Stateful synchronous dataflow language. Harnessing distributive laws of a comonad over a monad.

Benjamin Lion David Nowak Jean-Pierre Talpin

Motivations

Dataflow language are very popular for high level programming. *Lustre, Esterel, Signal, Circuits, ...*

Hybrid language to integrate stateful computations. *Modes, automata, control, ...*

Can we define a stateful dataflow language, that merges both? *Consequence for compilation, hands-on memory, ...*

What are stateful synchronous dataflow programs?

Non-Stateful Synchronous dataflow programs

nats := 0 fby (1 + nats) Input: tt, tt, tt, tt, tt, ... Output: 0, 1, 2, 3, 4, ... What are stateful synchronous dataflow programs?

Non-Stateful Synchronous dataflow programs

nats := 0 fby (1 + nats) Input: tt, tt, tt, tt, tt, ... Output: 0, 1, 2, 3, 4, ...

Stateful synchronous dataflow programs

nats := let x = (read 0) in (write 0 (1 + x)); x

Memory at address 0 initialized to 0. Input: tt, tt, tt, tt, tt, ... Output: 0, 1, 2, 3, 4, ...

firstOccurrence

firstOccurrence

s = []

Semantics

What semantics for such stateful dataflow programs?

Our requirements:

- denotational (make use of Coq for proofs)
- compositional (nicer, and makes proofs easier)

Semantics

What semantics for such stateful dataflow programs?

Our requirements:

- denotational (make use of Coq for proofs)
- compositional (nicer, and makes proofs easier)

Prior investigations of Uustalu and Vene.

Denotational and compositional semantics for Lustre (synchronous dataflow language): dataflow primitives are morphisms in a Kleisli category, i.e.,

$$f: W A \to M B$$

where W is a comonad and M is a monad.

Dataflow with comonad

Comonad for compositional context:

$$\frac{f: W A \to B \quad g: W B \to C}{??: W A \to C}$$

Dataflow with comonad

Comonad for compositional context:

$$\frac{f^{\dagger}: W \land A \to W \land B \qquad g: W \land B \to C}{g \circ f^{\dagger}: W \land A \to C}$$

Dataflow with comonad

Comonad for compositional context:

$$\frac{f^{\dagger}: W \land A \to W \land B}{g \circ f^{\dagger}: W \land A \to C} g : W \land B \to C$$

Example on the non-empty list (NEList) comonad.

$x\mapsto 1$		$x \mapsto sum x$		$(x\mapsto 1)^\dagger$		$egin{array}{lll} ({\sf x}\mapsto {\sf sum}\;{\sf x})\;\circ\ ({\sf x}\mapsto 1)^{\dagger} \end{array}$	
[0]	1	[0]	0	[0]	[1]	[0]	1
[1]	1	[1]	1	[1]	[1]	[1]	1
[0, 0]	1	[0, 0]	0	[0, 0]	[1,1]	[0,0]	2
[0, 1]	1	[0, 1]	1	[0, 1]	[1,1]	[0, 1]	2
[1, 0]	1	[1,0]	1	[1, 0]	[1, 1]	[1,0]	2
[1,1]	1	[1, 1]	2	[1,1]	[1, 1]	[1, 1]	2

Effect with monad

Monads for compositional effects:

$$\frac{f: A \to M B \quad g: B \to M C}{??: A \to M C}$$

Effect with monad

Monads for compositional effects:

$$\frac{f: A \to M B}{g^* \circ f: A \to M C}$$

Effect with monad

Monads for compositional effects:

$$\frac{f: A \to M \ B}{g^* \circ f: A \to M \ C}$$

Example on the option monad $\mathbb{N} + \{\bot\}$:

$$x \mapsto if (x \mod 3 = 0) and (x \mod 2 = 0)$$

then x
else \perp

Combine dataflow and effects

Composition:

$$\frac{f: W A \to M B}{??: W A \to M C}$$

Combine dataflow and effects

Composition:

 $\begin{array}{ccc} f: W \ A \to M \ B & g: W \ B \to M \ C \\ f^{\dagger}: W \ A \to W \ M \ B & g^{\star}: M \ W \ B \to M \ C \\ g^{\star} \circ \ \delta \circ f^{\dagger}: W \ A \to M \ C \end{array}$

where

- f[†] and g^{*} are reasonable extensions given the comonad W and monad M;
- δ represents the distributive law of the comonad W over the monad M, i.e.,

 $\delta: W \ M \Rightarrow M \ W$

with 4 coherence conditions.

Example for synchronous dataflow.

Uustalu and Vene defined the distributive law:

$$\delta: (\mathbb{N} + \{\bot\})^+ \to \mathbb{N}^+ + \{\bot\}$$

that intuitively acts as:

- if the head of the list is absent (i.e., \perp), return absent;
- otherwise, return the list where all \perp have been filtered.

