
Measuring well quasi-orders and complexity of

verification

(Slides from my PhD defense)

Isa Vialard

November 20, 2024

1/33



Some interesting sequences
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(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

(5, 5) > (4, 4) > (4, 3)
> (2, 3) > (1, 1)

— incomparable sequence
(or antichain)

i.e. pairwise incomparable

(1, 9) ⊥ (3, 8), (4, 7), (7, 5), . . .— bad sequence
i.e. pairwise non increasing

(1, 9) 6≤ (3, 8), (4, 7), (7, 5), . . .
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Definitions: Well Quasi-Order
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(0, 0)

(0, 1)

(N× N,≤×)(N× N,≤×) — decreasing sequence

— antichain
i.e. pairwise incomparable

— bad sequence
i.e. pairwise non increasing

No infinite antichain
or decreasing seq

⇔

WQO

⇔

No infinite bad seq
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Definitions: Well Quasi-Order

Some see wqos as wells

Blass & Gurevich (2008)

No infinite antichain
or decreasing seq

⇔

WQO

⇔
No infinite bad seq
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Motivations

© Reasons to study wqos

� “It is fun” (Kř́ıž & Thomas (1990))

� Applications in proof theory, term rewriting, graph theory, . . . and

program verification!

¨ Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

� Set of configurations: WQO

� ≤ a simulation relation

s1 s2

t1

≤

t2

≤

� Ex: Counter machines, Petri

nets, VASS, Lossy channel

systems . . .

Vector Addition Systems with

States
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Motivations

¨ Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

� Set of configurations: WQO

� ≤ is upward-compatible

s1 s2

t1

≤
t2

≤
� Ex: Counter machines, Petri

nets, VASS, Lossy channel

systems . . .

Vector Addition Systems with

States

© Complexity and expressiveness

Schmitz& Schnoebelen(2011)

� Controlled bad sequences (even decreasing, or antichains)

� Can we bound the length of controlled sequences by measuring wqo?
6/33



Measuring wqos

¨ Natural notions of measure when finite

Finite subsets of {1, 2, 3, 4} ordered by ⊆.

7/33



Measuring wqos

© Let’s extend height and width to infinite wqos
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N× NN× N

Problem:

No largest decreasing sequence

No largest antichain
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Measuring wqos

¨ Let’s extend height and width to infinite wqos with ordinals

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

(0, 0)

(0, 1)

Width and height:

at least ω

Counting elements:

at least ωat least ω2

ω

ω

ω

..
.

N× NN× N
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Measuring wqos

¨ Let’s extend height and width to infinite wqos with ordinals
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Ordinal invariants

Definition (Maximal order type, Width and Height)

∣∣∣∣∣
o(X )

w(X )

h(X )

= ordinal rank of the tree of


bad sequences

antichain sequences

decreasing sequences

in X .

Definition from Kř́ıž & Thomas(1990) (first definition of ordinal width)

First definition of maximal order type by De Jongh & Parikh(1977)
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Definition: Rank of well-founded trees

¨ Ex: Tree of decreasing sequences

∅

x1 x2 xk. . . . . .

x1 > x2 x1 > . . .. . .

x1 > · · · > xk

root: empty sequence

leaf: maximal decreasing sequence

rk = 0

γ0 γα

rk(x1) = sup(γα + 1)

h(X ) = sup(rk(x) + 1)

11/33
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Definition: Rank of well-founded trees

¨ Ex: Height of N

∅

2 3 n. . . . . .

2 > 1 2 > 0

2 > 1 > 0

10

1 > 0

0

0

0 0

1

1

2 3 n

h(N) = sup(n + 1) = ω
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Measuring with games

© Game: α vs w(X )
� Initial configuration:

� Odile : γ = α,

� Antoine : S = ∅
� Player alternate:

� Odile picks γ′ < γ

� Antoine extends S into

S :: x an antichain,

� End: You lose if you

cannot play anymore

Theorem (Blass & Gurevich (2008))

� Antoine has winning strategy when Odile begins ⇔ α ≤ w(X )

� Odile has winning strategy when Antoine begins ⇔ α ≥ w(X )
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Example: Playing on the on disjoint sum

⊔
A B

≤
≥

Disjoint sum A t B

Theorem: o(A t B) = o(A)⊕ o(B) (De Jongh & Parikh(1977))

This theorem is easy to prove with games!
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Example: Playing on the disjoint sum

