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Model checking (disclaimer: I don’t know anything about it)

A basic setting:

• represent possible system behaviors for time 𝑡 → +∞ as a language 𝐿 ⊆ Σ𝜔

typically, 𝐿 = ℒ (𝒜 ) for some automaton 𝒜

• represent “nice” wanted behaviors as ℒ(𝜑) for some specification 𝜑
typically, 𝜑 is a formula in some temporal logic

• “no bad things happen in finite time”
• “every open is followed by a close”
• …

The model-checking problem: “are all possible behaviors nice?”

𝐿
?
⊆ ℒ (𝜑)
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A variant of model checking

System behavior = just one infinite tree 𝑇
Branching may be used for conditionals (if/then/else),
uninterpreted function symbols with multiple arguments, …

Wanted behaviors = formula 𝜑 in monadic second-order (MSO) logic

MSO is a canonical choice from theoretical POV:

• more expressive than temporal logics
• corresponds to regular languages on finite words
• on infinite trees: corresponds to e.g. alternating parity automata

Decision problem: 𝑇 ∈ ℒ (𝜑) ? i.e. 𝑇 ⊧ 𝜑 ?

⇝ system representation = finite description of tree with decidable MSO theory
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Which infinite trees have a decidable MSO theory?

• Some open problems, for instance automatic structures
• A big class of trees equivalently described by

• higher-order pushdown automata (related to Muchnik iteration)
• tree→graph transductions + graph→tree unfolding: “Caucal hierarchy” (2002)
• safe higher-order recursion schemes (HORS) [Knapkik, Niwiński & Urzyczyn ’02]

• Natural extension [Ong 2006, reproved many times]:
unsafe HORS = simply typed 𝜆-calculus with recursive definitions

⇝ verification of functional programs! (tested on subsets of OCaml)

(in practice, higher-order fixpoint logic seems to work better for
model-checking functional programs: cf. recent work of Kobayashi et al.)
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Simply typed 𝜆-terms with recursion generating infinite trees

𝑎 ∶ 𝑜 → 𝑜 → 𝑜, 𝑏 ∶ 𝑜 → 𝑜, 𝑐 ∶ 𝑜 ⊢

let rec 𝑓 = 𝜆𝑥. 𝑎 𝑥 (𝑓 (𝑏 𝑥)) in 𝑓 𝑐

∶ 𝑜

𝑓 𝑐

Decidability of MSO logic
over such trees: flagship success of denotational semantics

idea best illustrated by a theorem on finite words, w/o recursion: next slide
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Defining languages in the simply typed 𝜆-calculus

Church encodings of binary strings [Böhm & Berarducci 1985]
≃ fold_right on a list of characters (generalizable to any alphabet; Nat = Str{1}):

011 = 𝜆𝑓0. 𝜆𝑓1. 𝜆𝑥. 𝑓0 (𝑓1 (𝑓1 𝑥)) ∶ Str{0,1}[𝜏] = (𝜏 → 𝜏) → (𝜏 → 𝜏) → 𝜏 → 𝜏

Simply typed 𝜆-terms 𝑡 ∶ Str{0,1}[𝜏] → Bool define languages 𝐿 ⊆ {0, 1}∗

Example: 𝑡 = 𝜆𝑠. 𝑠 id not true ∶ Str{0,1}[Bool] → Bool (even number of 1s)

𝑡 011 ⟶𝛽 011 id not true ⟶𝛽 id (not (not true)) ⟶𝛽 true

Theorem (Hillebrand & Kanellakis 1996)
All regular (i.e. MSO-definable) languages, and only those, can be defined this way.
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Proof of STLC-definable ⟹ regular, by semantic evaluation

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type 𝐴 and any simply typed 𝜆-term 𝑡 ∶ StrΣ[𝜏] → Bool,
the languageℒ(𝑡) = {𝑤 ∈ Σ ∗ ∣ 𝑡 𝑤 →∗

𝛽 true} is regular.

Part 1 of proof.
Fix a type 𝜏. Any denotational semantics J−K quotients words:

𝑤 ∈ Σ ∗ ⇝ 𝑤 ∶ Str[𝜏] ⇝ J𝑤KStrΣ[𝜏] ∈ JStrΣ[𝜏]K
J𝑤KStrΣ[𝜏] determines behavior of 𝑤 w.r.t. all StrΣ[𝜏] → Bool terms:

𝑤 ∈ ℒ (𝑡) ⟺ 𝑡𝑤 →∗
𝛽 true ⟺􏿅
assuming JtrueK≠JfalseK

J𝑡 𝑤K = J𝑡K(J𝑤K) = JtrueK
Goal: to decide ℒ(𝑡), compute 𝑤 ↦ J𝑤K in some denotational model. 7/13
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Part 2 of proof.
We use J−K ∶ STLC → FinSet to build a DFA with states 𝑄 = JStrΣ[𝜏]K,
acceptation as J𝑡K(−) = JtrueK.