Example for synchronous dataflow.

Uustalu and Vene defined the distributive law:

$$\delta: (\mathbb{N} + \{\bot\})^+ \to \mathbb{N}^+ + \{\bot\}$$

that intuitively acts as:

• if the head of the list is absent (i.e., \perp), return absent;

• otherwise, return the list where all \perp have been filtered.

Let

> f := (x → if (head x) mod 2 = 0 then x else ⊥);> g := (x → sum x);

	f [†]	g*		$g^\star \circ \delta \circ f^\dagger$	
[0]	[0]	\perp	\perp	[0]	0
[1]	[⊥]	[0]	0	[1]	\perp
[0, 0]	[0,0]	[1]	1	[0, 0]	0
[0, 1]	[0, ⊥]	[0, 0]	0	[0, 1]	0
[1, 0]	$[\perp,0]$	[0, 1]	1	[1, 0]	\bot

Can we extend to stateful synchronous dataflow?

Main difference with stateless case:

- the option monad is no longer sufficient as their is no notion of states;
- use of a state monad?

Stateful dataflow: first try

First idea: replace the option monad $_{-}+\{\bot\}$ with the option state monad $S \rightarrow (_{-} \times S) + \{\bot\}$.

But, problem for the distributive law: couldn't find one that satisfies all 4 coherence conditions.

Deadend.. After several attempts, we thought of an alternative.

Let \mathbb{C} be a category, W a comonad, and M a monad in \mathbb{C} .

Definition (Kleisli Category)

A distributive law of W over M induces a Kleisli category $\mathbb{C}_{W,M}$, where:

- ▶ objects are objects in C, and
- ▶ morphisms in $\mathbb{C}_{W,M}(X, Y)$ are those in $\mathbb{C}(W X, M Y)$, i.e., of the form $W X \to M Y$.

Composition and identity follow from the Kleisli category.

Let \mathbb{C} be a category, W a comonad, and M a monad in \mathbb{C} . Let S be a set of states.

Definition (Stateful Kleisli Category)

A distributive law of W over M induces a Stateful Kleisli category $\mathbb{C}_{W,M}^{S}$, where:

- ▶ objects are objects in C, and
- morphisms in $\mathbb{C}^{S}_{W,M}(X, Y)$ are those in $\mathbb{C}(W(X \times S), M(Y \times S))$, i.e., of the form $W(X \times S) \rightarrow M(Y \times S)$.

Composition and identity follow from the Kleisli category.

Following Uustalu et Vene, we kept the nonempty list comonad $W = _^+$ and the option monad $M = _ + \{\bot\}$.

Following Uustalu et Vene, we kept the nonempty list comonad $W = _^+$ and the option monad $M = _ + \{\bot\}$.

Morphisms are of the form $(A \times S)^+ \rightarrow (B \times S) + \{\bot\}$.

Following Uustalu et Vene, we kept the nonempty list comonad $W = _^+$ and the option monad $M = _ + \{\bot\}$.

Morphisms are of the form $(A \times S)^+ \to (B \times S) + \{\bot\}$.

Lift morphisms to dataflow functions, i.e., operations on streams.

Let $f : (A \times S)^+ \to (B \times S) + \{\bot\}$ be a morphism in the stateful Kleisli category.

The run operation on f, given $\sigma \in A^{\omega}$ a stream of inputs in A, and s an initial state, is:

 $\operatorname{run}(f,\sigma,s)\in (B+\{\bot\})^\omega$

such that

- f applies to prefixes of σ with an updated state in the non-absent case;
- f applies to prefixes of σ with the same state in the absent case.

Let $f : (A \times S)^+ \to (B \times S) + \{\bot\}$ be a morphism in the stateful Kleisli category.

The run operation on f, given $\sigma \in A^{\omega}$ a stream of inputs in A, and s an initial state, is:

 $\operatorname{run}(f,\sigma,s)\in (B+\{\bot\})^\omega$

such that

- f applies to prefixes of σ with an updated state in the non-absent case;
- f applies to prefixes of σ with the same state in the absent case.

But, problem if absent: some intermediate change of states have been lost!!

We changed the option monad $M = -+ \{\bot\}$ to the sum monad M = -+ E.

We changed the option monad $M = -+ \{\bot\}$ to the sum monad M = -+ E.

We prove a new distributive law:

$$\delta: (A \times S + E)^+ \to (A \times S)^+ + E$$

where

- if the head is absent, return an exception;
- otherwise return the list where all the exceptions have been filtered.

We changed the option monad $M = -+ \{\bot\}$ to the sum monad M = -+ E.

We prove a new distributive law:

$$\delta: (A \times S + E)^+ \to (A \times S)^+ + E$$

where

- if the head is absent, return an exception;
- otherwise return the list where all the exceptions have been filtered.

