Higher-order model checking meets implicit automata

(work in progress)

Lé Thanh Diing (Tito) Nguyén — nltdanguyentito.eu — Aix-Marseille Univ. (new!)
with Abhishek De (Birmingham), Charles Grellois (Sheffield) & Cécilia Pradic (Swansea)
Journées du GT Scalp, mardi 19 novembre 2024

1/13

Model checking (disclaimer: I don’t know anything about it)

A basic setting;:

e represent possible system behaviors for time t — +o0 as a language L C X ¢
typically, L = Z (/) for some automaton .2/

2/13

Model checking (disclaimer: I don’t know anything about it)

A basic setting;:

e represent possible system behaviors for time t — +o0 as a language L C X ¢
typically, L = Z (/) for some automaton .2/

e represent “nice” wanted behaviors as -£(¢) for some specification ¢
typically, ¢ is a formula in some temporal logic

e “no bad things happen in finite time”
e “every open is followed by a close”

2/13

Model checking (disclaimer: I don’t know anything about it)

A basic setting;:

e represent possible system behaviors for time t — +o0 as a language L C X ¢
typically, L = Z (/) for some automaton .2/

e represent “nice” wanted behaviors as (@) for some specification ¢
typically, ¢ is a formula in some temporal logic

e “no bad things happen in finite time”
e “every open is followed by a close”

The model-checking problem: “are all possible behaviors nice?”

L< Z(p)

2/13

A variant of model checking

System behavior = just one infinite tree T

Branching may be used for conditionals (if/then/else),
uninterpreted function symbols with multiple arguments, ...

3/13

A variant of model checking

System behavior = just one infinite tree T

Branching may be used for conditionals (if/then/else),
uninterpreted function symbols with multiple arguments, ...

Wanted behaviors = formula ¢ in monadic second-order (MSO) logic

MSO is a canonical choice from theoretical POV:

e more expressive than temporal logics
e corresponds to regular languages on finite words

e on infinite trees: corresponds to e.g. alternating parity automata

3/13

A variant of model checking

System behavior = just one infinite tree T

Branching may be used for conditionals (if/then/else),
uninterpreted function symbols with multiple arguments, ...

Wanted behaviors = formula ¢ in monadic second-order (MSO) logic

MSO is a canonical choice from theoretical POV:

e more expressive than temporal logics
e corresponds to regular languages on finite words

e on infinite trees: corresponds to e.g. alternating parity automata

Decision problem: T € Z(¢)?ie. TE ¢?

3/13

A variant of model checking

System behavior = just one infinite tree T

Branching may be used for conditionals (if/then/else),
uninterpreted function symbols with multiple arguments, ...

Wanted behaviors = formula ¢ in monadic second-order (MSO) logic

MSO is a canonical choice from theoretical POV:

e more expressive than temporal logics
e corresponds to regular languages on finite words

e on infinite trees: corresponds to e.g. alternating parity automata

Decision problem: T € Z(¢)?ie. TE ¢?

~» system representation = finite description of tree with decidable MSO theory
3/13

Which infinite trees have a decidable MSO theory?

e Some open problems, for instance automatic structures
e A big class of trees equivalently described by

e higher-order pushdown automata (related to Muchnik iteration)
e tree—graph transductions + graph—tree unfolding: “Caucal hierarchy” (2002)
o safe higher-order recursion schemes (HORS) [Knapkik, Niwiriski & Urzyczyn '02]

4/13

Which infinite trees have a decidable MSO theory?

e Some open problems, for instance automatic structures

e A big class of trees equivalently described by
e higher-order pushdown automata (related to Muchnik iteration)
e tree—graph transductions + graph—tree unfolding: “Caucal hierarchy” (2002)
o safe higher-order recursion schemes (HORS) [Knapkik, Niwiriski & Urzyczyn '02]

e Natural extension [Ong 2006, reproved many times|:

unsafe HORS = simply typed A-calculus with recursive definitions
~» verification of functional programs! (tested on subsets of OCaml)

4/13

Which infinite trees have a decidable MSO theory?

e Some open problems, for instance automatic structures

e A big class of trees equivalently described by
e higher-order pushdown automata (related to Muchnik iteration)
e tree—graph transductions + graph—tree unfolding: “Caucal hierarchy” (2002)
o safe higher-order recursion schemes (HORS) [Knapkik, Niwiriski & Urzyczyn '02]

e Natural extension [Ong 2006, reproved many times]|:

unsafe HORS = simply typed A-calculus with recursive definitions
~» verification of functional programs! (tested on subsets of OCaml)

(in practice, higher-order fixpoint logic seems to work better for

model-checking functional programs: cf. recent work of Kobayashi et al.)

