
1/24

Session Types for the Concurrent Composition
of Interactive Differential Privacy

Victor Sannier1 Patrick Baillot1 Marco Gaboardi2

1CRIStAL Laboratory, Lille, France
2Boston University, MA, USA

2024 Days of the SCALP Working Group

2/24

1. Differential Privacy

3/24

Differentially Private Mechanisms

A private algorithm is one that does not allow anyone to deduce the presence or
absence of any specific individual within the database based on its output.

Definition (Dwork et al. 2006, Definition 1)
A probabilistic algorithm M is (ϵ, δ)-differentially private if, for any pair of adjacent
databases D and D′, the following condition holds:

The parameters (ϵ, δ) = (0, 1) provide no differential privacy guarantee.

A common strategy to ensure differential privacy is to add random noise to the output
of an algorithm.

3/24

Differentially Private Mechanisms

A private algorithm is one that does not allow anyone to deduce the presence or
absence of any specific individual within the database based on its output.

Definition (Dwork et al. 2006, Definition 1)
A probabilistic algorithm M is (ϵ, δ)-differentially private if, for any pair of adjacent
databases D and D′, the following condition holds:

M(D) ≈
(ϵ,δ)

M(D′)

The parameters (ϵ, δ) = (0, 1) provide no differential privacy guarantee.

A common strategy to ensure differential privacy is to add random noise to the output
of an algorithm.

3/24

Differentially Private Mechanisms

A private algorithm is one that does not allow anyone to deduce the presence or
absence of any specific individual within the database based on its output.

Definition (Dwork et al. 2006, Definition 1)
A probabilistic algorithm M is (ϵ, δ)-differentially private if, for any pair of adjacent
databases D and D′, the following condition holds:

∀X . Pr[M(D) ∈ X] ≤ eϵ Pr[M(D′) ∈ X] + δ

The parameters (ϵ, δ) = (0, 1) provide no differential privacy guarantee.

A common strategy to ensure differential privacy is to add random noise to the output
of an algorithm.

3/24

Differentially Private Mechanisms

A private algorithm is one that does not allow anyone to deduce the presence or
absence of any specific individual within the database based on its output.

Definition (Dwork et al. 2006, Definition 1)
A probabilistic algorithm M is (ϵ, δ)-differentially private if, for any pair of adjacent
databases D and D′, the following condition holds:

∀X . Pr[M(D) ∈ X] ≤ eϵ Pr[M(D′) ∈ X] + δ

The parameters (ϵ, δ) = (0, 1) provide no differential privacy guarantee.

A common strategy to ensure differential privacy is to add random noise to the output
of an algorithm.

3/24

Differentially Private Mechanisms

A private algorithm is one that does not allow anyone to deduce the presence or
absence of any specific individual within the database based on its output.

Definition (Dwork et al. 2006, Definition 1)
A probabilistic algorithm M is (ϵ, δ)-differentially private if, for any pair of adjacent
databases D and D′, the following condition holds:

∀X . Pr[M(D) ∈ X] ≤ eϵ Pr[M(D′) ∈ X] + δ

The parameters (ϵ, δ) = (0, 1) provide no differential privacy guarantee.

A common strategy to ensure differential privacy is to add random noise to the output
of an algorithm.

4/24

Composition of Differential Privacy

Differential privacy is a compositional property.

Theorem (McSherry 2009, Theorem 3)
Let Mi be mechanisms, each providing (ϵi , 0)-differential privacy. The sequence of
the Mi provides

(∑
i ϵi , 0

)
-differential privacy.

Many other results can be found in the literature for δ ̸= 0, such as the advanced
composition theorem.

As a result, one can ensure that an algorithm is differentially private by individually
verifying its components.

4/24

Composition of Differential Privacy

Differential privacy is a compositional property.

Theorem (McSherry 2009, Theorem 3)
Let Mi be mechanisms, each providing (ϵi , 0)-differential privacy. The sequence of
the Mi provides

(∑
i ϵi , 0

)
-differential privacy.

Many other results can be found in the literature for δ ̸= 0, such as the advanced
composition theorem.

As a result, one can ensure that an algorithm is differentially private by individually
verifying its components.

5/24

The Fuzz Calculus

Reed and Pierce have introduced a calculus inspired by linear logic Girard (1987) to
track the sensitivity and, consequently, the privacy of programs written in a functional
programming language.

