Stateful synchronous dataflow language.

Harnessing distributive laws of a comonad over a monad.

Benjamin Lion David Nowak Jean-Pierre Talpin

1/22

Motivations

Dataflow language are very popular for high level programming.
Lustre, Esterel, Signal, Circuits, ...

Hybrid language to integrate stateful computations.
Modes, automata, control, ...

Can we define a stateful dataflow language, that merges both?
Consequence for compilation, hands-on memory, ...

2/22

What are stateful synchronous dataflow programs?

Non-Stateful Synchronous dataflow programs
nats := 0 fby (1 + nats)

Input: tt, tt, tt, tt, tt,
Output: 0, 1, 2, 3, 4,

3/22

What are stateful synchronous dataflow programs?

Non-Stateful Synchronous dataflow programs
nats := 0 fby (1 + nats)

Input: tt, tt, tt, tt, tt,
Output: 0, 1, 2, 3, 4,

Stateful synchronous dataflow programs
nats := let x = (read 0) in (write 0 (1 + x)) ; x

Memory at address O initialized to 0.
Input: tt, tt, tt, tt, tt,
Output: 0, 1, 2, 3, 4,

3/22

Motivating example: first occurrence

firstOccurrence

4/22

Motivating example: first occurrence

firstOccurrence

4/22

Motivating example: first occurrence

firstOccurrence

s' = [0]

4/22

Motivating example: first occurrence

01

s = [0]

firstOccurrence

01

s' = [0;1]

4/22

Motivating example: first occurrence

012

s = [0;1]

firstOccurrence

012

s' =[0;1;2]

4/22

Motivating example: first occurrence

0121

s = [0;1;2]

firstOccurrence

012

s' =[0;1;2]

4/22

Motivating example: first occurrence

01213

s = [0;1;2]

firstOccurrence

012 3

s' = [0;1;2;3]

4/22

Motivating example: first occurrence

01213---

s = [0;1;,2;3;..]

firstOccurrence

012 3---

s’ =10;1;2;3;..]

4/22

Semantics

What semantics for such stateful dataflow programs?
Our requirements:

» denotational (make use of Coq for proofs)

» compositional (nicer, and makes proofs easier)

5/22

Semantics

What semantics for such stateful dataflow programs?

Our requirements:
» denotational (make use of Coq for proofs)

» compositional (nicer, and makes proofs easier)

Prior investigations of Uustalu and Vene.
Denotational and compositional semantics for Lustre (synchronous
dataflow language): dataflow primitives are morphisms in a Kleisli
category, i.e.,

f-WA—-MB

where W is a comonad and M is a monad.

5/22

Dataflow with comonad

Comonad for compositional context:

f-WA—B g WB—C
7 WA—-C

6/22

Dataflow with comonad

Comonad for compositional context:

ff-WASWB g:WB—=C
gofi: WA= C

6/22

Dataflow with comonad

Comonad for compositional context:

fl:WA—-WB

g:WB—C

gofl: WA= C

Example on the non-empty list (NEList) comonad.

(x +— sum x) o

x =1 X — sum X (x — 1)f (x > 1)t
[o) 1 p o o | [0 [i o 1
A [1] [1
[0,0] 1 [0,0] O [0,0] [1,1] [0,0] 2
0,1 1 | [0,1] 1 | [0,1] [1,1] 0,1 2
Lo 1 | Lol 1 | [Lo] [Ly | [Lo] 2

1 2 2

[1,1]

[1,1]

[1,1] [1,1]

[1,1]

6/22

Effect with monad
Monads for compositional effects:

f:A—-MB g:B—->MC
"7A—-MC

7/22

Effect with monad
Monads for compositional effects:

f:-A->MB g :-MB—-MC
g¥of :A—-MC

7/22

Effect with monad

Monads for compositional effects:

f:-A->MB g :-MB—-MC

g¥of :A—-MC

Example on the option monad N + {1 }:

> let g := x
> let f :=x
> let g~ =y

» then g*of

X =

— if x mod 2 = 0 then x else .;
— if x mod 3 = 0 then x else .;
= do x <- y; & X,

if (x mod 3 = 0) and (x mod 2 = 0)
then x
else L

7/22

Combine dataflow and effects

Composition:

f WA—-MB g WB—->MC
WA= MC

8/22

Combine dataflow and effects

Composition:

f-WA-MB g WB-MC
ff:WA—>WMB g MWB-—MC

g*ro doff:WA—-MC

where
» T and g* are reasonable extensions given the comonad W
and monad M;
») represents the distributive law of the comonad W over the

monad M, i.e.,
O WM=MW

with 4 coherence conditions.

