Measuring well quasi-orders and complexity of verification

(SLIDES FROM MY PHD DEFENSE)

Isa Vialard

November 20, 2024

Some interesting sequences

 \circ < \circ < V V \vee \vee \vee \vee V V V V \vee \vee \vee \vee V V V V \vee V V V V V V V V V V V / \vee V 0 < 0 < 0 < 0 < 0**ॉ**< o < o < o < o < o V V \mathbf{V} V V \vee \vee V V V \vee V V.V V V (0,1) < 0 $\mathbf{i} < \mathbf{0} < \mathbf{0}$ \vee \vee \vee \vee \vee \vee \vee \vee \vee

- decreasing sequence

(5,5) > (4,4) > (4,3) > (2,3) > (1,1)

Some interesting sequences

- decreasing sequence
- incomparable sequence (or antichain)
 i.e. pairwise incomparable

 $(1,9) \perp (3,8), (4,7), (7,5), \ldots$

Some interesting sequences

Definitions: Well Quasi-Order

- decreasing sequence
- antichain i.e. pairwise incomparable
- bad sequence
 i.e. pairwise non increasing

No infinite antichain or decreasing seq

Definitions: Well Quasi-Order

 $< \circ < < (\mathbb{N} \times \mathbb{N}, \leq_{\times})$ < < < >< 0 < 0Ο 0 V V V V \vee 0 V V $< \circ < \circ < \circ < \circ < \circ < \circ < \circ$ 0 240 <V 0 \vee 0 < 0 < 0 < 0 < $\mathbf{v} < \mathbf{o} < \mathbf{o} < \mathbf{o}$ V V V 0 < 0 < 0< 0 < 0 < 0 < 0 < 0 \vee V Ο V (0,1) < 0V V V

- decreasing sequence
- antichain i.e. pairwise incomparable
- bad sequence
 i.e. pairwise non increasing

WQO \$

No infinite antichain or decreasing seq

WQO

 \Diamond

No infinite antichain or decreasing seq

 \updownarrow

Some see wqos as wells Blass & Gurevich (2008)

WQO

 \Diamond

No infinite antichain or decreasing seq

 \updownarrow

Some see wqos as wells Blass & Gurevich (2008)

WQO

↕

No infinite antichain or decreasing seq

 \updownarrow

Some see wqos as wells Blass & Gurevich (2008)

- Reasons to study wqos
 - "It is fun" (Kříž & Thomas (1990))

- Reasons to study wqos
 - "It is fun" (Kříž & Thomas (1990))
 - Applications in proof theory, term rewriting, graph theory, ... and program verification!

Reasons to study wqos

- "It is fun" (Kříž & Thomas (1990))
- Applications in proof theory, term rewriting, graph theory, ... and program verification!

Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

- Set of configurations: WQO
- \leq a simulation relation

Reasons to study wqos

- "It is fun" (Kříž & Thomas (1990))
- Applications in proof theory, term rewriting, graph theory, ... and program verification!

Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

- Set of configurations: WQO
- \leq a simulation relation

• Ex: Counter machines, Petri nets, VASS, Lossy channel systems . . .

Vector Addition Systems with States

Well-structured transition systems

Finkel (1994), Abdulla& Jonsson (1996)

- Set of configurations: WQO
- \leq is upward-compatible

• Ex: Counter machines, Petri nets, VASS, Lossy channel systems . . .

Complexity and expressiveness

Schmitz& Schnoebelen(2011)

- Controlled bad sequences (even decreasing, or antichains)
- Can we bound the length of controlled sequences by measuring wqo?

Measuring wqos

Natural notions of measure when finite

Finite subsets of $\{1, 2, 3, 4\}$ ordered by \subseteq .

