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w-regular tree languages



Infinite executions

We look at programs with branching infinite executions. More specifically, we consider their
execution traces, labelled with a finite alphabet X..
These execution can be represented by infinite trees, with labelled transitions.
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p-calculus transition systems

Properties on trees can be expressed in your favourite branching logic (u-calculus, MSO...)

For instance, a formula can describe the

following specification:

 There is no c in the tree

« Each branch has an infinity of b

o All a are followed by a branch seeing a’s
until seeing a b

A w-regular tree language consists in the
set of infinite trees satisfying a given

formula .
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Another formalism: Parity Tree Automata

Figure 3: A run of a parity automaton on a tree ¢ outputs a re-labelling of £ with integers.

A tree t is accepted by an automaton A if there exists a run of A on ¢ where all the branches
are eventually dominated by an even value.
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Mostowski Hierarchy

A w-regular language is said I-feasible if it is recognized by an automaton with parity index
I.

The alternation depth of a formula ¢ recognizing L corresponds to the index interval I
necessary to recognize it. It is denoted the Mostowski index of this language.

Parity T[0,3] arity %1,4]
ParityT[O,Z] ><Parity fl,B]
CoBiuchi = [0,1] Biichi = [1,2]

Figure 4: A part of the Mostowski hierarchy.
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Existing Results

For the following classes, we can decide where is a language (described by an automaton)
located in this class

o if the input automaton is deterministic [Niwinski & Walukiewicz 05]

o If the language is Biichi [Urbanski 00]

Some other classes, out of the Mostowski hierarchy, can also be decided (weak when the
input is a Biichi automaton, game automata, branch languages...)

In general, deciding the Mostowski index of a given language is an open problem.
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Characterization of Mostowski feasibility

Theorem (Colcombet, Loding 08): The problem of deciding the J-feasibility of a
regular tree language is reducible to the existence of a uniform n € N such that some
automaton A(n) with counters bounded by n is universal

Our work starts from this result, trying to extend it and to use more convenient objects.
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Equivalences reached

The following statements are equivalent, given a language L described by a (guidable)
automaton A:

o L is J-feasible

o There exists a uniform n € N such that Eve wins some game G(A, J,n,t) exactly on the
treest € L

« We can exhibit a common structure on the acceptation games of the trees in L by A
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Parity transposition games



Parity games consist in graphs with N-labelled edges, vertices partitioned between two
players, Adam and Eve.

Figure 5: Eve, controlling the circle vertices, has a winning strategy, through always going
right.

The acceptation of a tree ¢t by an automaton A can be seen as a game A,.
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Register games

Let J an index, G a parity game on some index I. The parity transposition game T ;(G)
consists in a game played over GG, where the output is restricted to J.

It acts as a parity transducer where Eve chooses the current mapping from I to J, with some
constraints.
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Results on parity transposition games

Two main results are to note [Lehtinen 18]:

Proposition: Whenever Adam has a winning strategy in GG, V.J, Adam has a winning
strategy in T ;(G).

Proposition: Whenever Eve has a winning strategy in GG of parity index I, 4 a minimal
J C I such that Eve has a winning strategy in T ;(G).
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Now with counters: Parity transposition games

We extend parity transition games with counters bounded by V. They act as an extra buffer
for Eve’s memory.
We denote the corresponding game 74 (G).

The victory of Eve is non-decreasing along V.
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Characterization of the J-feasibility

Theorem: For L an w-regular tree language recognized by some (guidable)
automaton A, the following are equivalent:
o L is J-feasible
. IN € N such that V¢ € L, Eve wins 75 (A4,).
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Strahler number of a game



Attractor decomposition

Given a game GG won by Eve, an attractor decomposition consists in a tree-like structure,
composed of even edges and their attractors. A play can only remain in an attractor during a
finite number of steps. Rightwards movement in the tree is necessarily even.

N
Do
N
—_

(The two figures do not correspond to the same game)
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n-Strahler number

Given a finite tree, its n-Strahler number consists in the tallest (n + 1)-ary complete minor
that can be extracted from the tree with children deletion and edge-contraction along a
single child.

Figure 6: A tree of height 4 and of 2-Strahler 3, with a corresponding minor in purple.
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n-Strahler number of attractor decompositions

Using the previous theorem, and extending a result by Daviaud, Jurdzinski and Thejaswini,
we are able to explicit a link between this n-Strahler number and the J-feasibility of a
language.

Theorem: For L an w-regular tree language recognized by some (guidable)
automaton A, the following are equivalent:

. L is [1, 2h|-feasible
« dN € N such that V¢ € L, there exists an attractor decomposition of A, of N-
Strahler h.
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Conclusion

We provide alternative characterizations for the Mostowski index, using games and their
structure

Future ideas
 Digging deeper with universal n-Strahler trees

o Characterizing the attractor decompositions that can be obtained from a given automaton

Thank you for your attention.
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