A game-theoretic interpretation of Boolean operators in Strategic Reasoning

$\label{eq:Dylan} Dylan \ Bellier^1 \\ \mbox{with by Sophie Pinchinat}^1 \ \mbox{and Fabio Mogavero}^2 \ \mbox{and Massimo Benerecetti}^2 \\$

November 21, 2024

¹ Univ Rennes, IRISA

² University Federico II, Napoli

System

(ouest-france.fr)

Requirements

(ouest-france.fr)

(ouest-france.fr)

Requirements

• Parking maneuver

System

(ouest-france.fr)

Requirements

- Parking maneuver
- Anti-collision guarantee

System

(ouest-france.fr)

Requirements

6

- Parking maneuver
- Anti-collision guarantee
- Traffic protocols

System

(ouest-france.fr)

Requirements

- Parking maneuver
- Anti-collision guarantee
- Traffic protocols

Models are games

11

 $\pi = p_1 p_2 \ldots$ is a play

$$\pi = p_1 p_2 \ldots$$
 is a play

Wining conditions for a coalition Coalition wins if the play $\pi \in$ Win with Win \subseteq Plays

 $\pi = p_1 p_2 \ldots$ is a play

Wining conditions for a coalition

Coalition wins if the play $\pi \in \mathsf{Win}$ with $\mathsf{Win} \subseteq \mathsf{Plays}$

Formalization of requirement in Strategy logic

Anti-collision guarantee

$$\begin{array}{lll} \Phi_{ACG} = & \forall strat_{car} \ \exists strat_{shuttle} \ (car, strat_{car})(shuttle, strat_{shuttle}) \\ & \Box(\operatorname{crash}(car, shuttle) \rightarrow \neg \operatorname{at_fault}(shuttle)) \end{array}$$

17

Anti-collision guarantee

$$\Phi_{ACG} = \forall strat_{car} \exists strat_{shuttle} (car, strat_{car})(shuttle, strat_{shuttle}) \\ \Box(crash(car, shuttle) \rightarrow \neg at_fault(shuttle))$$

One goal formula

Formula of the form $Qstrat_1 Qstrat_2 \dots b\psi$ with ψ a temporal formula

Anti-collision guarantee

$$\Phi_{ACG} = \forall strat_{car} \exists strat_{shuttle} (car, strat_{car})(shuttle, strat_{shuttle}) \\ \Box(\operatorname{crash}(car, shuttle) \rightarrow \neg \mathtt{at_fault}(shuttle))$$

One goal formula

Formula of the form $Qstrat_1 Qstrat_2 \dots b\psi$ with ψ a temporal formula

Traffic protocol

$$\begin{array}{ll} \Phi_{TP} = & \forall strat_{car} \exists strat_{shuttle} \ (car, strat_{car})(shuttle, strat_{shuttle}) \\ & \Box(\texttt{cross}(car, shuttle) \rightarrow (\texttt{prio}(shuttle) \leftrightarrow \texttt{pass}(shuttle))) \end{array}$$

Anti-collision guarantee

$$\Phi_{ACG} = \forall strat_{car} \exists strat_{shuttle} (car, strat_{car})(shuttle, strat_{shuttle}) \\ \Box(\operatorname{crash}(car, shuttle) \rightarrow \neg \mathtt{at_fault}(shuttle))$$

One goal formula

Formula of the form $Qstrat_1 Qstrat_2 \dots b\psi$ with ψ a temporal formula

Traffic protocol

$$\begin{array}{ll} \Phi_{TP} = & \forall strat_{car} \ \exists strat_{shuttle} \ (car, strat_{car})(shuttle, strat_{shuttle}) \\ & \Box(\operatorname{cross}(car, shuttle) \rightarrow (\operatorname{prio}(shuttle) \leftrightarrow \operatorname{pass}(shuttle))) \end{array}$$

We want only one $\textit{strat}_{\textit{shuttle}}$!

Anti-collision guarantee

$$\Phi_{ACG} = \forall strat_{car} \exists strat_{shuttle} (car, strat_{car})(shuttle, strat_{shuttle}) \\ \Box(\operatorname{crash}(car, shuttle) \rightarrow \neg \mathtt{at_fault}(shuttle))$$

One goal formula

Formula of the form $Qstrat_1 Qstrat_2 \dots b\psi$ with ψ a temporal formula

Traffic protocol

$$\begin{array}{ll} \Phi_{TP} = & \forall \textit{strat}_{\textit{car}} \ \exists \textit{strat}_{\textit{shuttle}} \ (\textit{car}, \textit{strat}_{\textit{car}})(\textit{shuttle}, \textit{strat}_{\textit{shuttle}}) \\ & \Box(\textit{cross}(\textit{car}, \textit{shuttle}) \rightarrow (\textit{prio}(\textit{shuttle}) \leftrightarrow \textit{pass}(\textit{shuttle}))) \end{array}$$

We want only one *strat*_{shuttle} !