Theorem (Reed and Pierce 2010, Corollary 4.3)
Closed programs e such that ⊢ e : A ⊸ ⃝ϵB are an ϵ-differentially private function
from A to B.

(In the equation above, ⃝ϵ is a probability monad equipped with an appropriate
distance.)

5/24

The Fuzz Calculus

Reed and Pierce have introduced a calculus inspired by linear logic Girard (1987) to
track the sensitivity and, consequently, the privacy of programs written in a functional
programming language.

Theorem (Reed and Pierce 2010, Corollary 4.3)
Closed programs e such that ⊢ e : A ⊸ ⃝ϵB are an ϵ-differentially private function
from A to B.

(In the equation above, ⃝ϵ is a probability monad equipped with an appropriate
distance.)

6/24

Composition Theorems as Typing Rules

The previous composition theorem can be obtained in Fuzz through the application of
typing rules for sensitivity to the probability monad (Reed and Pierce 2010, Section 5).

For example, below is the rule for introducing the tensor product:

[x : A]s1 ⊢ b : B [x : A]s2 ⊢ c : C
[T-⊗I]

[x : A]s1+s2 ⊢ (b, c) : B ⊗ C

7/24

2. Interactive Differential Privacy

8/24

Interactive Mechanisms

What if we enable communication through multiple mechanisms, allowing, for
example, the answer from one mechanism to be used to query another?

What would serve as the output of the mechanisms?

8/24

Interactive Mechanisms

What if we enable communication through multiple mechanisms, allowing, for
example, the answer from one mechanism to be used to query another?

What would serve as the output of the mechanisms?

9/24

Interactive Differential Privacy

Definition (Vadhan and Wang 2021, Definition 1.6)
The view View(A ∥ M) of a party A interacting with M consists of

all the messages it receives during the interaction,
its private input, and
the random numbers it generates.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

9/24

Interactive Differential Privacy

Definition (Vadhan and Wang 2021, Definition 1.6)
The view View(A ∥ M) of a party A interacting with M consists of

all the messages it receives during the interaction,
its private input, and
the random numbers it generates.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′,

every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

9/24

Interactive Differential Privacy

Definition (Vadhan and Wang 2021, Definition 1.6)
The view View(A ∥ M) of a party A interacting with M consists of

all the messages it receives during the interaction,
its private input, and
the random numbers it generates.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A,

and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

9/24

Interactive Differential Privacy

Definition (Vadhan and Wang 2021, Definition 1.6)
The view View(A ∥ M) of a party A interacting with M consists of

all the messages it receives during the interaction,
its private input, and
the random numbers it generates.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

9/24

Interactive Differential Privacy

Definition (Vadhan and Wang 2021, Definition 1.6)
The view View(A ∥ M) of a party A interacting with M consists of

all the messages it receives during the interaction,
its private input, and
the random numbers it generates.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

10/24

Concurrent Composition of Interactive Differential Privacy

Theorem (Vadhan and Wang 2021, Theorem 1.8)
If interactive mechanisms (M0, . . . , M1) are each (ϵ, δ)-differentially private, then their
concurrent composition ConComp(M0, . . . , M1) is

(
kϵ, ekϵ−1

eϵ−1 δ
)
-DP.

In the same way as for (centralised) differential privacy, we can prove that an
interactive process is differentially private by proving that each of its components is.

centralised DP : Fuzz :: interactive DP : ?

10/24

Concurrent Composition of Interactive Differential Privacy

Theorem (Vadhan and Wang 2021, Theorem 1.8)
If interactive mechanisms (M0, . . . , M1) are each (ϵ, δ)-differentially private, then their
concurrent composition ConComp(M0, . . . , M1) is

(
kϵ, ekϵ−1

eϵ−1 δ
)
-DP.

In the same way as for (centralised) differential privacy, we can prove that an
interactive process is differentially private by proving that each of its components is.

centralised DP : Fuzz :: interactive DP : ?

10/24

Concurrent Composition of Interactive Differential Privacy

Theorem (Vadhan and Wang 2021, Theorem 1.8)
If interactive mechanisms (M0, . . . , M1) are each (ϵ, δ)-differentially private, then their
concurrent composition ConComp(M0, . . . , M1) is

(
kϵ, ekϵ−1

eϵ−1 δ
)
-DP.

In the same way as for (centralised) differential privacy, we can prove that an
interactive process is differentially private by proving that each of its components is.

centralised DP : Fuzz :: interactive DP : ?

