θi(↑ Dk) + θi(Uk) − θi(↑ Dk ∪ Uk)↑ Dk ∩ Uk

Good valuations on are closed under directed supremaJ

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ , θi(↑ Dk) > 1 − r/4 θi(Uk) > 3r/4

❖ By modularity,
θi(↑ Dk ∩ Uk) = θi(↑ Dk) + θi(Uk) − θi(↑ Dk ∪ Uk)

>1–r/4

↑ Dk ∩ Uk

Good valuations on are closed under directed supremaJ

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ , θi(↑ Dk) > 1 − r/4 θi(Uk) > 3r/4

❖ By modularity,
θi(↑ Dk ∩ Uk) = θi(↑ Dk) + θi(Uk) − θi(↑ Dk ∪ Uk)

>1–r/4 >3r/4

↑ Dk ∩ Uk

Good valuations on are closed under directed supremaJ

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ , θi(↑ Dk) > 1 − r/4 θi(Uk) > 3r/4

❖ By modularity,
θi(↑ Dk ∩ Uk) = θi(↑ Dk) + θi(Uk) − θi(↑ Dk ∪ Uk)

>1–r/4 >3r/4 ≤1

↑ Dk ∩ Uk

Good valuations on are closed under directed supremaJ

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4

> r/2
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ , θi(↑ Dk) > 1 − r/4 θi(Uk) > 3r/4

❖ By modularity,
θi(↑ Dk ∩ Uk) = θi(↑ Dk) + θi(Uk) − θi(↑ Dk ∪ Uk)

❖ … is for i, k large enough> r/2

>1–r/4 >3r/4 ≤1

↑ Dk ∩ Uk

Good valuations on are closed under directed supremaJ

Dk Uk

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

>1–r/4

> 3r/4

> r/2
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ , θi(↑ Dk) > 1 − r/4 θi(Uk) > 3r/4

❖ By modularity,
θi(↑ Dk ∩ Uk) = θi(↑ Dk) + θi(Uk) − θi(↑ Dk ∪ Uk)

❖ … is for i, k large enough> r/2

❖ Hence for large enough,
where

θi(Mkℓ) > r/2 i, k, ℓ ℓ > k
Mkℓ = {(k, ω), (k + 1,ω), ⋯, (ℓ − 1,ω)}

>1–r/4 >3r/4 ≤1

↑ Dk ∩ Uk

Mkℓ

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1
Dk Uk

>1–r/4

> 3r/4

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ for large enough,
where

θi(Mkℓ) > r/2 i, k, ℓ ℓ > k
Mkℓ = {(k, ω), (k + 1,ω), ⋯, (ℓ − 1,ω)}

Dk Uk

>1–r/4

> 3r/4

Mkℓ

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

> r/2

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ for large enough,
where

θi(Mkℓ) > r/2 i, k, ℓ ℓ > k
Mkℓ = {(k, ω), (k + 1,ω), ⋯, (ℓ − 1,ω)}

❖ Then θi2(Mk2ℓ2
) > r/2

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

> r/2 > r/2

Good valuations on are closed under directed supremaJ

❖ Lemma. If is a directed supremum
 of good valuations on , then .

θ + r . μ
θi Jσ r = 0

❖ Proof sketch. Imagine . Wlog., .r ≠ 0 (θ + r . μ)(J) = 1

❖ for large enough,
where

θi(Mkℓ) > r/2 i, k, ℓ ℓ > k
Mkℓ = {(k, ω), (k + 1,ω), ⋯, (ℓ − 1,ω)}

❖ Then θi2(Mk2ℓ2
) > r/2

❖ Then , etc.θi3(Mk3ℓ3
) > r/2

❖ Eventually, : contradiction.
☐

θiN(Mkl ⊎ ⋯ ⊎ MkNℓN
) > Nr/2 > 1

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

❖ Let ={k leftmost columns}
 (in green)

❖ is closed (green+yellow)
 = complement of
 Scott-open

❖ : green+blue

Dk

↓ Dk
Uk ↓ Dk

↑ Dk

> r/2 > r/2

 is not minimalμ
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

Mk3ℓ3

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

> r/2 > r/2

 is not minimalμ
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Hence directed suprema of good valuations
of total mass are good valuations

θi
≤ 1 θ

Mk3ℓ3

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

> r/2 > r/2

 is not minimalμ
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Hence directed suprema of good valuations
of total mass are good valuations

θi
≤ 1 θ

❖ By transfinite induction, every minimal valuation on
of total mass is good.

J
≤ 1

Mk3ℓ3

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

> r/2 > r/2

 is not minimalμ
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Hence directed suprema of good valuations
of total mass are good valuations

θi
≤ 1 θ

❖ By transfinite induction, every minimal valuation on
of total mass is good.

J
≤ 1

❖
But itself is not good: otherwise μ μ (⋂

↓

k∈ℕ
Uk) = inf↓

k∈ℕ μ(Uk)

Mk3ℓ3

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

> r/2 > r/2

 is not minimalμ
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Hence directed suprema of good valuations
of total mass are good valuations

θi
≤ 1 θ

❖ By transfinite induction, every minimal valuation on
of total mass is good.

J
≤ 1

❖
But itself is not good: otherwise μ μ (⋂

↓

k∈ℕ
Uk) = inf↓

k∈ℕ μ(Uk)

Mk3ℓ3

= μ(∅) = 0

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

> r/2 > r/2

 is not minimalμ
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Hence directed suprema of good valuations
of total mass are good valuations

θi
≤ 1 θ

❖ By transfinite induction, every minimal valuation on
of total mass is good.

J
≤ 1

❖
But itself is not good: otherwise μ μ (⋂

↓

k∈ℕ
Uk) = inf↓

k∈ℕ μ(Uk)

Mk3ℓ3

= μ(∅) = 0

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

> r/2 > r/2

= 1

 is not minimalμ
❖ Lemma. If is a directed supremum

 of good valuations on , then .
θ + r . μ

θi Jσ r = 0

❖ Hence directed suprema of good valuations
of total mass are good valuations

θi
≤ 1 θ

❖ By transfinite induction, every minimal valuation on
of total mass is good.

J
≤ 1

❖
But itself is not good: otherwise μ μ (⋂

↓

k∈ℕ
Uk) = inf↓

k∈ℕ μ(Uk)

❖ Theorem. is not minimal on .μ Jσ

Mk3ℓ3

= μ(∅) = 0

Dk Uk

>1–r/4

> 3r/4

Mkℓ Mk2ℓ2
Mk3ℓ3

> r/2 > r/2

= 1

Conclusion and open problems

Conclusion
❖ There is no trouble with the (minimal, point-continuous)

 probabilistic powerdomain in semantics:
 commutative monads of probabilistic choice in Dcpo

Conclusion
❖ There is no trouble with the (minimal, point-continuous)

 probabilistic powerdomain in semantics:
 commutative monads of probabilistic choice in Dcpo

❖ Plenty of other semantics for probabilistic choice:
 I have cited some. See also [Di Gianantonio Edalat 24],
 based on domain theory + random variables

Conclusion
❖ There is no trouble with the (minimal, point-continuous)

 probabilistic powerdomain in semantics:
 commutative monads of probabilistic choice in Dcpo

❖ Plenty of other semantics for probabilistic choice:
 I have cited some. See also [Di Gianantonio Edalat 24],
 based on domain theory + random variables

❖ Open question: Does Fubini-Tonelli hold on Dcpo? [X. Jia]
 i.e., is commutative on Dcpo?
 i.e., is every continuous valuation on a dcpo central?

V≤1

