What is Lévy-Longo Tree Equivalence ? A Sequel to Interaction Equivalence

Adrienne Lancelot

Inria & LIX, École Polytechnique and Université Paris Cité, CNRS, IRIF

Jww. Beniamino Accattoli, Giulio Manzonetto and Gabriele Vanoni

November 18th 2024 - GT Scalp

Contextual Equivalence

Intensional Equivalences

Coinductive Intensional Equivalences

Reconciling Intensional and Contextual?

When can contextual equivalence be rephrased as an intensional equivalence?

When are intensional equivalences fully abstract?

Can we add intensional information to contextual equivalence? \rightarrow Interaction Equivalence – Accattoli, Lancelot, Manzonetto and Vanoni

Reconciling Intensional and Contextual?

When can contextual equivalence be rephrased as an intensional equivalence?

When are intensional equivalences fully abstract?

Can we add intensional information to contextual equivalence? \rightarrow Interaction Equivalence – Accattoli, Lancelot, Manzonetto and Vanoni

Reconciling Intensional and Contextual?

When can contextual equivalence be rephrased as an intensional equivalence?

When are intensional equivalences fully abstract?

Can we add intensional information to contextual equivalence? \rightarrow Interaction Equivalence – Accattoli, Lancelot, Manzonetto and Vanoni

Contextual Equivalence

$t \equiv^{\operatorname{ctx}} u$ if for all contexts C. [$C\langle t \rangle \Downarrow \Leftrightarrow C\langle u \rangle \Downarrow$]

Is an Equational Theory (for $\Downarrow := \Downarrow_h$):

- 1. Compatibility: if $t \equiv^{ctx} u$ then $C\langle t \rangle \equiv^{ctx} C\langle u \rangle$ for all context C;
- 2. *Invariance*: if $t =_{\beta} u$ then $t \equiv^{\text{ctx}} u$.

Contextual Equivalence

 $t \equiv^{\operatorname{ctx}} u$ if for all contexts C. [$C\langle t \rangle \Downarrow \Leftrightarrow C\langle u \rangle \Downarrow$]

Is an Equational Theory (for $\Downarrow := \Downarrow_h$):

- 1. Compatibility: if $t \equiv^{ctx} u$ then $C\langle t \rangle \equiv^{ctx} C\langle u \rangle$ for all context C;
- 2. *Invariance*: if $t =_{\beta} u$ then $t \equiv^{\text{ctx}} u$.

Sands' improvement

$t \equiv^{\text{cost}} u$ if for all contexts $C, \exists k \ge 0$. [$C\langle t \rangle \Downarrow^k \Leftrightarrow C\langle u \rangle \Downarrow^k$]

Not An Equational Theory! I =_{β} II but I $\not\equiv^{\text{cost}}$ II

Sands' improvement

 $t \equiv^{\text{cost}} u$ if for all contexts $C, \exists k \ge 0$. [$C\langle t \rangle \Downarrow^k \Leftrightarrow C\langle u \rangle \Downarrow^k$]

Not An Equational Theory! I = $_{\beta}$ I I but I $\not\equiv^{\text{cost}}$ II

The best of both worlds?

Can we build a cost-sensitive equational theory?

How can we measure the interaction between a program and a context modulo the internal dynamics?

Our contribution: a framework to identify internal and interaction steps for the untyped λ -calculus \rightarrow checkers λ -calculus

The best of both worlds?

Can we build a cost-sensitive equational theory?

How can we measure the interaction between a program and a context modulo the internal dynamics?

 $P\simeq Q$

Our contribution: a framework to identify internal and interaction steps for the untyped λ -calculus \rightarrow checkers λ -calculus

The best of both worlds?

Can we build a cost-sensitive equational theory?

How can we measure the interaction between a program and a context modulo the internal dynamics?

 $P\simeq Q$

Our contribution: a framework to identify internal and interaction steps for the untyped λ -calculus \rightarrow checkers λ -calculus

The Checkers λ -Calculus

Silent Steps:

The Checkers λ -Calculus

Interaction Cost?