11/24

3. Process Calculi and Session Types

12/24

The π-calculus

Just as λ-calculus serves as a model for non-interactive computation, we need a model
for interactive computation.

The π-calculus was introduced by Milner, Parrow, and Walker (1992)
0 is the null process,
if e then P else Q behaves as P if e evaluates to ⊤, and as Q otherwise,
k![e] . P and k?(e) . P respectively sends and waits for an expression e over a
channel k, and then continues as process P,
P ∥ Q is the parallel composition of P and Q,
. . .

Example(
k![1] . k?[x]

)
∥

(
k?[x] . k![x + x]

)

12/24

The π-calculus

Just as λ-calculus serves as a model for non-interactive computation, we need a model
for interactive computation.

The π-calculus was introduced by Milner, Parrow, and Walker (1992)
0 is the null process,

if e then P else Q behaves as P if e evaluates to ⊤, and as Q otherwise,
k![e] . P and k?(e) . P respectively sends and waits for an expression e over a
channel k, and then continues as process P,
P ∥ Q is the parallel composition of P and Q,
. . .

Example(
k![1] . k?[x]

)
∥

(
k?[x] . k![x + x]

)

12/24

The π-calculus

Just as λ-calculus serves as a model for non-interactive computation, we need a model
for interactive computation.

The π-calculus was introduced by Milner, Parrow, and Walker (1992)
0 is the null process,
if e then P else Q behaves as P if e evaluates to ⊤, and as Q otherwise,

k![e] . P and k?(e) . P respectively sends and waits for an expression e over a
channel k, and then continues as process P,
P ∥ Q is the parallel composition of P and Q,
. . .

Example(
k![1] . k?[x]

)
∥

(
k?[x] . k![x + x]

)

12/24

The π-calculus

Just as λ-calculus serves as a model for non-interactive computation, we need a model
for interactive computation.

The π-calculus was introduced by Milner, Parrow, and Walker (1992)
0 is the null process,
if e then P else Q behaves as P if e evaluates to ⊤, and as Q otherwise,
k![e] . P and k?(e) . P respectively sends and waits for an expression e over a
channel k, and then continues as process P,

P ∥ Q is the parallel composition of P and Q,
. . .

Example(
k![1] . k?[x]

)
∥

(
k?[x] . k![x + x]

)

12/24

The π-calculus

Just as λ-calculus serves as a model for non-interactive computation, we need a model
for interactive computation.

The π-calculus was introduced by Milner, Parrow, and Walker (1992)
0 is the null process,
if e then P else Q behaves as P if e evaluates to ⊤, and as Q otherwise,
k![e] . P and k?(e) . P respectively sends and waits for an expression e over a
channel k, and then continues as process P,
P ∥ Q is the parallel composition of P and Q,
. . .

Example(
k![1] . k?[x]

)
∥

(
k?[x] . k![x + x]

)

12/24

The π-calculus

Just as λ-calculus serves as a model for non-interactive computation, we need a model
for interactive computation.

The π-calculus was introduced by Milner, Parrow, and Walker (1992)
0 is the null process,
if e then P else Q behaves as P if e evaluates to ⊤, and as Q otherwise,
k![e] . P and k?(e) . P respectively sends and waits for an expression e over a
channel k, and then continues as process P,
P ∥ Q is the parallel composition of P and Q,
. . .

Example(
k![1] . k?[x]

)
∥

(
k?[x] . k![x + x]

)

13/24

Session Types

Sessions types were originally introduced by Takeuchi, Honda, and Kubo (1994)
and further developed by Honda, Vasconcelos, and Kubo (1998).

A session is defined as a sequence of reciprocal interactions between two parties.
The typing judgements have the form Γ ⊢ P ▷ ∆.

Example
The type (α, ᾱ), where α = ?Int . !Bool . end, can be given to the session between a
process that sends a number and a process that determines if the number is even.

Theorem
Typing is preserved by reduction.
A typable program never reduces into an error.

13/24

Session Types

Sessions types were originally introduced by Takeuchi, Honda, and Kubo (1994)
and further developed by Honda, Vasconcelos, and Kubo (1998).
A session is defined as a sequence of reciprocal interactions between two parties.

The typing judgements have the form Γ ⊢ P ▷ ∆.

Example
The type (α, ᾱ), where α = ?Int . !Bool . end, can be given to the session between a
process that sends a number and a process that determines if the number is even.

Theorem
Typing is preserved by reduction.
A typable program never reduces into an error.