8/22

Example for synchronous dataflow.
Uustalu and Vene defined the distributive law:

§:(N+{L}H" =Nt +{1}

that intuitively acts as:
» if the head of the list is absent (i.e., L), return absent;

» otherwise, return the list where all L have been filtered.

9/22

Example for synchronous dataflow.
Uustalu and Vene defined the distributive law:

§:(N+{L}H" =Nt +{1}
that intuitively acts as:
» if the head of the list is absent (i.e., L), return absent;
» otherwise, return the list where all L have been filtered.
Let

f:= (x = if (head x) mod 2 = 0 then x else 1);
> g := (x — sum x);

ff g gtodofl
[0] 0] Lo Ly o
[[o o | [1L
[0,0] [0,0] 1] 1 [0,0] ©
[0,1] [0, 1] [0,0] O [0,1] O
[1,0] [L,0] [0,1] 1 [1,0] L

9/22

Can we extend to stateful synchronous dataflow?

Main difference with stateless case:

» the option monad is no longer sufficient as their is no notion
of states;

» use of a state monad?

10/22

Stateful dataflow: first try

First idea: replace the option monad _+ { L} with the option state
monad S — (_x S) + {L}.

But, problem for the distributive law: couldn’t find one that
satisfies all 4 coherence conditions.

Deadend.. After several attempts, we thought of an alternative.

11/22

Stateful dataflow: second try

Let C be a category, W a comonad, and M a monad in C.

Definition (Kleisli Category)

A distributive law of W over M induces a Kleisli category Cy/ w1,
where:

» objects are objects in C, and
» morphisms in Cyy pm(X, Y) are those in C(W X, M Y), i.e.,
of the foom W X - M Y.

Composition and identity follow from the Kleisli category.

12/22

Stateful dataflow: second try

Let C be a category, W a comonad, and M a monad in C.
Let S be a set of states.

Definition (Stateful Kleisli Category)
A distributive law of W over M induces a Stateful Kleisli category
CﬁV,M’ where:

» objects are objects in C, and

» morphisms in (Cﬁ\/’M(X, Y) are those in
C(W (XxS),M (YxS)), i.e., of the form
W (XxS) — M (YxS).

Composition and identity follow from the Kleisli category.

12/22

Stateful dataflow: second try

Following Uustalu et Vene, we kept the nonempty list comonad
W = _T and the option monad M = _ + {L}.

13/22

Stateful dataflow: second try

Following Uustalu et Vene, we kept the nonempty list comonad
W = _T and the option monad M = _ + {L}.

Morphisms are of the form (A x S)™ — (B x S) + {L}.

13/22

Stateful dataflow: second try

Following Uustalu et Vene, we kept the nonempty list comonad
W = _T and the option monad M = _ + {L}.

Morphisms are of the form (A x S)™ — (B x S) + {L}.

Lift morphisms to dataflow functions, i.e., operations on streams.

13/22

Stateful dataflow: second try

Let f: (Ax S)"™ — (B x S)+{L} be a morphism in the stateful
Kleisli category.

The run operation on f, given o € A“ a stream of inputs in A, and

s an initial state, is:
run(f,o,s) € (B+ {L})”

such that
» f applies to prefixes of o with an updated state in the
non-absent case;
> f applies to prefixes of o with the same state in the absent
case.

14/22

Stateful dataflow: second try

Let f: (Ax S)"™ — (B x S)+{L} be a morphism in the stateful
Kleisli category.

The run operation on f, given o € A“ a stream of inputs in A, and
s an initial state, is:

run(f,o,s) € (B+ {L})“

such that

» f applies to prefixes of o with an updated state in the
non-absent case;
> f applies to prefixes of o with the same state in the absent
case.
But, problem if absent: some intermediate change of states have
been lost!!