Let's extend height and width to infinite wqos

Let's extend height and width to infinite wqos with ordinals

 \circ < $N \times N < \circ$ \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee

Width and height: at least ω

Let's extend height and width to infinite wqos with ordinals

 $0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 > N \times N < 0$ \bigvee VV V V V V V V V V V V V V V V \vee V V V V V < Q < 0 < 0 < 0 < 0 < 0 < 0 < 00 < 0 < 0 < 0 < 0< 0< 0 < 0(0. < 0< 0 < 0 < 0(0, 0) $< \delta < 0 < 0 < 0$

Width and height: at least ω

Counting elements: at least ω

Let's extend height and width to infinite wqos with ordinals

 \circ < \wedge \mathbb{N} \times \mathbb{N} < \circ \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee V \vee \vee \vee \vee \vee \vee \vee V V $(0, 1) \leftarrow \bigcirc \leftarrow \bigcirc$ \vee \vee \vee \vee \vee \vee $(0, \theta) \leftarrow 0 \leftarrow 0 \leftarrow 0 \leftarrow 0$

Width and height: at least ω

Counting elements: at least ω^2

ω

ω

 (ω)

Definition (Maximal order type, Width and Height)

$$o(X)$$

w(X) = ordinal rank of the tree of
$$\begin{cases} bad sequences \\ antichain sequences \\ decreasing sequences \end{cases}$$
 in X.

Definition from Kříž & Thomas(1990) (first definition of ordinal width)

First definition of maximal order type by De Jongh & Parikh(1977)

Measuring with games

• Game: α vs w(X)

- Initial configuration:
 - Odile : $\gamma = \alpha$,
 - Antoine : $S = \emptyset$
- Player alternate:
 - Odile picks $\gamma' < \gamma$
 - Antoine extends *S* into
 - S :: x an antichain,
- End: You lose if you cannot play anymore

Measuring with games

• Game: α vs w(X)

- Initial configuration:
 - Odile : $\gamma = \alpha$,
 - Antoine : $S = \emptyset$
- Player alternate:
 - $\bullet \ \ {\rm Odile \ picks} \ \gamma' < \gamma$
 - Antoine extends *S* into
 - S :: x an antichain,
- End: You lose if you cannot play anymore

Theorem (Blass & Gurevich (2008))

- Antoine has winning strategy when Odile begins $\Leftrightarrow \alpha \leq w(X)$
- Odile has winning strategy when Antoine begins $\Leftrightarrow \alpha \ge w(X)$

Example: Playing on the on disjoint sum

Disjoint sum $A \sqcup B$

Theorem: $o(A \sqcup B) = o(A) \oplus o(B)$ (De Jongh & Parikh(1977))

Example: Playing on the on disjoint sum

Theorem: $o(A \sqcup B) = o(A) \oplus o(B)$ (De Jongh & Parikh(1977))

Ex: $(\omega^{\omega} + \omega^3) \oplus (\omega^5 + \omega + 1) = \omega^{\omega} + \omega^5 + \omega^3 + \omega + 1$

Example: Playing on the on disjoint sum

Disjoint sum $A \sqcup B$

Theorem: $o(A \sqcup B) = o(A) \oplus o(B)$ (De Jongh & Parikh(1977))

This theorem is easy to prove with games!

 $o(A \sqcup B) \le o(A) \oplus o(B)$ if Odile wins when Antoine begins $o(A \sqcup B) \ge o(A) \oplus o(B)$ if Antoine wins when Odile begins

 $o(A \sqcup B) \le o(A) \oplus o(B)$ if Odile wins when Antoine begins $o(A \sqcup B) \ge o(A) \oplus o(B)$ if Antoine wins when Odile begins

Disjoint sum $A \sqcup B$

Direct sum A + B

Direct sum A + B

Cartesian product $A \times B$

А

А

	Space	M.O.T.	Height	Width
Disjoint sum	$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
Direct sum	A + B	o(A) + o(B)	h(A) + h(B)	$\max(\mathbf{w}(A),\mathbf{w}(B))$
Cartesian prod.	$A \times B$	$o(A)\otimeso(B)$	$h(A) \oplus h(B)$?
Direct prod.	$A \cdot B$?	$h(A) \cdot h(B)$	$w(A) \odot w(B)$