4/13

Simply typed A-terms with recursion generating infinite trees

let rec f = Ax.ax(f (bx)) in fc

5/13

Simply typed A-terms with recursion generating infinite trees

let rec f = Ax.ax(f (bx)) in fc

\
c f®o

5/13

Simply typed A-terms with recursion generating infinite trees

let rec f = Ax.ax(f (bx)) in fc

\
bc/ Fb o)

5/13

Simply typed A-terms with recursion generating infinite trees

let rec f = Ax.ax(f (bx)) in fc

c

\]
/ \
) f b))

/a\a
bc/

bbe

5/13

Simply typed A-terms with recursion generating infinite trees

let rec f = Ax.ax(f (bx)) in fc

c

\]
/ \
) f b))

/a\a
b/

| bbe

c

5/13

Simply typed A-terms with recursion generating infinite trees

let rec f = Ax.ax(f (bx)) in fc

C/a\ll
, ///////// \\\\\\\\\\a
/ i

| JACXCICES)))

c

D —F =&

5/13

Simply typed A-terms with recursion generating infinite trees

let rec f = Ax.ax(f (bx)) in fc

C/a\ll
, ///////// \\\\\\\\\\a
/////////// \\\\\\\\\\

c

D —F =&

5/13

Simply typed A-terms with recursion generating infinite trees

a:0—>0—0,b:o—>0,c:oF letrecf=Ax.ax(f(x))infc :0
a

/ \a
-

c

c

\a
/ \

D —F =&

5/13

Simply typed A-terms with recursion generating infinite trees

a:0—>0—0,b:o—>0,c:oF letrecf=Ax.ax(f(x))infc :0
a

/ \a
-

c

c \a
/ \

Simple types: 0,7 =0 |0 —> 1

D —F =&

5/13

Simply typed A-terms with recursion generating infinite trees

a:0—>0—0,b:o—>0,c:oF letrecf=Ax.ax(f(x))infc :0

a
c/ \a
/////////— \\\\\\\\\

c

Simple types: 0,7 =0 |0 —> 1

D —F =&

Decidability of MSO logic over such trees: flagship success of denotational semantics

5/13

Simply typed A-terms with recursion generating infinite trees

a:0—>0—0,b:o—>0,c:oF letrecf=Ax.ax(f(x))infc :0

a
c/ \a
/ \

c

Simple types: 0,7 =0 |0 —> 1

D —F =&

Decidability of MSO logic over such trees: flagship success of denotational semantics
idea best illustrated by a theorem on finite words, w/o recursion: next slide - 13

Defining languages in the simply typed A-calculus

Church encodings of binary strings [Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Stry;,):

011 = Afg. Af1. Ax. fo (f1 (f1 %) : Strgy[tl=(r > 1) > (> 1) DT> 71

6/13

Defining languages in the simply typed A-calculus

Church encodings of binary strings [Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Stry;,):

011 = Afg. Af1. Ax. fo (f1 (f1 %) : Strgy[tl=(r > 1) > (> 1) DT> 71

Simply typed A-terms ¢ : Strig ;)[7] — Bool define languages L C {60, 1}*

6/13

Defining languages in the simply typed A-calculus

Church encodings of binary strings [Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Stry;,):

011 = Afg. Af1. Ax. fo (f1 (f1 %) : Strgy[tl=(r > 1) > (> 1) DT> 71

Simply typed A-terms ¢ : Strig ;)[7] — Bool define languages L C {60, 1}*

Example: t = As. s id not true : Str(g ;)[Bool] — Bool (even number of 1s)

t011 —p 011 id not true —p id (not (not true)) —p true

6/13

Defining languages in the simply typed A-calculus

Church encodings of binary strings [Bohm & Berarducci 1985]

~ fold_right on a list of characters (generalizable to any alphabet; Nat = Stry;,):

011 = Afg. Af1. Ax. fo (f1 (f1 %) : Strgy[tl=(r > 1) > (> 1) DT> 71

Simply typed A-terms ¢ : Strig ;)[7] — Bool define languages L C {60, 1}*

Example: t = As. s id not true : Str(g ;)[Bool] — Bool (even number of 1s)

t011 —p 011 id not true —p id (not (not true)) —p true

Theorem (Hillebrand & Kanellakis 1996)

All regular (i.e. MSO-definable) languages, and only those, can be defined this way.

6/13

Proof of STLC-definable = regular, by semantic evaluation

Theorem (Hillebrand & Kanellakis, LICS’96)

For any type A and any simply typed A-term t : Strg[t] — Bool,
the language 2 (t) = {w € " | tw —j true} is regular.

Part 1 of proof.