Both at once

 $\forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \\ (car, strat_{car_1})(shuttle, strat_{shuttle}) \psi_{ACG} \land (car, strat_{car_2})(shuttle, strat_{shuttle}) \psi_{TP}$

 $\begin{array}{l} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

 $\begin{array}{l} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

Definition: strategy in a game

strat : Hist $\rightarrow Ac$

where Hist is the set of histories and Ac the set of actions

 $\begin{array}{c} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

Definition: strategy in a game

 $\textit{strat}:\mathsf{Hist}\to\mathsf{Ac}$ where Hist is the set of histories and Ac the set of actions

strat_{car1}

 $\begin{array}{l} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

Definition: strategy in a game

 $\textit{strat}:\mathsf{Hist}\to\mathsf{Ac}$ where Hist is the set of histories and Ac the set of actions

strat_{car1}

 $\begin{array}{c} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

26

Definition: strategy in a game

 $\textit{strat}:\mathsf{Hist}\to\mathsf{Ac}$ where Hist is the set of histories and Ac the set of actions

 $\begin{array}{c} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

Definition: strategy in a game

 $\textit{strat}:\mathsf{Hist}\to\mathsf{Ac}$ where Hist is the set of histories and Ac the set of actions

 $\begin{array}{c} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

Definition: strategy in a game

 $\textit{strat}:\mathsf{Hist}\to\mathsf{Ac}$ where Hist is the set of histories and Ac the set of actions

28

 $\begin{array}{c} & \text{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

Definition: strategy in a game

 $\textit{strat}:\mathsf{Hist}\to\mathsf{Ac}$ where Hist is the set of histories and Ac the set of actions

 $\begin{array}{l} \mathsf{Problem !} \\ \forall \ \textit{strat}_{\textit{car}_1} \ \forall \ \textit{strat}_{\textit{car}_2} \ \exists \ \textit{strat}_{\textit{shuttle}}, \end{array}$

Definition: strategy in a game

 $\textit{strat}:\mathsf{Hist}\to\mathsf{Ac}$ where Hist is the set of histories and Ac the set of actions

Solution ! $\forall^{R} strat_{car_{1}} \forall^{R} strat_{car_{2}} \exists^{R} strat_{shuttle},$

Definition: strategy in a game strat : Hist \rightarrow Ac where Hist is the set of histories and Ac the set of actions

- History deterministic automata:
 - T. Colcombet. The theory of stabilisation monoids and regular cost functions. ICALP 2009.
 - ► U. Boker, K. Lehtinen. When a little nondeterminism goes a long way: An introduction to history-determinism. ACM SIGLOG News 2023.

- History deterministic automata:
 - T. Colcombet. The theory of stabilisation monoids and regular cost functions. ICALP 2009.
 - ► U. Boker, K. Lehtinen. When a little nondeterminism goes a long way: An introduction to history-determinism. ACM SIGLOG News 2023.
- Good-for-game:
 - T. A. Henzinger and N. Piterman. Solving games without determinization. CSL 2006.

- History deterministic automata:
 - T. Colcombet. The theory of stabilisation monoids and regular cost functions. ICALP 2009.
 - ► U. Boker, K. Lehtinen. When a little nondeterminism goes a long way: An introduction to history-determinism. ACM SIGLOG News 2023.
- Good-for-game:
 - T. A. Henzinger and N. Piterman. Solving games without determinization. CSL 2006.
- Behavioral strategies:
 - F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On the model-checking problem. TOCL 2014.
 - ▶ G. De Giacomo, G. Perelli. Behavioral QLTL. arxiv 2023