13/24

Session Types

Sessions types were originally introduced by Takeuchi, Honda, and Kubo (1994)
and further developed by Honda, Vasconcelos, and Kubo (1998).
A session is defined as a sequence of reciprocal interactions between two parties.
The typing judgements have the form Γ ⊢ P ▷ ∆.

Example
The type (α, ᾱ), where α = ?Int . !Bool . end, can be given to the session between a
process that sends a number and a process that determines if the number is even.

Theorem
Typing is preserved by reduction.
A typable program never reduces into an error.

13/24

Session Types

Sessions types were originally introduced by Takeuchi, Honda, and Kubo (1994)
and further developed by Honda, Vasconcelos, and Kubo (1998).
A session is defined as a sequence of reciprocal interactions between two parties.
The typing judgements have the form Γ ⊢ P ▷ ∆.

Example
The type (α, ᾱ), where α = ?Int . !Bool . end, can be given to the session between a
process that sends a number and a process that determines if the number is even.

Theorem
Typing is preserved by reduction.
A typable program never reduces into an error.

13/24

Session Types

Sessions types were originally introduced by Takeuchi, Honda, and Kubo (1994)
and further developed by Honda, Vasconcelos, and Kubo (1998).
A session is defined as a sequence of reciprocal interactions between two parties.
The typing judgements have the form Γ ⊢ P ▷ ∆.

Example
The type (α, ᾱ), where α = ?Int . !Bool . end, can be given to the session between a
process that sends a number and a process that determines if the number is even.

Theorem
Typing is preserved by reduction.
A typable program never reduces into an error.

14/24

4. Session Types for Interactive Differential Privacy

15/24

New Constructs for the π-calculus

We introduce two new constructs to the standard π-calculus:
Lapb(x) · P to sample a random number from the (discrete) Laplace distribution
with parameter b and continue according to P,

∗nP for the replication of the process P n times
(this serves as a substitute for recursive processes).

15/24

New Constructs for the π-calculus

We introduce two new constructs to the standard π-calculus:
Lapb(x) · P to sample a random number from the (discrete) Laplace distribution
with parameter b and continue according to P,
∗nP for the replication of the process P n times
(this serves as a substitute for recursive processes).

16/24

Example of a Concurrent Composition

Let M1 and M2 be two differentially private
mechanisms.

Mi = ki?(f) . Lap1/ϵ?(r) . ki ![f (D) + r] . 0

The session between A and Mi will have
the type (α, ᾱ). where
α = ?(db ⊸ Num) . !Num . end,

M1 ∥ M2 is also differentially private, which means that it does not leak private
information when interacting with any adversary.
One possible adversary is

A = k1![f] . k1?(y1) . k2![gy1] . k2?(y2)

16/24

Example of a Concurrent Composition

Let M1 and M2 be two differentially private
mechanisms.

Mi = ki?(f) . Lap1/ϵ?(r) . ki ![f (D) + r] . 0

The session between A and Mi will have
the type (α, ᾱ). where
α = ?(db ⊸ Num) . !Num . end,

M1 ∥ M2 is also differentially private, which means that it does not leak private
information when interacting with any adversary.
One possible adversary is

A = k1![f] . k1?(y1) . k2![gy1] . k2?(y2)

16/24

Example of a Concurrent Composition

Let M1 and M2 be two differentially private
mechanisms.

Mi = ki?(f) . Lap1/ϵ?(r) . ki ![f (D) + r] . 0

The session between A and Mi will have
the type (α, ᾱ). where
α = ?(db ⊸ Num) . !Num . end,

M1 ∥ M2 is also differentially private, which means that it does not leak private
information when interacting with any adversary.
One possible adversary is

A = k1![f] . k1?(y1) . k2![gy1] . k2?(y2)

17/24

Typing Judgements

We consider two forms of typing judgements:
the first one applies to expressions from a standard functional language.

Γ ⊢ e : A ,

(Expressions are exchanged between processes through channels.)

the second one concerns processes

Γ ⊢ P ▷ ∆; (ϵ, δ) .

(Read “P is a well-typed (ϵ, δ)-differentially private process.”)

In practice, we use Fuzz as our expression language to benefit from its capability for
sensitivity analysis in our typing rules.

17/24

Typing Judgements

We consider two forms of typing judgements:
the first one applies to expressions from a standard functional language.

Γ ⊢ e : A ,

(Expressions are exchanged between processes through channels.)
the second one concerns processes

Γ ⊢ P ▷ ∆; (ϵ, δ) .