Fix a type 7. Any denotational semantics [-] quotients words:
we L w w: Str[t] w» [[E]]SUZ[T] € [Stry[7]]
[w] stre[c] determines behavior of w w.r.t. all Stry[7] — Bool terms:

we Z(t) & tw—ptrue & [tw] = [t]([w]) = [true]

assuming [true]#[false]

Goal: to decide -Z(t), compute w — [w] in some denotational model. 7/13

Proof of STLC-definable = regular, by semantic evaluation

Theorem (Hillebrand & Kanellakis, LICS’96)

For any type A and any simply typed A-term t : Strg[t] — Bool,
the language 2 (t) = {w € " | tw —j true} is regular.

Part 2 of proof.

We use [-] : STLC — FinSet to build a DFA with states Q = [Strg[7]],
acceptation as [t](-) = [true].

-

we () & [[t]]([[m]swg[r]) = [true] & w accepted. O

7/13

Proof of STLC-definable = regular, by semantic evaluation

Theorem (Hillebrand & Kanellakis, LICS’96)

For any type A and any simply typed A-term t : Strg[t] — Bool,
the language 2 (t) = {w € " | tw —j true} is regular.

Part 2 of proof.

We use [-] : STLC — FinSet to build a DFA with states Q = [Strg[7]],
acceptation as [t](-) = [true]. (|Q] < 0, e.g. 22* when 7 = Bool & | [o] | = 2 = |Z)
-
we () & [[t]]([[m]swg[r]) = [true] & w accepted. O

7/13

Takeaways from the Hillebrand-Kanellakis theorem

From the theorem statement

analogous to implicit complexity (e.g. “Light Linear Logic captures P”)

~» implicit automata research programme (N. & Pradic), for instance:
star-free languages in a non-commutative linear! A-calculus (ICALP’20)

! Affine in the paper, strictly linear in my PhD dissertation.

8/13

Takeaways from the Hillebrand-Kanellakis theorem

From the theorem statement

analogous to implicit complexity (e.g. “Light Linear Logic captures P”)
~» implicit automata research programme (N. & Pradic), for instance:
star-free languages in a non-commutative linear! A-calculus (ICALP’20)

From the proof: connection with finite automata via finitary semantics

~» for MSO on oo trees: alternating parity automata < bespoke semantics
— decidability proofs for trees generated by STAC+recursion
[Kobayashi & Ong, Salvati & Walukiewicz, Grellois & Mellies, ...]

! Affine in the paper, strictly linear in my PhD dissertation.

8/13

Takeaways from the Hillebrand-Kanellakis theorem

From the theorem statement

analogous to implicit complexity (e.g. “Light Linear Logic captures P”)
~» implicit automata research programme (N. & Pradic), for instance:
star-free languages in a non-commutative linear! A-calculus (ICALP’20)

From the proof: connection with finite automata via finitary semantics

~» for MSO on oo trees: alternating parity automata < bespoke semantics
— decidability proofs for trees generated by STAC+recursion
[Kobayashi & Ong, Salvati & Walukiewicz, Grellois & Mellies, ...]

Combining the two: implicit automata over infinite words /trees

! Affine in the paper, strictly linear in my PhD dissertation.

8/13

Our main goal

If f: ¢ — T'“ is computed by some infinitary simply typed A-term t : Strg[t] — Stry,
then for every w-reqular L C T, the preimage f~'(L) is also w-regular.

Should also hold on infinite trees...

9/13

If f: ¢ — T'“ is computed by some infinitary simply typed A-term t : Strg[t] — Stry,
then for every w-reqular L C T, the preimage f~'(L) is also w-regular.

Should also hold on infinite trees...

Corollary (assuming the conjecture is true)
L is w-reqular < L = f~Y(parity language) for such an f.

— because deterministic parity automata recognize all w-regular languages

(fails for infinite trees!)

9/13

If f: ¢ — T'“ is computed by some infinitary simply typed A-term t : Strg[t] — Stry,
then for every w-reqular L C T, the preimage f~'(L) is also w-regular.

Should also hold on infinite trees...

Corollary (assuming the conjecture is true)
L is w-reqular < L = f~Y(parity language) for such an f.

— because deterministic parity automata recognize all w-regular languages
(fails for infinite trees!)

Proof method for conjecture?

9/13

If f: ¢ — T'“ is computed by some infinitary simply typed A-term t : Strg[t] — Stry,
then for every w-reqular L C T, the preimage f~'(L) is also w-regular.

Should also hold on infinite trees...

Corollary (assuming the conjecture is true)
L is w-reqular < L = f~Y(parity language) for such an f.

— because deterministic parity automata recognize all w-regular languages
(fails for infinite trees!)
Proof method for conjecture?

