
Recognizability in functional programs

Sylvain Salvati
University of Lille

Journées annuelles GT Vérif et GT SCALP du GDR IFM 2024

λ-calculus

Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)

I Logic, proof assistants (CoQ, Agda,…)
I Computability theory
I …

λ-calculus can be use to study formal language theory.
I focus here on two main fields of application:

I mathematics of language,
I program verification.

Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)
I Logic, proof assistants (CoQ, Agda,…)

I Computability theory
I …

λ-calculus can be use to study formal language theory.
I focus here on two main fields of application:

I mathematics of language,
I program verification.

Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)
I Logic, proof assistants (CoQ, Agda,…)
I Computability theory

I …
λ-calculus can be use to study formal language theory.
I focus here on two main fields of application:

I mathematics of language,
I program verification.

Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)
I Logic, proof assistants (CoQ, Agda,…)
I Computability theory
I …

λ-calculus can be use to study formal language theory.
I focus here on two main fields of application:

I mathematics of language,
I program verification.

Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)
I Logic, proof assistants (CoQ, Agda,…)
I Computability theory
I …

λ-calculus can be use to study formal language theory.

I focus here on two main fields of application:

I mathematics of language,
I program verification.

Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)
I Logic, proof assistants (CoQ, Agda,…)
I Computability theory
I …

λ-calculus can be use to study formal language theory.
I focus here on two main fields of application:
I mathematics of language,

I program verification.

Applications of λ-calculus

I Programming languages (Lisp, Ocaml, SML,Haskell, …)
I Logic, proof assistants (CoQ, Agda,…)
I Computability theory
I …

λ-calculus can be use to study formal language theory.
I focus here on two main fields of application:
I mathematics of language,
I program verification.

Simply typed λ-calculus

Types: A is a finite set of atomic types and (A → B) is a type
when A and B are types.

order(A) = 1, order(A → B) = max(order(A) + 1, order(B))

Higher-order signature Σ = {aA, bB , . . . } is a set of typed
constant.

λ-calculus

Λ : MA,NB ::= xA | cA | (λxA.MB)A→B | (MA→BNA)B

(β) (λx .M)N = M[N/x]

(η) λx .Mx = M when x /∈ fv(M)

(δ) YM = M(YM)

Simply typed λ-calculus

Types: A is a finite set of atomic types and (A → B) is a type
when A and B are types.

order(A) = 1, order(A → B) = max(order(A) + 1, order(B))

Higher-order signature Σ = {aA, bB , . . . } is a set of typed
constant.

λ-calculus

Λ : MA,NB ::= xA | cA | (λxA.MB)A→B | (MA→BNA)B

(β) (λx .M)N = M[N/x]

(η) λx .Mx = M when x /∈ fv(M)

(δ) YM = M(YM)

Syntax basics

Trees
a

b

e a

e e

a

e e

Strings

λx .

a

b

c

a

x

Complex operations

λf .

a

a

e f

e e

b

f

f

b

e e

e

e

Syntax basics

Trees
a

b

e a

e e

a

e e

Strings

λx .

a

b

c

a

x

Complex operations

λf .

a

a

e f

e e

b

f

f

b

e e

e

e

Syntax basics

Trees
a

b

e a

e e

a

e e

Strings

λx .

a

b

c

a

x

Complex operations

λf .

a

a

e f

e e

b

f

f

b

e e

e

e

Syntax basics

Trees
a

b

e a

e e

a

e e

Strings

λx .

a

b

c

a

x

Complex operations

λf .

a

a

e f

e e

b

f

f

b

e e

e

e

Recognizability

Finite-State Automata

Finite Algebras Logic

Recognizability in the simply typed λ-calculus [S.09]

(Intersection) Types

Finite Models ???

Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]

[[λx .M, ν]] • f = [[M, ν[f /x]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g

Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]

[[λx .M, ν]] • f = [[M, ν[f /x]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g

Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]

[[λx .M, ν]] • f = [[M, ν[f /x]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g

Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]

[[λx .M, ν]] • f = [[M, ν[f /x]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g

Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]

[[λx .M, ν]] • f = [[M, ν[f /x]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g

Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]
[[λx .M, ν]] • f = [[M, ν[f /x]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g

Finite models

[[M, ν]]

Axioms
[[MN, ν]] = [[M, ν]] • [[N, ν]]
[[λx .M, ν]] • f = [[M, ν[f /x]]]

Lemma (Correctness)
If M =β N, then for every ν,
[[M, ν]] = [[N, ν]].

A wealth of possibilities
standard, monotonous, stable,
strongly stable …models,
bi-domains etc.

A B C

A → B

(A → B) → C

f

g

f • g

Recognizability in the simply typed λ-calculus

L is recognizable iff:

L = {M | [[M, ∅]] ∈ R}

A

ΛA

R
L

[[_, ∅]]−1

Recognizability in the simply typed λ-calculus

L is recognizable iff:

L = {M | [[M, ∅]] ∈ R}

A

ΛA

R

L
[[_, ∅]]−1

Recognizability in the simply typed λ-calculus

L is recognizable iff:

L = {M | [[M, ∅]] ∈ R}

A

ΛA

R
L

[[_, ∅]]−1

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,

I closed under boolean operations,
I closed under inverse higher-order homomorphism,
I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,
I closed under boolean operations,

I closed under inverse higher-order homomorphism,
I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,
I closed under boolean operations,
I closed under inverse higher-order homomorphism,

I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,
I closed under boolean operations,
I closed under inverse higher-order homomorphism,
I not closed under relabeling.

I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,
I closed under boolean operations,
I closed under inverse higher-order homomorphism,
I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]

I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,
I closed under boolean operations,
I closed under inverse higher-order homomorphism,
I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]

I Membership is non-elementary (with natural representations
of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,
I closed under boolean operations,
I closed under inverse higher-order homomorphism,
I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Basic properties

Recognizable languages of λ-terms are:
I conservative extensions of recognizable languages of strings

and trees,
I closed under boolean operations,
I closed under inverse higher-order homomorphism,
I not closed under relabeling.
I Singleton languages are recognizable [Statman 82]
I Emptiness is undecidable [Loader 01]
I Membership is non-elementary (with natural representations

of the recognizing set).

First application
Simple proof of decidability of 4th order matching.

Finiteness: parsing algorithms

Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures

= linear λ-calculus

Surface form

=
linear λ-calculus

Meaning representation

= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.

Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures
= linear λ-calculus

Surface form

=
linear λ-calculus

Meaning representation

= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.

Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures
= linear λ-calculus

Surface form =
linear λ-calculus

Meaning representation

= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.

Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures
= linear λ-calculus

Surface form =
linear λ-calculus

Meaning representation

= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.

Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures
= linear λ-calculus

Surface form =
linear λ-calculus

Meaning representation

= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.

Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures
= linear λ-calculus

Surface form =
linear λ-calculus

Meaning representation
= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.

Abstract Categorial Grammars [de Groote 01, Muskens 01]

Syntactic structures
= linear λ-calculus

Surface form =
linear λ-calculus

Meaning representation
= λ-calculus

linear higher-order
homomorphism

higher-order ho-
momorphism

Generalizes many notions of grammars.