Odile Antoine

o(A) ⊕ o(B)

A B

⊔

α1 ⊕ o(B)

α1 ⊕ β1

α1 ⊕ β2

o(A t B) ≤ o(A)⊕ o(B) if Odile wins when Antoine begins

o(A t B) ≥ o(A)⊕ o(B) if Antoine wins when Odile begins
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Other classical operations on WQOs

⊔
A B

≤

≥

Disjoint sum A t B

+

A

B

≤

Direct sum A + B

×

A B

≤

≥
Cartesian product A× B

≤

≥
≥

B
A

A

Lexicographic product A · B
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. . . And their ordinal invariants

Space M.O.T. Height Width

Disjoint sum A t B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

Direct sum A + B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

Cartesian prod. A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

Direct prod. A · B ? h(A) · h(B) w(A)� w(B)

Fin. words A∗ ωω
(o(A)±)

h∗(A) ωω
(o(A)±)

Fin. multisets
M�(A) ωô(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Fin. Powerset Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)
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My contributions

Space M.O.T. Height Width

A t B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A + B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ≥ w(o(A)× o(B))

A · B o(A) · predk (o(B)) + o(A)⊗ k h(A) · h(B) w(A)� w(B)

A∗ ωω
(o(A)±)

h∗(A) ωω
(o(A)±)

M�(A) ωô(A) h∗(A) ωô(A)−1

Mo(A) ωo(A) ωh(A) ωo⊥(A)

Pf(A) ≤ 2o(A) ≤ 2h(A) ≥ 2w(A)
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Back in time

Space M.O.T. Height Width

A t B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)
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A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

A · B ? h(A) · h(B) w(A)� w(B)

A∗ ωω
(o(A)±)

h∗(A) ωω
(o(A)±)

M�(A) ωô(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)
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Quick look at the direct product

≤
≥

≥

B
A

A

Lexicographic product A · B

© I was told that o(A · B) = o(A) · o(B)

. . . but only the lower bound is true: o(A · B) ≥ o(A) · o(B) Mistake

noticed by Harry Altman (March, 2024)
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Quick look at the direct product

⊥
≤ ≤

⊥

≤ ≤

o = 3

h = 2

w = 2

∆∇

(ω + 1) · ∇ (ω + 1) ·∆

(ω + 1) · ∇ (ω + 1) ·∆

o((ω + 1) · ∇) =

[(ω + 1) ⊕ (ω + 1)]

+

(ω + 1)

= ω · 3 + 2

o((ω + 1) ·∆) =

[(ω + 1) ⊕ (ω + 1)]

+

(ω + 1)

= ω · 3 + 1

= o(ω + 1) · o(∇)
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What about the other operations?

Space M.O.T. Height Width

A t B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A + B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ?

A · B Not functional h(A) · h(B) w(A)� w(B)

A∗ ωω
(o(A)±)

h∗(A) ωω
(o(A)±)

M�(A) ωô(A) h∗(A) ?

Mo(A) ωo(A) ? ?

Pf(A) ? ? ?

Credits to: De Jongh & Parikh(1977), Schmidt(1979), Abraham & Bonnet(1999), Van der

Meeren, Rathjen & Weiermann(2009,2015), Džamonja, Schmitz & Schnoebelen(2020)
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Non functional example for Pf

ω

ω

ω

ω

ω

ω

ω

ω

Y1 = (ω + ω) t (ω + ω) Y2 = (ω t ω) + (ω t ω)

+ + +
⊔

t

to = ω · 4

h = ω · 2

w = 2

f (Pf(Y1)) 6= f (Pf(Y2)) for f = o, h,w
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Non functional example for Cartesian product and multiset ordering

X1 = H + H X2 = H + ω

H

H H

ω

+ +

o = ω · 2

h = ω · 2
w = ω

w(X1 × ω) 6= w(X2 × ω) w(Mo(X1)) 6= w(Mo(X2)) 24/33



Fixing non-functionality

An underrated measure: maximal number

of elements



M.o.t. of the direct product

Theorem (M.o.t. of the direct product)

o(A · B) = o(A) · predk(o(B)) + o(A)⊗ k if

max elt(B) = k

With Mirna Džamonja

∇ · (ω + 1)

o = ω · 3 + 2

max elt = 2

∆ · (ω + 1)