- History deterministic automata:
 - T. Colcombet. The theory of stabilisation monoids and regular cost functions. ICALP 2009.
 - ► U. Boker, K. Lehtinen. When a little nondeterminism goes a long way: An introduction to history-determinism. ACM SIGLOG News 2023.
- Good-for-game:
 - T. A. Henzinger and N. Piterman. Solving games without determinization. CSL 2006.
- Behavioral strategies:
 - F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On the model-checking problem. TOCL 2014.
 - ▶ G. De Giacomo, G. Perelli. Behavioral QLTL. arxiv 2023
- Timeline semantics:
 - P. Gardy, N. Markey, P. Bouyer. Dependences in Strategy Logic. TCS 2020.
Idea

Given $\Phi \in \operatorname{SL}$ and G a CGS, build

Idea

 $\label{eq:Given} \begin{array}{l} \mathsf{Given} \ \Phi \in \mathrm{SL} \ \text{and} \ \mathsf{G} \ \mathsf{a} \ \mathsf{CGS}, \ \mathsf{build} \\ \bullet \ \mathsf{CGS}_{\mathrm{GTS}}(\mathsf{G}, \Phi) \ \mathsf{a} \ \mathsf{new} \ \mathsf{CGS} \end{array}$

Idea

Given $\Phi \in \operatorname{SL}$ and G a CGS, build

- $CGS_{GTS}(G, \Phi)$ a new CGS
- $\Phi_{\mathrm{GTS}}(\Phi)$ a one goal formula

Idea

Given $\Phi \in \operatorname{SL}$ and G a CGS, build

- $CGS_{GTS}(G, \Phi)$ a new CGS
- $\Phi_{\mathrm{GTS}}(\Phi)$ a one goal formula

Realizable semantics

$$\mathsf{G}\models_{\boldsymbol{R}} \Phi \text{ iff } \mathsf{CGS}_{\mathrm{GTS}}(\mathsf{G}, \Phi)\models \Phi_{\mathrm{GTS}}(\Phi)$$

Idea

Given $\Phi \in \operatorname{SL}$ and G a CGS, build

- $CGS_{GTS}(G, \Phi)$ a new CGS
- $\Phi_{\mathrm{GTS}}(\Phi)$ a one goal formula

Realizable semantics

$$\mathsf{G}\models_{\boldsymbol{R}} \Phi \text{ iff } \mathsf{CGS}_{\mathrm{GTS}}(\mathsf{G}, \Phi)\models \Phi_{\mathrm{GTS}}(\Phi)$$

Because realizable strategy suffice for one goal formula [Mogavero, F., Murano, A., Perelli, G., & Vardi, M. Y. (2014). Reasoning about strategies: On the model-checking problem.]

Original game G

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

with

C

 $\begin{array}{ll} \flat_{ACG} = & (car, strat_{car_1})(shuttle, strat_{shuttle}) \\ \flat_{TP} = & (car, strat_{car_2})(shuttle, strat_{shuttle}) \end{array}$

Original game G

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

with

0

 $\begin{array}{ll} \flat_{ACG} = & (car, strat_{car_1})(shuttle, strat_{shuttle}) \\ \flat_{TP} = & (car, strat_{car_2})(shuttle, strat_{shuttle}) \end{array}$

Building the game $\mathsf{CGS}_{\mathrm{GTS}}(\mathsf{G}, \Phi)$

Original game G

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

with

0

 $\begin{array}{ll} \flat_{ACG} = & (car, strat_{car_1})(shuttle, strat_{shuttle}) \\ \flat_{TP} = & (car, strat_{car_2})(shuttle, strat_{shuttle}) \end{array}$

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $b_{ACG} = (car, strat_{car_1})(shuttle, strat_{shuttle})$ $b_{TP} = (car, strat_{car_2})(shuttle, strat_{shuttle})$

strat_{car1} strat_{cary} strat_{shuttle}

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $b_{ACG} = (car, strat_{car_1})(shuttle, strat_{shuttle})$ $b_{TP} = (car, strat_{car_2})(shuttle, strat_{shuttle})$

Building the game $\mathsf{CGS}_{\mathrm{GTS}}(\mathsf{G}, \Phi)$

strat _{car1}	\mapsto	right
strat _{car2}	\mapsto	left
strat _{shuttle}	\mapsto	left

50

strat _{car1}	\mapsto	right
strat _{car2}	\mapsto	left
strat _{shuttle}	\mapsto	left

•ACG		
shuttle	\mapsto	left
car	\mapsto	right

strat _{car1}	\mapsto	right
strat _{car2}	\mapsto	left
strat _{shuttle}	\mapsto	left

♭ _{ACG} shuttle car	$\stackrel{\rightarrow}{\mapsto}$	left right
♭ _{TP} shuttle car	$\stackrel{\rightarrow}{\rightarrow}$	left left