Example: Surface Realization

sentence

nounp

a nadj

rat cprel

that rel

nounp

a cat

chased

verbp

ate nounp

a cheese

λxy .x · y

λxy .x · y

a λxy .x · y

rat λxy .x · y

that λxy .x · y

λxy .x · y

a cat

chased

λxy .x · y

ate λxy .x · y

a cheese

a rat that a cat saw ate a cheese

Example: Montague Semantics

sentence

nounp

a nadj

rat cprel

that rel

nounp

a cat

chased

verbp

ate nounp

a cheese

λsp.p s

λdpq.d p q

ex λpqx .p x ∧ q x

rat λcpx .p(c x)

λxp.p x λnps.p s n

λdpq.d p q

ex cat

chased

λp o s.p o s

ate λd p q.d p q

ex cheese

where ex = λpq.∃x .p x ∧ q x .
∃x .rat x ∧ (∃y .cat y ∧ chased y x ∧ (∃u.cheese u ∧ ate x u))

Decidability of parsing and text generation

Tree signature

H

M

H−1({M})

I The complexity is
non-elementary (but
polynomial in the linear
case)

I A semantic argument
extends the decidability
result to higher-order OI
grammars [Kobele, S. 15]

Decidability of parsing and text generation

Tree signature

H

M

H−1({M})

I The complexity is
non-elementary (but
polynomial in the linear
case)

I A semantic argument
extends the decidability
result to higher-order OI
grammars [Kobele, S. 15]

Decidability of parsing and text generation

Tree signature

H

M

H−1({M})

I The complexity is
non-elementary (but
polynomial in the linear
case)

I A semantic argument
extends the decidability
result to higher-order OI
grammars [Kobele, S. 15]

Decidability of parsing and text generation

Tree signature

H

M

H−1({M})

I The complexity is
non-elementary (but
polynomial in the linear
case)

I A semantic argument
extends the decidability
result to higher-order OI
grammars [Kobele, S. 15]

Decidability of parsing and text generation

Tree signature

H

M

H−1({M})

I The complexity is
non-elementary (but
polynomial in the linear
case)

I A semantic argument
extends the decidability
result to higher-order OI
grammars [Kobele, S. 15]

Efficient algorithms

I The construction yields efficient algorithms for particular
cases:

I linear case [S. 05],
I almost linear case [Kanazawa 07],
I almost affine case [Bourreau, S. 11]

I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and
program transformation give efficient parsers.

Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.

Efficient algorithms

I The construction yields efficient algorithms for particular
cases:
I linear case [S. 05],

I almost linear case [Kanazawa 07],
I almost affine case [Bourreau, S. 11]

I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and
program transformation give efficient parsers.

Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.

Efficient algorithms

I The construction yields efficient algorithms for particular
cases:
I linear case [S. 05],
I almost linear case [Kanazawa 07],

I almost affine case [Bourreau, S. 11]
I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and

program transformation give efficient parsers.
Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.

Efficient algorithms

I The construction yields efficient algorithms for particular
cases:
I linear case [S. 05],
I almost linear case [Kanazawa 07],
I almost affine case [Bourreau, S. 11]

I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and
program transformation give efficient parsers.

Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.

Efficient algorithms

I The construction yields efficient algorithms for particular
cases:
I linear case [S. 05],
I almost linear case [Kanazawa 07],
I almost affine case [Bourreau, S. 11]

I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and
program transformation give efficient parsers.

Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.

Efficient algorithms

I The construction yields efficient algorithms for particular
cases:
I linear case [S. 05],
I almost linear case [Kanazawa 07],
I almost affine case [Bourreau, S. 11]

I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and
program transformation give efficient parsers.

Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.

Efficient algorithms

I The construction yields efficient algorithms for particular
cases:
I linear case [S. 05],
I almost linear case [Kanazawa 07],
I almost affine case [Bourreau, S. 11]

I Datalog [Kanazawa 07] [Bourreau, S. 11][Ball et al. 14] and
program transformation give efficient parsers.

Parsing is mostly about:
I Evaluating fixpoint with non-determinism,
I Memoizing computation.

With intentional models of λY -calculus, part of the properties can
be used in parsing can be internalized in the semantics.

Infiniteness: Program
Verification

Schematology

Programs

Schemes

Evaluation treesTyping/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluationsyn. prop.