	Space	M.O.T.	Height	Width
Disjoint sum	$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
Direct sum	A + B	o(A) + o(B)	h(A) + h(B)	$\max(\mathbf{w}(A), \mathbf{w}(B))$
Cartesian prod.	$A \times B$	$o(A)\otimeso(B)$	$h(A) \oplus h(B)$?
Direct prod.	$A \cdot B$?	$h(A) \cdot h(B)$	$w(A) \odot w(B)$
Fin. words	<i>A</i> *	$\omega^{\omega^{(o(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(\circ(A)^{\pm})}}$
	$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$?
Fin. multisets	$M^{o}(A)$	$\omega^{\circ(A)}$?	?
Fin. Powerset	$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	$\geq w(o(A) \times o(B))$
$A \cdot B$	$o(A) \cdot pred_k(o(B)) + o(A) \otimes k$	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	$\omega^{o_{\perp}(A)}$
$P_{f}(A)$	$\leq 2^{o(A)}$	$\leq 2^{h(A)}$	$\geq 2^{w(A)}$

Back in time

Space	M.O.T.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(\mathbf{w}(A), \mathbf{w}(B))$
$A \times B$	$o(A)\otimeso(B)$	$h(A) \oplus h(B)$?
$A \cdot B$?	$h(A) \cdot h(B)$	$w(A) \odot w(B)$
A*	$\omega^{\omega^{(o(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\widehat{\omega^{\circ(A)}}$	$h^*(A)$?
$M^{o}(A)$	$\omega^{\circ(A)}$?	?
$P_{f}(A)$?	?	?

Quick look at the direct product

Lexicographic product $A \cdot B$

• I was told that $o(A \cdot B) = o(A) \cdot o(B)$

... but only the lower bound is true: $o(A \cdot B) \ge o(A) \cdot o(B)$ Mistake noticed by Harry Altman (March, 2024)

Quick look at the direct product

 $(\omega + 1) \cdot
abla$ $(\omega + 1) \cdot \Delta$

Quick look at the direct product

$$o((\omega + 1) \cdot \nabla) = o((\omega + 1) \cdot \Delta) =$$

$$[(\omega + 1) \oplus (\omega + 1)] + +$$

$$(\omega + 1) = [(\omega + 1) \oplus (\omega + 1)]$$

$$= \omega \cdot 3 + 2 = \omega \cdot 3 + 1$$

$$= o(\omega + 1) \cdot o(\nabla)$$

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$?
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$?
$M^{o}(A)$	$\omega^{o(A)}$?	?
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{o(A)}}$	$h^*(A)$?
$M^{o}(A)$	$\omega^{o(A)}$?	?
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
<i>A</i> *	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$?	?
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
<i>A</i> *	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$?
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{\mathbf{o}(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	Not functional
$P_{f}(A)$?	?	?

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
A imes B	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	Not functional
$A \cdot B$	Not functional	$h(A) \cdot h(B)$	$w(A)\odotw(B)$
A*	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{o(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	Not functional
$P_{f}(A)$	Not functional	Not functional	Not functional

Non functional example for P_f

 $Y_1 = (\omega + \omega) \sqcup (\omega + \omega) \qquad \qquad Y_2 = (\omega \sqcup \omega) + (\omega \sqcup \omega)$

 $f(\mathsf{P}_{\mathsf{f}}(\underline{\mathsf{Y}_1})) \neq f(\mathsf{P}_{\mathsf{f}}(\underline{\mathsf{Y}_2})) \text{ for } f = \mathsf{o},\mathsf{h},\mathsf{w}$

Fixing non-functionality

An underrated measure: maximal number of elements

Theorem (M.o.t. of the direct product) $o(A \cdot B) = o(A) \cdot pred^{k}(o(B)) + o(A) \otimes k$ if $max_elt(B) = k$

With Mirna Džamonja

Theorem (M.o.t. of the direct product) $o(A \cdot B) = o(A) \cdot pred^{k}(o(B)) + o(A) \otimes k$ if $max_elt(B) = k$