51

Original formula Φ

d

52

$$\mathcal{D} = \begin{array}{c} \forall strat_{car_{1}} \; \forall strat_{car_{2}} \; \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $\begin{array}{ll} \text{with} & \\ \flat_{ACG} = & (\textit{car},\textit{strat}_{\textit{car}_1})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \\ \flat_{TP} = & (\textit{car},\textit{strat}_{\textit{car}_2})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \end{array}$

▶ _{ACG}		
shuttle	\mapsto	left
car	\mapsto	right
b_{TP}		
shuttle	\mapsto	left
car	\mapsto	left

Original game G *shuttle* \mapsto right left car \mapsto p_1 **p**3 p_2 left shuttle right left \mapsto right right left car \mapsto

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $\begin{array}{ll} \text{with} & \\ \flat_{ACG} = & (\textit{car},\textit{strat}_{\textit{car}_1})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \\ \flat_{TP} = & (\textit{car},\textit{strat}_{\textit{car}_2})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \end{array}$

$$\begin{array}{ccc} \flat_{ACG} \\ shuttle & \mapsto & \texttt{left} \\ car & \mapsto & \texttt{right} \\ \\ \flat_{TP} \\ shuttle & \mapsto & \texttt{left} \\ car & \mapsto & \texttt{left} \end{array}$$

đ

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $\begin{array}{ll} \text{with} & \\ \flat_{ACG} = & (\textit{car},\textit{strat}_{\textit{car}_1})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \\ \flat_{TP} = & (\textit{car},\textit{strat}_{\textit{car}_2})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \end{array}$

	p 2
\mapsto	left
\mapsto	right
	-
\mapsto	left
\mapsto	left
	$\stackrel{1}{\rightarrow}$ $\stackrel{1}{\rightarrow}$ $\stackrel{1}{\rightarrow}$

54

d

Original formula Φ

$$\mathbf{D} = \begin{array}{c} \forall strat_{car_1} \; \forall strat_{car_2} \; \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $\begin{array}{ll} \text{with} & \\ \flat_{ACG} = & (\textit{car},\textit{strat}_{\textit{car}_1})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \\ \flat_{TP} = & (\textit{car},\textit{strat}_{\textit{car}_2})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \end{array}$

strat _{car1}	\mapsto	right
strat _{car2}	\mapsto	left
strat _{shuttle}	\mapsto	left

ACG		p_2
shuttle	\mapsto	left
car	\mapsto	right
b _{TP}		p 2
shuttle	\mapsto	left
car	\mapsto	left

Building the game $\mathsf{CGS}_{\mathrm{GTS}}(\mathsf{G}, \Phi)$

Original formula Φ

d

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $\begin{array}{ll} \text{with} & \\ \flat_{ACG} = & (\textit{car},\textit{strat}_{\textit{car}_1})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \\ \flat_{TP} = & (\textit{car},\textit{strat}_{\textit{car}_2})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \end{array}$

• _{ACG}		p_2
shuttle	\mapsto	left
car	\mapsto	right
♭ _{TP}		p_2
shuttle	\mapsto	left
car	\mapsto	left

Original game G

Original formula Φ

$$D = \begin{array}{c} \forall strat_{car_{1}} \forall strat_{car_{2}} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP} \end{array}$$

 $\begin{array}{ll} \text{with} & \\ \flat_{ACG} = & (\textit{car},\textit{strat}_{\textit{car}_1})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \\ \flat_{TP} = & (\textit{car},\textit{strat}_{\textit{car}_2})(\textit{shuttle},\textit{strat}_{\textit{shuttle}}) \end{array}$

strat _{car1}	\mapsto	right
strat _{car2}	\mapsto	left
strat _{shuttle}	\mapsto	right

C

Original game G Original formula Φ *shuttle* \mapsto right left $\forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \\ \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP}$ *car* \mapsto left right $\Phi =$ with p_1 p_2 p_3 $b_{ACG} = (car, strat_{car_1})(shuttle, strat_{shuttle})$ right $b_{TP} = (car, strat_{car_2})(shuttle, strat_{shuttle})$ shuttle \mapsto left right left car \mapsto strat_{car1} right \mapsto $strat_{car_2} \mapsto left$ ACG strat_{shuttle} right \mapsto shuttle \mapsto right car \mapsto p_2 PACG b_{TP}

 p_3

right

The $\Phi_{\rm GTS}(\Phi)$ formula

 $\label{eq:Given} \mathsf{Given} \ \Phi = \ \forall \textit{strat}_{\textit{car}_1} \ \forall \textit{strat}_{\textit{car}_2} \ \exists \textit{strat}_{\textit{shuttle}} \ \flat_{\textit{ACG}} \psi_{\textit{ACG}} \land \flat_{\textit{TP}} \psi_{\textit{TP}} \ ,$