Schematology

Programs

Schemes

Evaluation treesTyping/Logic/…

Semantics

ve
rifi

ca
tio

n

execution

adequacy

syn.
abst.

syn.
exec.

evaluationsyn. prop.

Schematology

Programs

Schemes

Evaluation trees

Typing/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluationsyn. prop.

Schematology

Programs

Schemes

Evaluation trees

Typing/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluationsyn. prop.

Schematology

Programs

Schemes

Evaluation trees

Typing/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluationsyn. prop.

Schematology

Programs

Schemes

Evaluation treesTyping/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluationsyn. prop.

Schematology

Programs

Schemes

Evaluation treesTyping/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluation

syn. prop.

Schematology

Programs

Schemes

Evaluation treesTyping/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluationsyn. prop.

Schematology

Programs

Schemes

Evaluation treesTyping/Logic/… Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluation

abst.

syn. prop.

Schematology

Programs

Schemes

Evaluation treesSemantic Domains Semantics

ve
rifi

ca
tio

n execution

adequacy

syn.
abst.

syn.
exec.

evaluation

abst.

syn. prop.

Higher-order control flow
fold f a l = if l=[] then a else f (hd l) (fold f a (tl l))

M = Yλfold f a l.ite (=l []) a (f (hd l) (fold f a (tl l)))

ite

=

l []

a ::

f

hd

l

ite

=

tl

l

[]

a ite

=

tl

tl

l

[]

a ::

f

hd

hd

l

n

n-1

n

Higher-order control flow
fold f a l = if l=[] then a else f (hd l) (fold f a (tl l))

M = Yλfold f a l.ite (=l []) a (f (hd l) (fold f a (tl l)))

ite

=

l []

a ::

f

hd

l

ite

=

tl

l

[]

a ite

=

tl

tl

l

[]

a ::

f

hd

hd

l

n

n-1

n

Two kinds of properties

Behavioral properties
the service is always available
every query is eventually processed
etc… Safety properties

array bounds
division by 0
etc…

Two kinds of properties

Behavioral properties
infinitary properties

Safety properties
reachability

Finite abstractions

Reachability

Infinitary properties

Finite state automata

Parity automata
Monadic Second
Order Logic

Programs and recognizability

Specification

Higher-Order
Programs

Correct
Programs

Interpretation
Domain

Recognizer [[·]]

[[·]]−1

Programs and recognizability

Specification

Higher-Order
Programs

Correct
Programs

Interpretation
Domain

Recognizer [[·]]

[[·]]−1

Programs and recognizability

Specification

Higher-Order
Programs

Correct
Programs

Interpretation
Domain

Recognizer [[·]]

[[·]]−1

Motivations and results

I Relating finite state methods with denotational methods
I Reveal the invariants behind behavioral properties
I Obtain decidability results by finiteness properties

Some results:
I New proof of Ong’s Theorem with Krivine Machine and

semantics [Walukiewicz S. 11]
I Limitation of Scott models [Walukiewicz S. 13]
I Transfer Theorem for term evaluation [Walukiewicz S. 13]
I Finite models for weak MSOL based on wreath products of

models [Walukiewicz S. 15]
I Finite models for MSOL [Walukiewicz S. 15]

Example: unfolding

Graph unfold−−−−→ Tree

MSOL-compatibility of unfolding
For all Σ.
For all ϕ there is ϕ̂ s.t. for all G ∈ Graph(Σ):

G |= ϕ̂ iff Unf (G) |= ϕ

Remark: this theorem implies Rabin’s Theorem.

Other example: Muchnik iteration.