o = ω · 3 + 1

max elt = 1

25/33



M.o.t. of the direct product

Theorem (M.o.t. of the direct product)

o(A · B) = o(A) · predk(o(B)) + o(A)⊗ k if

max elt(B) = k

With Mirna Džamonja

If B has k maximal elements, then o(B) = λ+ m with m ≥ k

Then o(A · B) = o(A) · (λ+ (m − k)) + o(A)⊗ k

25/33



Tool to compare wqos: Augmentation

(A,≤A) is an augmentation of (B,≤B) iff

� Same support: A = B

� A has more relations: ≤B⊆≤A

≥aug≥aug

If A ≥aug B then o(A) ≤ o(B) and w(A) ≤ w(B)

¨ If A ≥aug B then C (A) ≥aug C (B),

for most wqo-constructors C
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Proof: First separate infinite and finite part

If B has k maximal elements, then o(B) = λ+ m with m ≥ k

We can partition B as:

� Bλ, with o(Bλ) = λ

� Bm, with o(Bm) = m

≤

Bλ

Bm

+ ≥aug

Bm

Bλ
≥aug Bλ t Bm
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Proof: First separate infinite and finite part

If B has k maximal elements, then o(B) = λ+ m with m ≥ k

We can partition B as:

� Bλ, with o(Bλ) = λ

� Bm, with o(Bm) = m

such that

≤

Bλ

Bm

+ ≥aug

Bm

Bλ
≥aug Bλ t Bm

Hence o(A · Bλ) + o(A · Bm) ≤ o(A · B) ≤ o(A · Bλ)⊕ o(A · Bm)

27/33



Focus on A · Bm: Lower bound

≤

≤aug

o(A · Bm) ≥ o(A · ((m − k) + Γk)) = o(A) · (m − k) + o(A)⊗ k

28/33



Focus on A · Bm: Upper bound bound

Lemma

If max elt(B) = 1 then B = B ′ + 1, then

o(A · B) = o(A · B ′) + o(A) = o(A) · o(B) by induction

≤

≥aug

o(A · Bm) ≤ o(A) ·m1 ⊗ · · · ⊗ o(A) ·mk = o(A) · (m − k) + o(A)⊗ k

29/33



Fixing non-functionality ?

Fixing the multiset ordering : a fourth

ordinal invariant!



The fourth ordinal invariant

Definition (Friendly order type)

o⊥(X ) = rank of the tree of open-ended bad sequences

⊥

⊥

⊥

⊥

⊥
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The fourth ordinal invariant

Theorem (Width of Mo)

w(Mo(X )) = ωo⊥(X )

Space o, h,w o⊥

?

?

?

© How to compute the fot?

� Exists X ′ ⊆ X such that Bad(X ′) ⊆ Bad⊥(X )

� limit part(o(str(X ))) ≤ o⊥(X ) ≤ o(str(X )) with

str(X ) = { x ∈ X | ∃y ∈ X , y ⊥ x }
� w(X )− 1 ≤ o⊥(X )

� if w(A) = o(A) limit, then o⊥(X ) = o(X )

� o⊥(A t B) = o(A)⊕ o(B)
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Conclusion

Space M.O.T. Height Width

A t B o(A)⊕ o(B) max(h(A), h(B)) w(A)⊕ w(B)

A + B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A× B o(A)⊗ o(B) h(A) ⊕̂ h(B) ≥ w(o(A)× o(B))

A · B
o(A) · predk (o(B)) + o(A)⊗ k

h(A) · h(B) w(A)� w(B)
if max elt(B) = k

A∗ ωω
(o(A)±)

h∗(A) ωω
(o(A)±)

M�(A) ωô(A) h∗(A) ωô(A)−1

Mo(A) ωo(A) ωh(A) ωo⊥(A)

Pf(A) ≤ 2o(A) ≤ 2h(A) ≥ 2w(A)
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Conclusion

¨ Measuring well quasi-orders

� is fun!

� Often not functional but. . . maybe we are just missing some

measures?

� Other approach: Elementary family of wqos

E := α ≥ ωωmult. indec. E1tE2 E1×E2 M�(E ) Mo(E ) E ∗ Pf(E )

Wqos that appear in well-structured transition systems!

© Open questions

� New invariants:

� Computing the fot

� Is there an invariant that would make CP and Pf functional?

� New operations: Infinite words, variants of trees, graph minor, . . .
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