The $\Phi_{\rm GTS}(\Phi)$ formula

Given
$$\Phi = \forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP}$$
,

We define
$$\Phi_{\text{GTS}}(\Phi) = \begin{array}{c} \forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \forall strat_{AND} \flat_{id} \\ (\Box \flat_{ACG} \rightarrow \psi_{ACG}) \land (\Box \flat_{TP} \rightarrow \psi_{TP}) \end{array}$$

with $\boldsymbol{\flat}_{id}$ the binding identity

The $\Phi_{\rm GTS}(\Phi)$ formula

Given
$$\Phi = \forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP}$$
,

We define
$$\Phi_{\text{GTS}}(\Phi) = \begin{array}{c} \forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \forall strat_{AND} \flat_{\text{id}} \\ (\Box \flat_{ACG} \rightarrow \psi_{ACG}) \land (\Box \flat_{TP} \rightarrow \psi_{TP}) \end{array}$$

with \flat_{id} the binding identity

Theorem

For every CGS G and ${\rm SL}[{\rm C}/{\rm DG}]$ formula $\Phi,$ we have

$$CGS_{GTS}(G, \Phi) \models \Phi_{GTS}(\Phi) \text{ iff } G \models_{\mathcal{T}} \Phi$$

where $\models_{\mathcal{T}}$ is defined in [P. Gardy, N. Markey, P. Bouyer. Dependences in Strategy Logic.]

The $\Phi_{\rm GTS}(\Phi)$ formula

Given
$$\Phi = \forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \flat_{ACG} \psi_{ACG} \land \flat_{TP} \psi_{TP}$$
,

We define
$$\Phi_{\text{GTS}}(\Phi) = \begin{array}{c} \forall strat_{car_1} \forall strat_{car_2} \exists strat_{shuttle} \forall strat_{AND} \flat_{id} \\ (\Box \flat_{ACG} \rightarrow \psi_{ACG}) \land (\Box \flat_{TP} \rightarrow \psi_{TP}) \end{array}$$

with $\boldsymbol{\flat}_{id}$ the binding identity

Theorem

For every CGS G and ${\rm SL}[{\rm C}/{\rm DG}]$ formula $\Phi,$ we have

$$CGS_{GTS}(G, \Phi) \models \Phi_{GTS}(\Phi) \text{ iff } G \models_{\mathcal{T}} \Phi$$

where $\models_{\mathcal{T}}$ is defined in [P. Gardy, N. Markey, P. Bouyer. Dependences in Strategy Logic.]

To be published in FSTTCS24

Conclusion

Game theoretic semantics

Conclusion

Game theoretic semantics

• Enforces realizability of strategies

71

Conclusion

Game theoretic semantics

- Enforces realizability of strategies
- Is an alternative semantics to *timeline* semantics
Game theoretic semantics

- Enforces realizability of strategies
- Is an alternative semantics to timeline semantics
- Underlines the game-theoretic nature of operators

Game theoretic semantics

- Enforces realizability of strategies
- Is an alternative semantics to *timeline* semantics
- Underlines the game-theoretic nature of operators
- Is supported by a strong compositional semantics based on hyperteams

Game theoretic semantics

- Enforces realizability of strategies
- Is an alternative semantics to *timeline* semantics
- Underlines the game-theoretic nature of operators
- Is supported by a strong compositional semantics based on hyperteams

future work

Game theoretic semantics

- Enforces realizability of strategies
- Is an alternative semantics to *timeline* semantics
- Underlines the game-theoretic nature of operators
- Is supported by a strong compositional semantics based on hyperteams

future work

• Extend the result for bigger fragments (with both "and" and "or")

Game theoretic semantics

- Enforces realizability of strategies
- Is an alternative semantics to *timeline* semantics
- Underlines the game-theoretic nature of operators
- Is supported by a strong compositional semantics based on hyperteams

future work

- Extend the result for bigger fragments (with both "and" and "or")
- Compare with the standard semantics

Thank you for listening!