(|𝑄| < ∞, e.g. 22134 when 𝜏 = Bool & | J𝑜K | = 2 = |Σ|)
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ab

z r
abb

z
...a b b

𝑤 ∈ ℒ (𝑡) ⟺ J𝑡K􏿵J𝑤KStrΣ[𝜏]􏿸 = JtrueK ⟺ 𝑤 accepted.
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Takeaways from the Hillebrand–Kanellakis theorem

From the theorem statement
analogous to implicit complexity (e.g. “Light Linear Logic captures P”)
⇝ implicit automata research programme (N. & Pradic), for instance:

star-free languages in a non-commutative linear1 𝜆-calculus (ICALP’20)

From the proof: connection with finite automata via finitary semantics
⇝ for MSO on ∞ trees: alternating parity automata ↔ bespoke semantics

⟶ decidability proofs for trees generated by ST𝜆C+recursion
[Kobayashi & Ong, Salvati & Walukiewicz, Grellois & Melliès, …]

Combining the two: implicit automata over infinite words/trees

1Affine in the paper, strictly linear in my PhD dissertation.
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Our main goal

Conjecture
If 𝑓 ∶ Σ𝜔 → Γ𝜔 is computed by some infinitary simply typed 𝜆-term 𝑡 ∶ StrΣ[𝜏] → StrΓ,
then for every 𝜔-regular 𝐿 ⊆ Γ𝜔 , the preimage 𝑓−1(𝐿) is also 𝜔-regular.

Should also hold on infinite trees…

Corollary (assuming the conjecture is true)
𝐿 is 𝜔-regular ⟺ 𝐿 = 𝑓−1(parity language) for such an 𝑓.

→ because deterministic parity automata recognize all 𝜔-regular languages
(fails for infinite trees!)

Proof method for conjecture?
Finitary semantics of infinitary ST𝜆C with parity conditions ⇝ colors
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A colored denotational semantics

Cartesian closed categories (CCCs): semantics of simply typed 𝜆-calculus

Coloring modality for 𝑘 colors in a CCC 𝒞 [Melliès 2017; Walukiewicz 2019]
□𝐴 = 𝐴 ×⋯×𝐴􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍

𝑘+1 times

+ comultiplication □𝐴 → □□𝐴 taking max of indices

□ is a linear exponential comonad ⟹ 𝒞□ is also a CCC

• (Scott model of linear logic)□ with clever interpretation of recursion
= Grellois and Melliès’s (2015) colored semantics for deciding MSO

• interpretation in Scott□ = int. in Scott ∘ (“coloring translation” i.e. int. in Λ□)
over ST𝜆C (w/o recursion), where Λ = syntactic (or initial) CCC
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The coloring translation, purely syntactically

On types: 𝑜̂ = 𝑜 and 􏾩𝜎 → 𝜏 = 􏾦𝜎 → … → 􏾦𝜎􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
𝑘+1 times

→ 􏾦𝜏.

Γ, 𝑥 ∶ 𝜏 ⊢ 𝑥 ∶ 𝜏 ⇝ 􏾦Γ, 𝑥(0) ∶ 􏾦𝜏, … , 𝑥(𝑘) ∶ 􏾦𝜏 ⊢ 𝑥(0) ∶ 􏾦𝜏
Γ, 𝑥 ∶ 𝜎 ⊢ 𝑡 ∶ 𝜏

Γ ⊢ 𝜆𝑥. 𝑡 ∶ 𝜎 → 𝜏 ⇝
􏾦Γ, 𝑥(0) ∶ 􏾦𝜎, … , 𝑥(𝑘) ∶ 􏾦𝜎 ⊢ ̂𝑡 ∶ 􏾦𝜏

􏾦Γ ⊢ 􏾨𝜆𝑥. 𝑡 = 𝜆𝑥(0). … 𝜆𝑥(𝑘). ̂𝑡 ∶ 􏾩𝜎 → 𝜏

Γ ⊢ 𝑡 ∶ 𝜎 → 𝜏 Γ ⊢ 𝑢 ∶ 𝜎
Γ ⊢ 𝑡 𝑢 ∶ 𝜏 ⇝

􏾦Γ ⊢ ̂𝑡 ∶ 􏾩𝜎 → 𝜏 􏾦Γ ⊢↑0 􏾦𝑢 ∶ 􏾦𝜎
⋮ … 􏾦Γ ⊢↑𝑘 􏾦𝑢 ∶ 􏾦𝜎

􏾦Γ ⊢ 􏾧𝑡 𝑢 = ̂𝑡 (↑0 􏾦𝑢) … (↑𝑘 􏾦𝑢) ∶ 􏾦𝜏

where ↑𝑐 􏾦𝑢 = 􏾦𝑢[𝑥(𝑖) ∶= 𝑥(max(𝑐,𝑖)) ∣ 𝑥 ∈ dom(Γ), 𝑖 = 0,… , 𝑘].
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Going infinitary

Important remark
The syntactic presentation of the coloring translation extends effortlessly to
infinitary simply typed 𝜆-terms, by reading the rules coinductively.

colored Scott semantics only exists for ST𝜆C+recursion; we would like to define:

infinitary colored Scott ∶= infinitary Scott ∘ coloring translation

but this requires encoding the parity acceptance conditions
⇝ a subset of ∞ branches in the output of the translation are “accepting”

→ a boundary in the sense of [Melliès 2017]: introduces and studies a
well-behaved Scott semantics for infinitary ST𝜆C with boundaries

Conjecture (needed to get invariance for infinitary colored Scott)
The infinitary colored translation with boundary is compatible with→∞

𝛽 .
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Conclusion

Thanks for your attention!

Conjecture
The infinitary colored translation with boundary is compatible with→∞

𝛽 .

• would give us a well-behaved colored Scott semantics of infinitary ST𝜆C
• as a consequence we could prove our “implicit 𝜔-automata” conjecture
• for more details (e.g. intersection types): cf. our ITRS’24 abstract

Some points to remember

• Which infinite structures have decidable MSO theory? (for verification)
⟶ simply typed 𝜆-calculus + recursion provides a large class of trees

(higher-order model checking — also reprovable from above conjecture!)
• regular languages in ST𝜆C [Hillebrand & Kanellakis 1996] ⇝ implicit automata

+ its proof: evaluation in a finitary semantics
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