Finitary semantics of infinitary STAC with parity conditions ~» colors

9/13

A colored denotational semantics

Cartesian closed categories (CCCs): semantics of simply typed A-calculus

Coloring modality for k colors in a CCC & [Mellies 2017; Walukiewicz 2019]

OA=AX:-- XA+ comultiplication A — [OOA taking max of indices
k+1 times

O is a linear exponential comonad = %1 is also a CCC

o (Scott model of linear logic); with clever interpretation of recursion
= Grellois and Melliés’s (2015) colored semantics for deciding MSO

e interpretation in Scott = int. in Scott o (“coloring translation” i.e. int. in Ar)
over STAC (w/o recursion), where A = syntactic (or initial) CCC

10/13

The coloring translation, purely syntactically

Ontypes:0=oandd 5 7=0— .. >0 > T.

el tmes
Tx:trFx: 1t~ x0:7 . x® 7 x0:
[x:okFt:T f,x(o):(?,... x0 G-t T
rl—/\x.ti(f—>TWf‘|—/\’£t:Ax(0) A0 S
' . fFf:aTT TH107:0 P 155
I'+ttio—>1 T'tu:o :
Trfuce 0 Triu=toi) - (5 i):%

where 1. 1 = u[x?) := x(M€D) | x € dom(T), i =0, ..., k].

11/13

Going infinitary

Important remark

The syntactic presentation of the coloring translation extends effortlessly to

infinitary simply typed A-terms, by reading the rules coinductively.

colored Scott semantics only exists for STAC+recursion; we would like to define:

infinitary colored Scott := infinitary Scott o coloring translation

12/13

Going infinitary

Important remark

The syntactic presentation of the coloring translation extends effortlessly to

infinitary simply typed A-terms, by reading the rules coinductively.

colored Scott semantics only exists for STAC+recursion; we would like to define:
infinitary colored Scott := infinitary Scott o coloring translation

but this requires encoding the parity acceptance conditions
~» a subset of co branches in the output of the translation are “accepting”

12/13

Going infinitary
Important remark
The syntactic presentation of the coloring translation extends effortlessly to

infinitary simply typed A-terms, by reading the rules coinductively.

colored Scott semantics only exists for STAC+recursion; we would like to define:

infinitary colored Scott := infinitary Scott o coloring translation

but this requires encoding the parity acceptance conditions
~» a subset of co branches in the output of the translation are “accepting”

— a boundary in the sense of [Mellies 2017]: introduces and studies a
well-behaved Scott semantics for infinitary STAC with boundaries

12/13

Going infinitary

Important remark

The syntactic presentation of the coloring translation extends effortlessly to
infinitary simply typed A-terms, by reading the rules coinductively.

colored Scott semantics only exists for STAC+recursion; we would like to define:
infinitary colored Scott := infinitary Scott o coloring translation

but this requires encoding the parity acceptance conditions
~» a subset of co branches in the output of the translation are “accepting”
— a boundary in the sense of [Mellies 2017]: introduces and studies a
well-behaved Scott semantics for infinitary STAC with boundaries

Conjecture (needed to get invariance for infinitary colored Scott)

The infinitary colored translation with boundary is compatible with —g’.

12/13

Conclusion

The infinitary colored translation with boundary is compatible with —g’.

e would give us a well-behaved colored Scott semantics of infinitary STAC
e as a consequence we could prove our “implicit w-automata” conjecture
e for more details (e.g. intersection types): cf. our ITRS24 abstract

13/13

Conclusion

Conjecture

The infinitary colored translation with boundary is compatible with —g’.

e would give us a well-behaved colored Scott semantics of infinitary STAC
e as a consequence we could prove our “implicit w-automata” conjecture
e for more details (e.g. intersection types): cf. our ITRS24 abstract

Some points to remember

e Which infinite structures have decidable MSO theory? (for verification)
— simply typed A-calculus + recursion provides a large class of trees
(higher-order model checking — also reprovable from above conjecture!)
e regular languages in STAC [Hillebrand & Kanellakis 1996] ~» implicit automata
+ its proof: evaluation in a finitary semantics

13/13

Conclusion

Conjecture

The infinitary colored translation with boundary is compatible with —g’.

e would give us a well-behaved colored Scott semantics of infinitary STAC
e as a consequence we could prove our “implicit w-automata” conjecture
e for more details (e.g. intersection types): cf. our ITRS24 abstract

Some points to remember

e Which infinite structures have decidable MSO theory? (for verification)
— simply typed A-calculus + recursion provides a large class of trees
(higher-order model checking — also reprovable from above conjecture!)
e regular languages in STAC [Hillebrand & Kanellakis 1996] ~» implicit automata
+ its proof: evaluation in a finitary semantics

13/13