14/22

Stateful dataflow: third try

We changed the option monad M = _+ {L} to the sum monad
M=_+E.

15/22

Stateful dataflow: third try

We changed the option monad M = _+ {L} to the sum monad

M=_+E.

We prove a new distributive law:
§:(AxS+E)" = (Ax ST+ E

where
> if the head is absent, return an exception;

P otherwise return the list where all the exceptions have been
filtered.

15/22

Stateful dataflow: third try

We changed the option monad M = _+ {L} to the sum monad
M=_+E.

We prove a new distributive law:
§:(AxS+E)" = (Ax ST+ E

where
> if the head is absent, return an exception;

P otherwise return the list where all the exceptions have been
filtered.

The four coherence conditions have been proved in Coq.

15/22

Stateful dataflow: third try

We fix the monad to M = _+ S.
Let f: (Ax S)"™ — (B x S) + S be a morphism in stateful Kleisli
category.

Run operation on f with ¢ € A“ a stream of inputs in A, and s an
initial state:

run(f,o,s) € (B+ {L})*
such that

> f applies to prefixes of o with an updated state in the
non-absent case and in the absent case.

The state is propagated in case of absence!

16/22

Examples on some dataflow primitives
With a fixed S, let A—s B:=(Ax S)* = (Bx S+5).

17/22

Examples on some dataflow primitives
With a fixed S, let A— B:=(Ax S)" - (BxS+S).
Stateful weak product of two dataflow functions:

<f,g> A — (Bl X 32)

with
> f:A— B
> g A— B

17/22

Examples on some dataflow primitives
With a fixed S, let A— B:=(Ax S)" - (BxS+S).
Stateful weak product of two dataflow functions:
<f,g> A — (Bl X 32)

with
> f:A— B
> g A— B

Currying of dataflow function:
scurry mf : A— (B — C)

with
> m: At x BT - (Ax B)*
» f:(AxB)— C

17/22

Stateful dataflow language (Syntax)

Expressions:
en=tt|true|false |n|e1=e | ...

e1;e|x|Ax-elere]..
e; fby ey | fix n ey e | read e | write €1 &

18/22

Stateful dataflow language (Syntax)

Expressions:

en=tt|true|false |n|e1=e | ...
e1;e|x|Ax-elere]..
e; fby ey | fix n ey e | read e | write €1 &

Example of program:

first_occurrence offset :=
AX -
write offset (1 + offset);
if isinList offset x then L.t
else
let y = read (1 + offset) in
write y x; write (1 + offset) (1 + y); x

18/22

Stateful dataflow language (Semantics)

Fix the stateto S =N — N.
Fix the distributive law our new distributive law of the non-empty
list comonad to the sum monad.

19/22

Stateful dataflow language (Semantics)

Fix the stateto S =N — N.
Fix the distributive law our new distributive law of the non-empty
list comonad to the sum monad.

Semantics for some primitives:

[ev = &2] = 1< o([er], [e2])

[fix n e e] =

leo)] ifn=0)

eval o ([e], [fix (n—1) ey €])) otherwise

where
> the equality is applied item-wise on the product ([e1], [e2]);
» the eval applies the result of the left part of the pair onto the
right part.

19/22

Back to our example

Let

» f:= (expr_semantics ((first_occurrence offset)
(1 fby (2 fby (1 fby (0 fby (1 fby 1)))))))
> o := sconst tt
» mg := (fun a =>
if (a =7 0) 1 else
if (a =7 1) 2 else
0)

Runnable example in Coq:
Compute prefix 6 (run f o mg) = [1;2; L1;0;L; 1]

20/22

Ongoing work

Program’s property: mix induction (program constructs), and
coinduction (program semantics).
ex: bisimulation of the run of nat_imp and stream of naturals.

Semantics property: show compositionality on runs.
The run of the composition of f and g is some form of
composition of the run of f and g.

21/22

Conclusion

We presented a denotational and compositional semantics for a
Stateful synchronous dataflow language.

We formalized the semantics in Coq, and provide some running
examples.

22/22

