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λ-calculus



Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)

I Logic, proof assistants (CoQ, Agda,…)
I Computability theory
I …

λ-calculus can be use to study formal language theory.
I focus here on two main fields of application:

I mathematics of language,
I program verification.
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Simply typed λ-calculus

Types: A is a finite set of atomic types and (A → B) is a type
when A and B are types.

order(A) = 1, order(A → B) = max(order(A) + 1, order(B))

Higher-order signature Σ = {aA, bB , . . . } is a set of typed
constant.

λ-calculus

Λ : MA,NB ::= xA | cA | (λxA.MB)A→B | (MA→BNA)B

(β) (λx .M)N = M[N/x ]

(η) λx .Mx = M when x /∈ fv(M)

(δ) YM = M(YM)
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Recognizability

Finite-State Automata

Finite Algebras Logic



Recognizability in the simply typed λ-calculus [S.09]

(Intersection) Types

Finite Models ???



Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]

[[λx .M, ν]] • f = [[M, ν[f /x ]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g
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Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,

I closed under boolean operations,
I closed under inverse higher-order homomorphism,
I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.
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Finiteness: parsing algorithms



Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures

= linear λ-calculus

Surface form

=
linear λ-calculus

Meaning representation

= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.
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Example: Surface Realization

sentence

nounp

a nadj

rat cprel

that rel

nounp

a cat

chased

verbp

ate nounp

a cheese

λxy .x · y

λxy .x · y

a λxy .x · y

rat λxy .x · y

that λxy .x · y

λxy .x · y

a cat

chased

λxy .x · y

ate λxy .x · y

a cheese

a rat that a cat saw ate a cheese



Example: Montague Semantics

sentence

nounp

a nadj

rat cprel

that rel

nounp

a cat

chased

verbp

ate nounp

a cheese

λsp.p s

λdpq.d p q

ex λpqx .p x ∧ q x

rat λcpx .p(c x)

λxp.p x λnps.p s n

λdpq.d p q

ex cat

chased

λp o s.p o s

ate λd p q.d p q

ex cheese

where ex = λpq.∃x .p x ∧ q x .
∃x .rat x ∧ (∃y .cat y ∧ chased y x ∧ (∃u.cheese u ∧ ate x u))



Decidability of parsing and text generation

Tree signature

H

M

H−1({M})

I The complexity is
non-elementary (but
polynomial in the linear
case)

I A semantic argument
extends the decidability
result to higher-order OI
grammars [Kobele, S. 15]
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Efficient algorithms

I The construction yields efficient algorithms for particular
cases:

I linear case [S. 05],
I almost linear case [Kanazawa 07],
I almost affine case [Bourreau, S. 11]

I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and
program transformation give efficient parsers.

Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.
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Infiniteness: Program
Verification
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Schematology

Programs

Schemes

Evaluation treesSemantic Domains Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluation

abst.

syn. prop.



Higher-order control flow
fold f a l = if l=[] then a else f (hd l) (fold f a (tl l))

M = Yλfold f a l.ite (=l []) a (f (hd l) (fold f a (tl l)))

ite

=

l []

a ::

f

hd

l

ite

=

tl

l

[]

a ite

=

tl

tl

l

[]

a ::

f

hd

hd

l

n

n-1

n
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Two kinds of properties

Behavioral properties
the service is always available
every query is eventually processed
etc… Safety properties

array bounds
division by 0
etc…



Two kinds of properties

Behavioral properties
infinitary properties

Safety properties
reachability



Finite abstractions

Reachability

Infinitary properties

Finite state automata

Parity automata
Monadic Second
Order Logic



Programs and recognizability

Specification

Higher-Order
Programs

Correct
Programs

Interpretation
Domain

Recognizer [[·]]

[[·]]−1
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Motivations and results

I Relating finite state methods with denotational methods
I Reveal the invariants behind behavioral properties
I Obtain decidability results by finiteness properties

Some results:
I New proof of Ong’s Theorem with Krivine Machine and

semantics [Walukiewicz S. 11]
I Limitation of Scott models [Walukiewicz S. 13]
I Transfer Theorem for term evaluation [Walukiewicz S. 13]
I Finite models for weak MSOL based on wreath products of

models [Walukiewicz S. 15]
I Finite models for MSOL [Walukiewicz S. 15]



Example: unfolding

Graph unfold−−−−→ Tree

MSOL-compatibility of unfolding
For all Σ.
For all ϕ there is ϕ̂ s.t. for all G ∈ Graph(Σ):

G |= ϕ̂ iff Unf (G) |= ϕ

Remark: this theorem implies Rabin’s Theorem.

Other example: Muchnik iteration.
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M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X ):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types
I X is a finite set of λ-variables
I Terms(Σ, T ,X ): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.
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Transducers



Deforestation

q = sum(filter p (map f l))

def query(l):
res = 0
for e in l:

if p(f e):
res += f e

return res

q = query(l)



Higher-order transducers

sum :: [a] -> Int
sum [] = 0
sum (n:l) = n + sum l

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (a:as) | p a = a : filter p as

| otherwise = filter p as

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (a:as) = f a : map f as



The composed transducer

q = sum(filter p (map f l))
query [] = 0
query (a:as) | p(f a) = f a + query as

| otherwise = query as



Closure of higher-order transducers under composition

I Higher-order transducers are closed under composition,
provided they can inspect the input with regular properties:
this implements deforestation in a very general setting.

I Finite models and recognizability give direct constructions of
the compositions of transducers (Gallot, Lemay, S.).

I Several properties need to be investigated:
I How complex are the regular properties to be checked on

input?
I When is the size of the composition reasonable?

We have Encouraging results for the transducers equivalent to
MSOT (Gallot, Lemay, S. 20)
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