(Read “P is a well-typed (ϵ, δ)-differentially private process.”)

In practice, we use Fuzz as our expression language to benefit from its capability for
sensitivity analysis in our typing rules.

17/24

Typing Judgements

We consider two forms of typing judgements:
the first one applies to expressions from a standard functional language.

Γ ⊢ e : A ,

(Expressions are exchanged between processes through channels.)
the second one concerns processes

Γ ⊢ P ▷ ∆; (ϵ, δ) .

(Read “P is a well-typed (ϵ, δ)-differentially private process.”)

In practice, we use Fuzz as our expression language to benefit from its capability for
sensitivity analysis in our typing rules.

18/24

Examples of Typing Rules

Γ ⊢ e : Bool Γ ⊢ P ▷ ∆; (ϵP , δP) Γ ⊢ Q ▷ ∆; (ϵQ, δQ)
[T-If]

Γ ⊢ if e then P else Q ▷ ∆; (0, 1)

Γ ⊢ P1 ▷ ∆1; (ϵ1, δ1) Γ ⊢ P2 ▷ ∆2; (ϵ2, δ2) ∆1 ≍ ∆2 [T-Conc]
Γ ⊢ P1 ∥ P2 ▷ ∆1 ◦ ∆2; (ϵ1, δ1) ⋆ (ϵ2, δ2)

Γ1 ⊢ P1 ▷ ∆1; (ϵ, 0) Γ2 ⊢ P2 ▷ ∆2; (ϵ, 0) ∆1 ≍ ∆2 [T-Par]
Γ1

∐
Γ2 ⊢ P1 ∥ P2 ▷ ∆1 ◦ ∆2; (ϵ, 0)

18/24

Examples of Typing Rules

Γ ⊢ e : Bool Γ ⊢ P ▷ ∆; (ϵP , δP) Γ ⊢ Q ▷ ∆; (ϵQ, δQ)
[T-If]

Γ ⊢ if e then P else Q ▷ ∆; (0, 1)

Γ ⊢ P1 ▷ ∆1; (ϵ1, δ1) Γ ⊢ P2 ▷ ∆2; (ϵ2, δ2) ∆1 ≍ ∆2 [T-Conc]
Γ ⊢ P1 ∥ P2 ▷ ∆1 ◦ ∆2; (ϵ1, δ1) ⋆ (ϵ2, δ2)

Γ1 ⊢ P1 ▷ ∆1; (ϵ, 0) Γ2 ⊢ P2 ▷ ∆2; (ϵ, 0) ∆1 ≍ ∆2 [T-Par]
Γ1

∐
Γ2 ⊢ P1 ∥ P2 ▷ ∆1 ◦ ∆2; (ϵ, 0)

18/24

Examples of Typing Rules

Γ ⊢ e : Bool Γ ⊢ P ▷ ∆; (ϵP , δP) Γ ⊢ Q ▷ ∆; (ϵQ, δQ)
[T-If]

Γ ⊢ if e then P else Q ▷ ∆; (0, 1)

Γ ⊢ P1 ▷ ∆1; (ϵ1, δ1) Γ ⊢ P2 ▷ ∆2; (ϵ2, δ2) ∆1 ≍ ∆2 [T-Conc]
Γ ⊢ P1 ∥ P2 ▷ ∆1 ◦ ∆2; (ϵ1, δ1) ⋆ (ϵ2, δ2)

Γ1 ⊢ P1 ▷ ∆1; (ϵ, 0) Γ2 ⊢ P2 ▷ ∆2; (ϵ, 0) ∆1 ≍ ∆2 [T-Par]
Γ1

∐
Γ2 ⊢ P1 ∥ P2 ▷ ∆1 ◦ ∆2; (ϵ, 0)

19/24

Examples of Reduction Rules

We provide an operational semantics using a fully probabilistic labelled transition
system (FPLTS) with binary trees as labels.

P
{ ti−→

pi
Pi

}
i [R-Conc]

P ∥ Q
{ (ti ,∅)−−−→

pi
Pi ∥ Q

}
i

e ↓ v
[R-Val]

k![e] . P ∥ k?(x) . Q
{ (αv ,αv)−−−−→

1
P ∥ Q[v/x]

}
[R-Lap]

Lapb?(x) . P
{

γn−−→
pn,b

P[n/x]
}

n∈Z

The last reduction rule is the only non-deterministic one that does not simply transfer
the probability from the hypothesis to the conclusion.

