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Motivations

Dataflow language are very popular for high level programming.
Lustre, Esterel, Signal, Circuits, ...

Hybrid language to integrate stateful computations.
Modes, automata, control, ...

Can we define a stateful dataflow language, that merges both?
Consequence for compilation, hands-on memory, ...

2 / 22



What are stateful synchronous dataflow programs?

Non-Stateful Synchronous dataflow programs

nats := 0 fby (1 + nats)

Input: tt, tt, tt, tt, tt, ...

Output: 0, 1, 2, 3, 4, ...

Stateful synchronous dataflow programs

nats := let x = (read 0) in (write 0 (1 + x)) ; x

Memory at address 0 initialized to 0.
Input: tt, tt, tt, tt, tt, ...

Output: 0, 1, 2, 3, 4, ...
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Motivating example: first occurrence

firstOccurrence

01213· · · 012 3· · ·
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Motivating example: first occurrence
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Motivating example: first occurrence
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Semantics

What semantics for such stateful dataflow programs?

Our requirements:

▶ denotational (make use of Coq for proofs)

▶ compositional (nicer, and makes proofs easier)

Prior investigations of Uustalu and Vene.
Denotational and compositional semantics for Lustre (synchronous
dataflow language): dataflow primitives are morphisms in a Kleisli
category, i.e.,

f : W A → M B

where W is a comonad and M is a monad.

5 / 22



Semantics

What semantics for such stateful dataflow programs?

Our requirements:

▶ denotational (make use of Coq for proofs)

▶ compositional (nicer, and makes proofs easier)

Prior investigations of Uustalu and Vene.
Denotational and compositional semantics for Lustre (synchronous
dataflow language): dataflow primitives are morphisms in a Kleisli
category, i.e.,

f : W A → M B

where W is a comonad and M is a monad.

5 / 22



Dataflow with comonad

Comonad for compositional context:

f : W A → B g : W B → C

?? : W A → C

Example on the non-empty list (NEList) comonad.

x 7→ 1 x 7→ sum x (x 7→ 1)†
(x 7→ sum x) ◦
(x 7→ 1)†

[0] 1
[1] 1
[0, 0] 1
[0, 1] 1
[1, 0] 1
[1, 1] 1
... ...

[0] 0
[1] 1
[0, 0] 0
[0, 1] 1
[1, 0] 1
[1, 1] 2
... ...

[0] [1]
[1] [1]
[0, 0] [1, 1]
[0, 1] [1, 1]
[1, 0] [1, 1]
[1, 1] [1, 1]
... ...

[0] 1
[1] 1
[0, 0] 2
[0, 1] 2
[1, 0] 2
[1, 1] 2
... ...
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Effect with monad

Monads for compositional effects:

f : A → M B g : B → M C

?? : A → M C

Example on the option monad N+ {⊥}:
▶ let g := x 7→ if x mod 2 = 0 then x else ⊥;

▶ let f := x 7→ if x mod 3 = 0 then x else ⊥;

▶ let g⋆ := y 7→ do x <- y; g x;

▶ then g⋆ ◦ f :=

x 7→ if (x mod 3 = 0) and (x mod 2 = 0)

then x

else ⊥
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Combine dataflow and effects

Composition:

f : W A → M B g : W B → M C

?? : W A → M C

where

▶ f † and g⋆ are reasonable extensions given the comonad W
and monad M;

▶ δ represents the distributive law of the comonad W over the
monad M, i.e.,

δ : W M ⇒ M W

with 4 coherence conditions.
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Example for synchronous dataflow.
Uustalu and Vene defined the distributive law:

δ : (N+ {⊥})+ → N+ + {⊥}

that intuitively acts as:
▶ if the head of the list is absent (i.e., ⊥), return absent;
▶ otherwise, return the list where all ⊥ have been filtered.

Let
▶ f := (x 7→ if (head x) mod 2 = 0 then x else ⊥);
▶ g := (x 7→ sum x);

f† g⋆ g⋆ ◦ δ ◦ f †
[0] [0]
[1] [⊥]
[0, 0] [0, 0]
[0, 1] [0,⊥]
[1, 0] [⊥, 0]
... ...

⊥ ⊥
[0] 0
[1] 1
[0, 0] 0
[0, 1] 1
... ...

[0] 0
[1] ⊥
[0, 0] 0
[0, 1] 0
[1, 0] ⊥
... ...
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Can we extend to stateful synchronous dataflow?

Main difference with stateless case:

▶ the option monad is no longer sufficient as their is no notion
of states;

▶ use of a state monad?
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Stateful dataflow: first try

First idea: replace the option monad + {⊥} with the option state
monad S → ( × S) + {⊥}.