With Mirna Džamonja

If B has k maximal elements, then $o(B) = \lambda + m$ with $m \ge k$

Then $o(A \cdot B) = o(A) \cdot (\lambda + (m - k)) + o(A) \otimes k$

 (A, \leq_A) is an augmentation of (B, \leq_B) iff

- Same support: A = B
- A has more relations: $\leq_B \subseteq \leq_A$

If $A \geq_{\mathsf{aug}} B$ then $\mathsf{o}(A) \leq \mathsf{o}(B)$ and $\mathsf{w}(A) \leq \mathsf{w}(B)$

 (A,\leq_A) is an augmentation of (B,\leq_B) iff

- Same support: A = B
- A has more relations: $\leq_B \subseteq \leq_A$

If $A \geq_{\mathsf{aug}} B$ then $\mathsf{o}(A) \leq \mathsf{o}(B)$ and $\mathsf{w}(A) \leq \mathsf{w}(B)$

• If $A \ge_{aug} B$ then $C(A) \ge_{aug} C(B)$,

for most wqo-constructors C

Proof: First separate infinite and finite part

If B has k maximal elements, then $o(B) = \lambda + m$ with $m \ge k$

We can partition B as:

- B_{λ} , with $o(B_{\lambda}) = \lambda$
- B_m , with $o(B_m) = m$

Proof: First separate infinite and finite part

Focus on $A \cdot B_m$: Lower bound

$$o(A \cdot B_m) \ge o(A \cdot ((m-k) + \Gamma_k)) = o(A) \cdot (m-k) + o(A) \otimes k$$

Lemma

If max_elt(B) = 1 then B = B' + 1, then $o(A \cdot B) = o(A \cdot B') + o(A) = o(A) \cdot o(B)$ by induction

 $\mathsf{o}(A \cdot B_m) \leq \mathsf{o}(A) \cdot m_1 \otimes \cdots \otimes \mathsf{o}(A) \cdot m_k = \mathsf{o}(A) \cdot (m-k) + \mathsf{o}(A) \otimes k$

Fixing non-functionality ?

Fixing the multiset ordering : a fourth ordinal invariant!
Definition (Friendly order type)

 $o_{\perp}(X) =$ rank of the tree of *open-ended* bad sequences

Definition (Friendly order type)

$o_{\perp}(X) =$ rank of the tree of *open-ended* bad sequences

The fourth ordinal invariant

Theorem (Width of M°)						
$w(M^{o}(X)) = \omega^{o_{\perp}(X)}$						
	Space	o,h,w	o⊥			
			?			
			?			
			?			

- How to compute the fot?
 - Exists $X' \subseteq X$ such that $\mathsf{Bad}(X') \subseteq \mathsf{Bad}_{\perp}(X)$
 - $limit_part(o(str(X))) \le o_{\perp}(X) \le o(str(X))$ with $str(X) = \{ x \in X \mid \exists y \in X, y \perp x \}$
 - w(X) $-1 \leq o_{\perp}(X)$

• if
$$w(A) = o(A)$$
 limit, then $o_{\perp}(X) = o(X)$

 $(A \sqcup B) = o(A) \oplus o(B)$

31/33

Space	М.О.Т.	Height	Width
$A \sqcup B$	$o(A)\opluso(B)$	$\max(h(A), h(B))$	$w(A)\oplusw(B)$
A + B	o(A) + o(B)	h(A) + h(B)	$\max(w(A), w(B))$
$A \times B$	$o(A)\otimeso(B)$	$h(A) \hat{\oplus} h(B)$	$\geq w(o(A) \times o(B))$
A · B	$o(A) \cdot \textit{pred}^k(o(B)) + o(A) \otimes k$	$h(A) \cdot h(B)$	$w(A) \odot w(B)$
	if $max_elt(B) = k$		
<i>A</i> *	$\omega^{\omega^{(\mathrm{o}(A)^{\pm})}}$	$h^*(A)$	$\omega^{\omega^{(o(A)^{\pm})}}$
$M^\diamond(A)$	$\omega^{\widehat{o(A)}}$	$h^*(A)$	$\omega^{\widehat{\mathbf{o}(A)}-1}$
$M^{o}(A)$	$\omega^{o(A)}$	$\omega^{h(A)}$	$\omega^{o_{\perp}(A)}$
$P_{f}(A)$	$\leq 2^{o(A)}$	$\leq 2^{h(A)}$	$\geq 2^{w(A)}$

- Measuring well quasi-orders
 - is fun!
 - Often not functional but... maybe we are just missing some measures?