19/24

Examples of Reduction Rules

We provide an operational semantics using a fully probabilistic labelled transition
system (FPLTS) with binary trees as labels.

P
{ ti−→

pi
Pi

}
i [R-Conc]

P ∥ Q
{ (ti ,∅)−−−→

pi
Pi ∥ Q

}
i

e ↓ v
[R-Val]

k![e] . P ∥ k?(x) . Q
{ (αv ,αv)−−−−→

1
P ∥ Q[v/x]

}
[R-Lap]

Lapb?(x) . P
{

γn−−→
pn,b

P[n/x]
}

n∈Z

The last reduction rule is the only non-deterministic one that does not simply transfer
the probability from the hypothesis to the conclusion.

19/24

Examples of Reduction Rules

We provide an operational semantics using a fully probabilistic labelled transition
system (FPLTS) with binary trees as labels.

P
{ ti−→

pi
Pi

}
i [R-Conc]

P ∥ Q
{ (ti ,∅)−−−→

pi
Pi ∥ Q

}
i

e ↓ v
[R-Val]

k![e] . P ∥ k?(x) . Q
{ (αv ,αv)−−−−→

1
P ∥ Q[v/x]

}

[R-Lap]
Lapb?(x) . P

{
γn−−→

pn,b
P[n/x]

}
n∈Z

The last reduction rule is the only non-deterministic one that does not simply transfer
the probability from the hypothesis to the conclusion.

19/24

Examples of Reduction Rules

We provide an operational semantics using a fully probabilistic labelled transition
system (FPLTS) with binary trees as labels.

P
{ ti−→

pi
Pi

}
i [R-Conc]

P ∥ Q
{ (ti ,∅)−−−→

pi
Pi ∥ Q

}
i

e ↓ v
[R-Val]

k![e] . P ∥ k?(x) . Q
{ (αv ,αv)−−−−→

1
P ∥ Q[v/x]

}
[R-Lap]

Lapb?(x) . P
{

γn−−→
pn,b

P[n/x]
}

n∈Z

The last reduction rule is the only non-deterministic one that does not simply transfer
the probability from the hypothesis to the conclusion.

20/24

Differential Privacy as Approximate Trace Equivalence

The trace of the execution of P is the unique random variable Trace(P) such that if
P

{ ti−→
pi

∗Pi
}

, then Pr[Trace(P) = ti] = pi .

Definition
The view of a process A interacting with a process M, is the following random variable:
View(A ∥ M) = Left

(
Trace(A ∥ M)

)
.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

20/24

Differential Privacy as Approximate Trace Equivalence

The trace of the execution of P is the unique random variable Trace(P) such that if
P

{ ti−→
pi

∗Pi
}

, then Pr[Trace(P) = ti] = pi .

Definition
The view of a process A interacting with a process M, is the following random variable:
View(A ∥ M) = Left

(
Trace(A ∥ M)

)
.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

20/24

Differential Privacy as Approximate Trace Equivalence

The trace of the execution of P is the unique random variable Trace(P) such that if
P

{ ti−→
pi

∗Pi
}

, then Pr[Trace(P) = ti] = pi .

Definition
The view of a process A interacting with a process M, is the following random variable:
View(A ∥ M) = Left

(
Trace(A ∥ M)

)
.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′,

every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

20/24

Differential Privacy as Approximate Trace Equivalence

The trace of the execution of P is the unique random variable Trace(P) such that if
P

{ ti−→
pi

∗Pi
}

, then Pr[Trace(P) = ti] = pi .

Definition
The view of a process A interacting with a process M, is the following random variable:
View(A ∥ M) = Left

(
Trace(A ∥ M)

)
.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A,

and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

20/24

Differential Privacy as Approximate Trace Equivalence

The trace of the execution of P is the unique random variable Trace(P) such that if
P

{ ti−→
pi

∗Pi
}

, then Pr[Trace(P) = ti] = pi .

Definition
The view of a process A interacting with a process M, is the following random variable:
View(A ∥ M) = Left

(
Trace(A ∥ M)

)
.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

20/24

Differential Privacy as Approximate Trace Equivalence

The trace of the execution of P is the unique random variable Trace(P) such that if
P

{ ti−→
pi

∗Pi
}

, then Pr[Trace(P) = ti] = pi .

Definition
The view of a process A interacting with a process M, is the following random variable:
View(A ∥ M) = Left

(
Trace(A ∥ M)

)
.