But, problem for the distributive law: couldn’t find one that
satisfies all 4 coherence conditions.

Deadend.. After several attempts, we thought of an alternative.
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Stateful dataflow: second try

Let C be a category, W a comonad, and M a monad in C.

Definition (Kleisli Category)

A distributive law of W over M induces a Kleisli category CW ,M ,
where:

▶ objects are objects in C, and
▶ morphisms in CW ,M(X ,Y ) are those in C(W X ,M Y ), i.e.,

of the form W X → M Y .

Composition and identity follow from the Kleisli category.
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Let C be a category, W a comonad, and M a monad in C.
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Definition (Stateful Kleisli Category)
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Stateful dataflow: second try

Following Uustalu et Vene, we kept the nonempty list comonad
W = + and the option monad M = + {⊥}.

Morphisms are of the form (A× S)+ → (B × S) + {⊥}.

Lift morphisms to dataflow functions, i.e., operations on streams.
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Stateful dataflow: second try

Let f : (A× S)+ → (B × S) + {⊥} be a morphism in the stateful
Kleisli category.

The run operation on f , given σ ∈ Aω a stream of inputs in A, and
s an initial state, is:

run(f , σ, s) ∈ (B + {⊥})ω

such that

▶ f applies to prefixes of σ with an updated state in the
non-absent case;

▶ f applies to prefixes of σ with the same state in the absent
case.

But, problem if absent: some intermediate change of states have
been lost!!
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Stateful dataflow: third try

We changed the option monad M = + {⊥} to the sum monad
M = + E .

We prove a new distributive law:

δ : (A× S + E )+ → (A× S)+ + E

where

▶ if the head is absent, return an exception;

▶ otherwise return the list where all the exceptions have been
filtered.

The four coherence conditions have been proved in Coq.
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Stateful dataflow: third try

We fix the monad to M = + S .
Let f : (A× S)+ → (B × S) + S be a morphism in stateful Kleisli
category.

Run operation on f with σ ∈ Aω a stream of inputs in A, and s an
initial state:

run(f , σ, s) ∈ (B + {⊥})ω

such that

▶ f applies to prefixes of σ with an updated state in the
non-absent case and in the absent case.

The state is propagated in case of absence!
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Examples on some dataflow primitives

With a fixed S , let A −→ B := (A× S)+ → (B × S + S).

Stateful weak product of two dataflow functions:

⟨f , g⟩ : A −→ (B1 × B2)

with

▶ f : A −→ B1

▶ g : A −→ B2

Currying of dataflow function:

scurry m f : A −→ (B −→ C )

with

▶ m : A+ × B+ → (A× B)+

▶ f : (A× B) −→ C
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Stateful dataflow language (Syntax)

Expressions:

e ::= tt | true | false | n | e1
?
= e2 | ...

e1 ; e2 | x | λx · e | e1 e2 | ...
e1 fby e2 | fix n e0 e | read e | write e1 e2

Example of program:

first occurrence offset :=
λx ·
write offset (1+ offset);
if isInList offset x then ⊥nat

else
let y = read (1+ offset) in
write y x ; write (1+ offset) (1+ y); x
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Stateful dataflow language (Semantics)

Fix the state to S = N → N.
Fix the distributive law our new distributive law of the non-empty
list comonad to the sum monad.

Semantics for some primitives:

Je1
?
= e2K = ↑ ?

= ◦⟨Je1K, Je2K⟩

Jfix n e0 eK =

(
Je0K if n = 0

eval ◦ ⟨JeK, Jfix (n − 1) e0 eK)⟩ otherwise

)
where

▶ the equality is applied item-wise on the product ⟨Je1K, Je2K⟩;
▶ the eval applies the result of the left part of the pair onto the

right part.
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Back to our example

Let

▶ f := (expr semantics ((first occurrence offset)
(1 fby (2 fby (1 fby (0 fby (1 fby 1)))))))

▶ σ := sconst tt

▶ m0 := (fun a =>

if (a =? 0) 1 else

if (a =? 1) 2 else

0)

Runnable example in Coq:
Compute prefix 6 (run f σ m0) = [1; 2;⊥; 0;⊥;⊥]
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Ongoing work

Program’s property: mix induction (program constructs), and
coinduction (program semantics).
ex: bisimulation of the run of nat imp and stream of naturals.

Semantics property: show compositionality on runs.
The run of the composition of f and g is some form of
composition of the run of f and g.
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Conclusion

We presented a denotational and compositional semantics for a
Stateful synchronous dataflow language.

We formalized the semantics in Coq, and provide some running
examples.
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