- Measuring well quasi-orders
 - is fun!
 - Often not functional but... maybe we are just missing some measures?
 - Other approach: Elementary family of wqos

 $E := \alpha \ge \omega^{\omega}$ mult. indec. $|E_1 \sqcup E_2 | E_1 \times E_2 | M^{\diamond}(E) | M^{\circ}(E) | E^* | P_f(E)$

Wqos that appear in well-structured transition systems!

- Measuring well quasi-orders
 - is fun!
 - Often not functional but... maybe we are just missing some measures?
 - Other approach: Elementary family of wqos

 $E := \alpha \ge \omega^{\omega}$ mult. indec. $|E_1 \sqcup E_2 | E_1 \times E_2 | M^{\diamond}(E) | M^{\circ}(E) | E^* | P_f(E)$

Wqos that appear in well-structured transition systems!

Open questions

- New invariants:
 - Computing the fot
 - Is there an invariant that would make CP and P_f functional?
- New operations: Infinite words, variants of trees, graph minor, ...

Bibliography i

Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification problems for programs with unreliable channels.

Inf. Comput., 130(1):71-90, 1996. doi:10.1006/TNCD.1996.0083.

U. Abraham.

A note on Dilworth's theorem in the infinite case.

Order. 1987.

- U. Abraham and R. Bonnet.

Hausdorff's theorem for posets that satisfy the finite antichain property.

Fund. Math., 1999.

Bibliography ii

A. Blass and Y. Gurevich.

Program termination and well partial orderings.

ACM Trans. Computational Logic, 2008.

🔋 D. H. J. de Jongh and R. Parikh.

Well-partial orderings and hierarchies.

Indag. Math., 1977.

M. Džamonja, S. Schmitz, and Ph. Schnoebelen.
On ordinal invariants in well quasi orders and finite antichain orders.

In Well Quasi-Orders in Computation, Logic, Language and Reasoning, volume 53 of Trends in Logic. 2020.

Alain Finkel.

Decidability of the termination problem for completely specified protocols.

Distributed Comput., 1994.

🔋 I. Kříž and R. Thomas.

On well-quasi-ordering finite structures with labels.

Graphs and Combinatorics, 1990.

I. Kříž and R. Thomas.

Ordinal types in Ramsey theory and well-partial-ordering theory. In *Mathematics of Ramsey Theory*, Algorithms and Combinatorics. 1990.

D. Schmidt.

Well-Partial Orderings and Their Maximal Order Types. Habilitationsschrift, Heidelberg, 1979. Reprinted as [?].

S. Schmitz and Ph. Schnoebelen.
Multiply-recursive upper bounds with Higman's lemma.
In ICALP, 2011.

J. Van der Meeren, M. Rathjen, and A. Weiermann.
Well-partial-orderings and the big Veblen number.
Archive for Mathematical Logic, 2015.

A. Weiermann.

A computation of the maximal order type of the term ordering on finite multisets.

In *Proc. 5th Conf. Computability in Europe (CiE 2009), Heidelberg, Germany, July 2009*, Lecture Notes in Computer Science, 2009.

On wqos

- I. Vialard, On the Width of the Cartesian Product of Ordinals, Order (2024).
- I. Vialard, Ordinal Measures of the Set of Finite Multisets, MFCS 2023.
- S. Abriola, S. Halfon, A. Lopez, S. Schmitz, Ph. Schnoebelen, I. Vialard, Measuring well quasi-ordered finitary powersets, soon to be submitted to MSCS.

On piecewise complexity and minimality index

• M. Praveen, Ph. Schnoebelen, I. Vialard, J. Veron, On the piecewise complexity of words and periodic words, SOFSEM 2024

[4][6][5][8][9] [7][1][10][3][13][12][2] [11]