Definition (Vadhan and Wang 2021, Definition 1.7)
M is an (ϵ, δ)-differentially private interactive mechanism if, for every pair of adjacent
datasets D and D′, every adversary A, and every set X ,

Pr
[
View(A ∥ M(D)) ∈ X

]
≤ eϵ Pr

[
View(A ∥ M(D′)) ∈ X

]
+ δ .

21/24

Soundness

Lemma
The typing rule [T-Conc] is sound.

We can adapt the proof given by Vadhan and Wang 2021 as the view of a process in
our language behaves in the same manner as the view of a party.

Theorem
If Γ ⊢ M ▷ ∆; (ϵ, δ), then M is an (ϵ, δ)-differentially private process.

21/24

Soundness

Lemma
The typing rule [T-Conc] is sound.

We can adapt the proof given by Vadhan and Wang 2021 as the view of a process in
our language behaves in the same manner as the view of a party.

Theorem
If Γ ⊢ M ▷ ∆; (ϵ, δ), then M is an (ϵ, δ)-differentially private process.

22/24

5. Conclusion

23/24

Summary

In this work, we have:
introduced a process calculus similar to the π-calculus with sessions that possesses
good metatheoretical properties,

syntactically defined interactive differential privacy,
defined typing rules for tracking interactive differential privacy, and
provided examples, notably from Lyu (2022), demonstrating how private programs
can be implemented within our calculus.

23/24

Summary

In this work, we have:
introduced a process calculus similar to the π-calculus with sessions that possesses
good metatheoretical properties,
syntactically defined interactive differential privacy,

defined typing rules for tracking interactive differential privacy, and
provided examples, notably from Lyu (2022), demonstrating how private programs
can be implemented within our calculus.

23/24

Summary

In this work, we have:
introduced a process calculus similar to the π-calculus with sessions that possesses
good metatheoretical properties,
syntactically defined interactive differential privacy,
defined typing rules for tracking interactive differential privacy, and

provided examples, notably from Lyu (2022), demonstrating how private programs
can be implemented within our calculus.

23/24

Summary

In this work, we have:
introduced a process calculus similar to the π-calculus with sessions that possesses
good metatheoretical properties,
syntactically defined interactive differential privacy,
defined typing rules for tracking interactive differential privacy, and
provided examples, notably from Lyu (2022), demonstrating how private programs
can be implemented within our calculus.

24/24

Future Work

Future work may include:
studying local differential privacy using our process calculus,

exploring alternative methods for handling replication or random number
generation,
defining interactive differential privacy in terms of approximate bisimulation rather
than approximate trace equivalence.

24/24

Future Work

Future work may include:
studying local differential privacy using our process calculus,
exploring alternative methods for handling replication or random number
generation,

defining interactive differential privacy in terms of approximate bisimulation rather
than approximate trace equivalence.

24/24

Future Work

Future work may include:
studying local differential privacy using our process calculus,
exploring alternative methods for handling replication or random number
generation,
defining interactive differential privacy in terms of approximate bisimulation rather
than approximate trace equivalence.

1/4

References I

Dwork, Cynthia et al. (2006). “Calibrating Noise to Sensitivity in Private Data
Analysis”. In: Theory of Cryptography. Lecture Notes in Computer Science,
pp. 265–284. doi: 10.1007/11681878_14.
Girard, Jean-Yves (1987). “Linear logic”. In: Theoretical Computer Science 50.1,
pp. 1–101. doi: 10.1016/0304-3975(87)90045-4.
Honda, Kohei, Vasco T. Vasconcelos, and Makoto Kubo (1998). “Language
primitives and type discipline for structured communication-based programming”.
In: Programming Languages and Systems. Vol. 1381. Lecture Notes in Computer
Science, pp. 122–138.
Lyu, Xin (2022). “Composition theorems for interactive differential privacy”. In:
NIPS’22: Proceedings of the 36th International Conference on Neural Information
Processing Systems, pp. 9700–8712. doi: 10.5555/3600270.3600975.
McSherry, Frank D. (2009). “Privacy Integrated Queries”. In: SIGMOD’09:
Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data, pp. 19–30. doi: 10.1145/1559845.1559850.

https://doi.org/10.1007/11681878_14
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.5555/3600270.3600975
https://doi.org/10.1145/1559845.1559850