Counting interactions depends on the reduction sequence.

One needs to consider a specific evaluation strategy!

 $\mathfrak{t} \Downarrow_{\mathbf{h}_{0}}^{\mathbf{e}k}$ means \mathfrak{t} head-normalizes with k interaction steps

Interaction Equivalence

12/21

What should be the meaning of a program

Interaction Equivalence is an equational theory!

- Duality between Program/Context reminiscent of Game Semantics
- Modeling communication P | C akin to π -calculus and LTS

"The meaning of a program should express its history of access to resources which are not local to it." - Milner 1975 But... What terms are interaction (in)equivalent?

Interaction equivalence is not extensional!

$$\mathtt{I} \coloneqq \lambda x. x \not\equiv^{ ext{int}} \lambda x. \lambda y. x y \eqqcolon \mathtt{I}$$

$$=_{\beta} \subseteq \sqsubseteq^{\text{int}} \subsetneq \sqsubseteq^{\text{ctx}}$$

14 / 21

But... What terms are interaction (in)equivalent?

Interaction equivalence is not extensional!

$$\mathtt{I} \coloneqq \lambda x. x \not\equiv^{ ext{int}} \lambda x. \lambda y. x y \eqqcolon \mathtt{I}$$

$$=_{\beta} \subseteq \sqsubseteq^{\text{int}} \subsetneq \sqsubseteq^{\text{ctx}}$$

14 / 21

Inspecting Black Boxes

Second contribution: interaction equivalence is exactly Böhm tree equivalence

It even turns out that in the head case, it is the same to only look at white contexts.

Inspecting Black Boxes

Second contribution: interaction equivalence is exactly Böhm tree equivalence

It even turns out that in the head case, it is the same to only look at white contexts.

Interaction Equivalence in other paradigms

Now, what about other evaluation strategies? WIP with Giulio Manzonetto: weak head evaluation

$\mathfrak{t}\mapsto_{eta_{ au}}\mathfrak{u}$	$\mathfrak{t}\mapsto_{\beta0}\mathfrak{u}$
$\overline{\mathfrak{t} \to_{\mathrm{wh}_\tau} \mathfrak{u}}$	$\overline{\mathfrak{t} \to_{\mathrm{wh} \mathfrak{o}} \mathfrak{u}}$
$\mathfrak{t} \to_{\mathrm{wh}_\tau} \mathfrak{t}'$	$\mathfrak{t} \to_{\mathrm{wh}_{\bullet}} \mathfrak{t}'$
$\mathfrak{tu} \to_{\mathrm{wh}_\tau} \mathfrak{t'u}$	$\overline{\mathfrak{tu}} \to_{\mathrm{wh}_{lacksymbol{0}}} \mathfrak{t}'\mathfrak{u}$

Functions $\lambda x.t$ are normal forms.

Weak Head Interaction Equivalence

17 / 21

Lévy-Longo trees are the weak variant of Böhm trees.

[WIP] Interaction Equivalence ⇔ Lévy-Longo Equivalence.

Lévy-Longo trees are the weak variant of Böhm trees.

[WIP] Interaction Equivalence ⇔ Lévy-Longo Equivalence.

Some key examples:

η -equivalence: $\lambda x.\lambda y.xy$ and $\lambda x.x$

 \to these terms are already discriminated by weak head contextual equivalence: ${\cal C}:=\langle\cdot\rangle\Omega$

sound η -equivalence: $\lambda x.x \lambda y.xy$ and $\lambda x.xx$

This is the classical example of contextually equivalent terms that are not Lévy-Longo equivalent. They are not interaction equivalent: $\mathfrak{C} := \langle \cdot \rangle (\mathtt{I}_{\bullet} \circ \mathtt{I}_{\circ})$

Some key examples:

η -equivalence: $\lambda x.\lambda y.xy$ and $\lambda x.x$

 \to these terms are already discriminated by weak head contextual equivalence: C := $\langle\cdot\rangle\Omega$

sound η -equivalence: $\lambda x.x \lambda y.xy$ and $\lambda x.xx$

This is the classical example of contextually equivalent terms that are not Lévy-Longo equivalent. They are not interaction equivalent: $\mathfrak{C} := \langle \cdot \rangle (\mathtt{I}_{\bullet} \circ \mathtt{I}_{\circ})$

Some key examples:

η -equivalence: $\lambda x.\lambda y.xy$ and $\lambda x.x$

 \to these terms are already discriminated by weak head contextual equivalence: C := $\langle\cdot\rangle\Omega$

sound η -equivalence: $\lambda x.x \lambda y.xy$ and $\lambda x.xx$

This is the classical example of contextually equivalent terms that are not Lévy-Longo equivalent. They are not interaction equivalent: $\mathfrak{C} := \langle \cdot \rangle (\mathtt{I}_{\bullet} \circ \mathtt{I}_{\circ})$

Some key examples:

```
\eta-equivalence: \lambda x.\lambda y.xy and \lambda x.x
```

 \to these terms are already discriminated by weak head contextual equivalence: C := $\langle\cdot\rangle\Omega$

sound η -equivalence: $\lambda x.x \lambda y.x y$ and $\lambda x.x x$

This is the classical example of contextually equivalent terms that are not Lévy-Longo equivalent.

They are not interaction equivalent: $\mathfrak{C} := \langle \cdot \rangle (\mathtt{I}_{\bullet} \circ \mathtt{I}_{\circ})$

 $19 \, / \, 21$

Lévy-Longo matches Interaction and Relational

We cannot restrict to white contexts:

 $\lambda x. x \lambda y. xy$ and $\lambda x. xx$

20 / 21

Lévy-Longo matches Interaction and Relational

We cannot restrict to white contexts:

 $\lambda x. x \lambda y. xy$ and $\lambda x. xx$

20 / 21

Conclusion

Interaction Equivalence:

- Checkers Calculus: a new framework to represent interaction between programs
- Interaction Equivalence: a cost-sensitive equational theory
- The first contextual characterization of Böhm tree equivalence without effects (and simple!)

WIP and future work:

- Weak Head Interaction Equivalence, exactly matches Lévy-Longo equivalence
- Work it out in Call-by-Value, and in effectful extensions
- How does it relate to Game Semantics? to process calculi?
- What does our interaction cost represent?

Thank you!

Conclusion

Interaction Equivalence:

- Checkers Calculus: a new framework to represent interaction between programs
- Interaction Equivalence: a cost-sensitive equational theory
- The first contextual characterization of Böhm tree equivalence without effects (and simple!)

WIP and future work:

- Weak Head Interaction Equivalence, exactly matches Lévy-Longo equivalence
- Work it out in Call-by-Value, and in effectful extensions
- How does it relate to Game Semantics? to process calculi?
- What does our interaction cost represent?

Thank you!

Optimize the number of interactions

Why do we impose that interaction equivalent terms have the same number of interaction?

▶ Interaction Improvement: $\mathfrak{t} \sqsubseteq_{\mathfrak{o}}^{ctx} \mathfrak{u}$ if, for all contexts *C*, if there exists *k* such that $C\langle \mathfrak{t} \rangle \Downarrow_{\mathrm{wh}_{\mathfrak{o}}}^{\mathfrak{o}k}$ then $C\langle \mathfrak{u} \rangle \Downarrow_{\mathrm{wh}_{\mathfrak{o}}}^{\mathfrak{o}k'}$ with $k' \leq k$;

It does not change the associated equivalence relation.

Interaction improvement includes η -reduction:

$$\lambda_{\bullet} y. x \bullet y \sqsubseteq_{\bullet}^{\operatorname{ctx}} x$$

So does the Plain Intersection Types Preorder!