Example: unfolding

Graph unfold−−−−→ Tree

MSOL-compatibility of unfolding
For all Σ.
For all ϕ there is ϕ̂ s.t. for all G ∈ Graph(Σ):

G |= ϕ̂ iff Unf (G) |= ϕ

Remark: this theorem implies Rabin’s Theorem.
Other example: Muchnik iteration.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types
I X is a finite set of λ-variables
I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature

I T is a finite set of types
I X is a finite set of λ-variables
I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types

I X is a finite set of λ-variables
I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types
I X is a finite set of λ-variables

I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types
I X is a finite set of λ-variables
I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types
I X is a finite set of λ-variables
I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T

I all λ-variables from X

Note: no limitation on Y -variables.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types
I X is a finite set of λ-variables
I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.

M eval−−→ BT (M)

Transfer Theorem
For all Σ, T , X .
For all ϕ there is ϕ̂ s.t. for all M ∈ Terms(Σ, T ,X):

M |= ϕ̂ iff BT (M) |= ϕ

I Σ is a tree signature
I T is a finite set of types
I X is a finite set of λ-variables
I Terms(Σ, T ,X): terms of type 0 over Σ with

I all subterms having type in T
I all λ-variables from X

Note: no limitation on Y -variables.

Transducers

Deforestation

q = sum(filter p (map f l))

def query(l):
res = 0
for e in l:

if p(f e):
res += f e

return res

q = query(l)

Higher-order transducers

sum :: [a] -> Int
sum [] = 0
sum (n:l) = n + sum l

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (a:as) | p a = a : filter p as

| otherwise = filter p as

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (a:as) = f a : map f as

The composed transducer

q = sum(filter p (map f l))
query [] = 0
query (a:as) | p(f a) = f a + query as

| otherwise = query as

Closure of higher-order transducers under composition

I Higher-order transducers are closed under composition,
provided they can inspect the input with regular properties:
this implements deforestation in a very general setting.

I Finite models and recognizability give direct constructions of
the compositions of transducers (Gallot, Lemay, S.).

I Several properties need to be investigated:
I How complex are the regular properties to be checked on

input?
I When is the size of the composition reasonable?

We have Encouraging results for the transducers equivalent to
MSOT (Gallot, Lemay, S. 20)

Perspectives

Evaluation of terms in finite models

Parsing HO Grammars
and HO verification

evaluation of higher-order
programs in finite models

Parsing in the almost affine case

fixpoint computation
strategy via datalog pro-

gram transformation

Abstract Interpretation
I abstraction refinements
I fixpoint acceleration

techniques

Structure of models
I sequential algorithms, etc…
I linear logic

Evaluation of terms in finite models

Parsing HO Grammars
and HO verification

evaluation of higher-order
programs in finite models

Parsing in the almost affine case

fixpoint computation
strategy via datalog pro-

gram transformation

Abstract Interpretation
I abstraction refinements
I fixpoint acceleration

techniques

Structure of models
I sequential algorithms, etc…
I linear logic

Evaluation of terms in finite models

Parsing HO Grammars
and HO verification

evaluation of higher-order
programs in finite models

Parsing in the almost affine case

fixpoint computation
strategy via datalog pro-

gram transformation

Abstract Interpretation
I abstraction refinements
I fixpoint acceleration

techniques

Structure of models
I sequential algorithms, etc…
I linear logic

Evaluation of terms in finite models

Parsing HO Grammars
and HO verification

evaluation of higher-order
programs in finite models

Parsing in the almost affine case

fixpoint computation
strategy via datalog pro-

gram transformation

Abstract Interpretation
I abstraction refinements
I fixpoint acceleration

techniques

Structure of models
I sequential algorithms, etc…
I linear logic

Theory of Böhm trees

Λ-theories
Böhm theories Init.

Finite models

MSOL

I expressiveness of finite Böhm models?
I axiomatization of finite Böhm models?

Theory of Böhm trees

Λ-theories
Böhm theories Init.

Finite models

MSOL

I expressiveness of finite Böhm models?

I axiomatization of finite Böhm models?

Theory of Böhm trees

Λ-theories
Böhm theories Init.

Finite models

MSOL

I expressiveness of finite Böhm models?
I axiomatization of finite Böhm models?