2/4

References II

Milner, Robin, Joachim Parrow, and David Walker (1992). “A calculus of mobile
processes”. In: Information and Computation 100.1, pp. 1–40. doi:
10.1016/0890-5401(92)90008-4.
Reed, Jason and Benjamin C. Pierce (2010). “Distance makes the types grow
stronger”. In: ICFP’10: Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming. doi: 10.1145/1863543.1863568.
Takeuchi, Kaku, Kohei Honda, and Makoto Kubo (1994). “An interaction-based
language and its typing system”. In: PARLE’94 Parallel Architectures and
Languages Europe. Vol. 817. Lecture Notes in Computer Science, pp. 398–413.
doi: 10.1007/3-540-58184-7_118.
Vadhan, Salil and Tianhao Wang (2021). “Concurrent Composition of Differential
Privacy”. In: Theory of Cryptography Conference. Lecture Notes in Computer
Science 13043, pp. 582–604. doi: 10.1007/978-3-030-90453-1_20.

https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-030-90453-1_20

3/4

More Details on the Fuzz Language

Definition
A function f between two metric spaces (X , dX) and (Y , dY) is s-sensitive if for all x
and x ′ in X , we have dY

(
f (x), f (x ′)

)
≤ s · dX (x , x ′).

Types are interpreted as metric spaces:
JA ⊗ BK = JAK × JBK, and JA & BK = JAK ⊔ JBK,
J!sAK =

(
π1(JAK), s · π2(JAK)

)
,

J⃝ϵAK = (Dist(A), dϵ)
etc.

Typing judgements have the form [x1 : A1]s1 , . . . , [xn : An]sn ⊢ b : B
and mean that (x1, . . . , xn) 7→ JbK(x1, . . . , bn) is a 1-sensitive function from
!s1JA1K ⊗ · · · ⊗ !snJAnK to JBK.

3/4

More Details on the Fuzz Language

Definition
A function f between two metric spaces (X , dX) and (Y , dY) is s-sensitive if for all x
and x ′ in X , we have dY

(
f (x), f (x ′)

)
≤ s · dX (x , x ′).

Types are interpreted as metric spaces:
JA ⊗ BK = JAK × JBK, and JA & BK = JAK ⊔ JBK,
J!sAK =

(
π1(JAK), s · π2(JAK)

)
,

J⃝ϵAK = (Dist(A), dϵ)
etc.

Typing judgements have the form [x1 : A1]s1 , . . . , [xn : An]sn ⊢ b : B
and mean that (x1, . . . , xn) 7→ JbK(x1, . . . , bn) is a 1-sensitive function from
!s1JA1K ⊗ · · · ⊗ !snJAnK to JBK.

3/4

More Details on the Fuzz Language

Definition
A function f between two metric spaces (X , dX) and (Y , dY) is s-sensitive if for all x
and x ′ in X , we have dY

(
f (x), f (x ′)

)
≤ s · dX (x , x ′).

Types are interpreted as metric spaces:
JA ⊗ BK = JAK × JBK, and JA & BK = JAK ⊔ JBK,
J!sAK =

(
π1(JAK), s · π2(JAK)

)
,

J⃝ϵAK = (Dist(A), dϵ)
etc.

Typing judgements have the form [x1 : A1]s1 , . . . , [xn : An]sn ⊢ b : B
and mean that (x1, . . . , xn) 7→ JbK(x1, . . . , bn) is a 1-sensitive function from
!s1JA1K ⊗ · · · ⊗ !snJAnK to JBK.

4/4

Finite Replication and Recursive Processes

We permit finite process replication instead of recursive processes or arbitrary
replication. This way, a process will never generate an infinite number of random
numbers during its execution.

Indeed, we aim to develop a formal framework for interactive differential privacy,
rather than extending the existing notion.

Vadhan and Wang (2021) generate binary strings before the interaction.
Lyu (2022) explicitly bounds the number of interaction rounds.

4/4

Finite Replication and Recursive Processes

We permit finite process replication instead of recursive processes or arbitrary
replication. This way, a process will never generate an infinite number of random
numbers during its execution.

Indeed, we aim to develop a formal framework for interactive differential privacy,
rather than extending the existing notion.

Vadhan and Wang (2021) generate binary strings before the interaction.
Lyu (2022) explicitly bounds the number of interaction rounds.

	Differential Privacy
	Interactive Differential Privacy
	Process Calculi and Session Types
	Session Types for Interactive Differential Privacy
	Conclusion
	Appendix
	References