The four coherence conditions have been proved in Coq.

We fix the monad to M = -+S. Let $f : (A \times S)^+ \to (B \times S) + S$ be a morphism in stateful Kleisli category.

Run operation on f with $\sigma \in A^{\omega}$ a stream of inputs in A, and s an initial state:

$$\operatorname{run}(f,\sigma,s)\in (B+\{\bot\})^\omega$$

such that

f applies to prefixes of σ with an updated state in the non-absent case and in the absent case.

The state is propagated in case of absence!

Examples on some dataflow primitives

With a fixed S, let
$$A \longrightarrow B := (A \times S)^+ \rightarrow (B \times S + S)$$
.

Examples on some dataflow primitives

With a fixed S, let $A \longrightarrow B := (A \times S)^+ \rightarrow (B \times S + S)$.

Stateful weak product of two dataflow functions:

$$\langle f,g\rangle: A \longrightarrow (B_1 \times B_2)$$

with

 $f: A \longrightarrow B_1$ $g: A \longrightarrow B_2$

Examples on some dataflow primitives

With a fixed S, let $A \longrightarrow B := (A \times S)^+ \rightarrow (B \times S + S)$.

Stateful weak product of two dataflow functions:

$$\langle f, g \rangle : A \longrightarrow (B_1 \times B_2)$$

with

$$f: A \longrightarrow B_1$$
$$g: A \longrightarrow B_2$$

Currying of dataflow function:

scurry
$$m f : A \longrightarrow (B \longrightarrow C)$$

with

▶
$$m: A^+ \times B^+ \to (A \times B)^+$$

▶ $f: (A \times B) \longrightarrow C$

Stateful dataflow language (Syntax)

Expressions:

$$\begin{array}{l} e ::= \mathsf{tt} \mid \mathsf{true} \mid \mathsf{false} \mid n \mid e_1 \stackrel{?}{=} e_2 \mid ... \\ e_1 \; ; \; e_2 \mid x \mid \lambda x \cdot e \mid e_1 \; e_2 \mid ... \\ e_1 \; \mathsf{fby} \; e_2 \mid \mathsf{fix} \; n \; e_0 \; e \mid \mathsf{read} \; e \mid \mathsf{write} \; e_1 \; e_2 \end{array}$$

Stateful dataflow language (Syntax)

Expressions:

$$\begin{array}{l} e ::= \mathsf{tt} \mid \mathsf{true} \mid \mathsf{false} \mid n \mid e_1 \stackrel{?}{=} e_2 \mid ... \\ e_1 \; ; \; e_2 \mid x \mid \lambda x \cdot e \mid e_1 \; e_2 \mid ... \\ e_1 \; \mathsf{fby} \; e_2 \mid \mathsf{fix} \; n \; e_0 \; e \mid \mathsf{read} \; e \mid \mathsf{write} \; e_1 \; e_2 \end{array}$$

Example of program:

```
first_occurrence offset :=

\lambda x \cdot

write offset (1 + offset);

if islnList offset x then \perp_{nat}

else

let y = read (1 + offset) in

write y x; write (1 + offset) (1 + y); x
```

Stateful dataflow language (Semantics)

Fix the state to $S = \mathbb{N} \to \mathbb{N}$.

Fix the distributive law our new distributive law of the non-empty list comonad to the sum monad.

Stateful dataflow language (Semantics)

Fix the state to $S = \mathbb{N} \to \mathbb{N}$.

Fix the distributive law our new distributive law of the non-empty list comonad to the sum monad.

Semantics for some primitives:

$$\begin{bmatrix} e_1 \stackrel{?}{=} e_2 \end{bmatrix} = \uparrow \stackrel{?}{=} \circ \langle \llbracket e_1 \rrbracket, \llbracket e_2 \rrbracket \rangle$$

$$\begin{bmatrix} \text{fix } n \ e_0 \ e \end{bmatrix} = \begin{pmatrix} & \llbracket e_0 \rrbracket & \text{if } n = 0 \\ eval \circ \langle \llbracket e \rrbracket, \ \llbracket \text{fix } (n-1) \ e_0 \ e \rrbracket) \rangle & \text{otherwise} \end{pmatrix}$$

where

- the equality is applied item-wise on the product ([[e1]], [[e2]]);
- the eval applies the result of the left part of the pair onto the right part.

Back to our example

Runnable example in Coq: Compute prefix 6 (run f σ m_0) = [1;2; \perp ; 0; \perp ; \perp] Program's property: mix induction (program constructs), and coinduction (program semantics).

ex: bisimulation of the run of nat_imp and stream of naturals.

Semantics property: show compositionality on runs. The run of the composition of f and g is some form of composition of the run of f and g.

Conclusion

We presented a denotational and compositional semantics for a Stateful synchronous dataflow language.

We formalized the semantics in Coq, and provide some running examples.