
Decisiveness Analysis of Infinite
(Dynamic) Probabilistic Models

Alain Finkel1,2, Serge Haddad1, Lina Ye1,3
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Markov Chains

A Markov Chain (MC)M = (S, p) is defined by:

S, a countable set of states;

p: S → Dist(S) (Dist(S): the set of distributions over S).
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For effectivity, one requires that:

for all s ∈ S, the support of p(s) is finite and computable;

p is computable.
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High-Level Models for Markov Chains

h(X), 0, 1

g(X), 1, 0

Markov chains are issued from non deterministic high-level models by:

adding (computable) weights for the transitions of the model;

given a state, getting the probabilities
by normalization of the weights of the enabled transitions.
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Markov chains are issued from non deterministic high-level models by:

adding (computable) weights for the transitions of the model;

given a state, getting the probabilities
by normalization of the weights of the enabled transitions.

The weights are dynamic (resp. static)

if they (resp. do not) depend on the current state.
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Markov chains are issued from non deterministic high-level models by:

adding (computable) weights for the transitions of the model;

given a state, getting the probabilities
by normalization of the weights of the enabled transitions.

The weights are dynamic (resp. static)

if they (resp. do not) depend on the current state.

Here the weights are static if h and g are constant.
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Computing Reachability Probability

LetM be a Markov chain, s0 an (initial) state, and A a subset of states, then
PrM,s0(FA) represents the probability to reach A from s0.

The Computing Reachability Probability (CRP) problem is defined by:

Input: effectiveM, s0, effective A, and a rational number θ > 0;

Output: an interval [low, up] such that up− low ≤ θ and
PrM,s0(FA) ∈ [low, up].

How to solve CRP problem of infinite Markov chains?

ad-hoc algorithms for particular class of probabilistic models,
e.g., static Probabilistic Pushdown Automata (pPDA)
(Brádzil et al, FMSD 2013);

generic algorithms for probabilistic models satisfying a semantical property,
e.g., decisiveness (Abdulla et al, LMCS 2007).
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Motivation

Limitations of existing approaches

models with only constants (static) transition weights cannot model
phenomena like congestion in networks;

the decisiveness problem for some standard models are not yet studied.

Our contributions

models may contain dynamic weights;

new decisiveness results for dynamic counter machines and Petri nets.
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Decisiveness

M is decisive w.r.t. s0 ∈ S and A ⊆ S if almost surely a run starting from s0:

either reaches A;

or EFA, the set of states from which A is unreachable.

The generic algorithm proceeds by a fair exploration of the computation tree,

maintaining an interval which contains the reachability probability;

ending when the length of the interval is less than a given θ.

It stops the exploration along a path when:

either it reaches A incrementing the lower bound;

or reaches EFA decrementing the upper bound.

Main applications.

• Static Petri nets when A is an upward closed set.

• “Quasi-Static” Lossy channel systems

where every message has some probability to be lost at each step.
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Recurrence

LetM = (S, p) be a Markov chain and s ∈ S. Then:

M is irreducible if for all s, s′ ∈ S, s→∗ s′;

s is recurrent if PrM,s(XF{s}) = 1 otherwise s is transient.

LetM = (S, p) be an irreducible Markov chain and s, s′ ∈ S. Then s is recurrent
if and only if s′ is recurrent.

.
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1≤m<n ρm =∞ with ρm = 1−pm
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and pm = h(m)

h(m)+g(m) .
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This Markov chain is irreducible. And it is recurrent if and only if∑
n∈N

∏
1≤m<n ρm =∞ with ρm = 1−pm

pm
and pm = h(m)

h(m)+g(m) .

if h(m) = g(m) = 1, then pm = 1
2 and ρm = 1: thus recurrent;

if h(m) ≥ 2 and g(m) = 1, then one has ρm ≤ 1
2 : thus not recurrent.
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Decisiveness and Recurrence

LetM be a Markov chain, s0 be a state and A be a subset of states.

ThenMs0,A = (S′, p′) is defined as follows.

S′ is the smallest set containing s0 and a new state s⊤ such that for all
s→M s′ with s ∈ S′, s′ /∈ A and s′ |= EFA one has s′ ∈ S′;

p′(s⊤, s0) = 1;

for all s, s′ ∈ S ∩ S′, p′(s, s′) = p(s, s′);

for all s ∈ S ∩ S′, p′(s, s⊤) =
∑

s′∈A∪EFA p(s, s′).
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for all s ∈ S ∩ S′, p′(s, s⊤) =
∑

s′∈A∪EFA p(s, s′).

Observations. Ms0,A is irreducible and . . .

M is decisive w.r.t. s0 and A iffMs0,A is recurrent.
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Undecidability Decisiveness Results

• Decisiveness w.r.t. a finite set is undecidable
in static probabilistic counter machines (pCM).

• Decisiveness w.r.t. a finite set is undecidable
in dynamic 1-state, 1-counter pCM.
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Undecidability Decisiveness Results

• Decisiveness w.r.t. a finite set is undecidable
in dynamic 1-state, 1-counter pCM.

Sketch of proof. By reduction of the Hilbert’s tenth problem (undecidable):

Input: P (X1, . . . , Xk) an integer polynomial with k variables.
Output: whether there exists n1, . . . , nk ∈ N such that P (n1, . . . , nk) = 0.

Transform to the following 1-state and 1-counter pCM as input:

h(n) = min(1 + P 2(n1, . . . , nk) | n1 + · · ·+ nk ≤ n) and g = 1.

h(X), 0, 1

g(X), 1, 0
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Output: WhetherM is decisive w.r.t. s0 and A, where s0 = 1 and A = {0}.
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Output: WhetherM is decisive w.r.t. s0 and A, where s0 = 1 and A = {0}.

if there exists n1, . . . , nk∈N s.t. P (n1, . . . , nk)=0,

∀n ≥ n0 = n1 + ...+ nk,
h(n)

h(n)+g(n) =
g(n)

h(n)+g(n) =
1
2 ,

thusM is recurrent implying PrM,1(F{0}) = 1 and so decisive;

otherwise h(n) ≥ 2 and PrM,1(F{0}) < 1, so not decisive.
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Output: WhetherM is decisive w.r.t. s0 and A, where s0 = 1 and A = {0}.

We must add restrictions on the counter machine and on the kind of weights.

The natural candidates for weights are polynomials.
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Output: WhetherM is decisive w.r.t. s0 and A, where s0 = 1 and A = {0}.

The decisiveness problem w.r.t. s0 and finite A
for polynomial 1-state, 1-counter pCM is decidable in linear time.
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From QBD to Homogeneous 1-Counter Machine

Quasi Birth-Death Process (QBD) is a probabilistic model widely used and
analyzed in performance evaluation.

It is equivalent to a probabilistic 1-counter machine with the following restrictions.

Counter updates are incrementations and decrementations.

For all states q, q′, positive integers n, n′ and ∆ ∈ {−1, 0, 1},
Pr((q, n), (q′, n+∆)) = Pr((q, n′), (q′, n′ +∆))
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From QBD to Homogeneous 1-Counter Machine

An Homogenous 1-counter Machine (HCM) is an extension of QBD where:

the weights are polynomials whose single variable X is the counter value;

but the coefficients of M are still constant.
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An Homogenous 1-counter Machine (HCM) is an extension of QBD where:

the weights are polynomials whose single variable X is the counter value;

but the coefficients of M are still constant.

Illustration.

q′ q q′′

X, 1, 2

X2 + 1, 1, 0 X + 1, 1, 0

X2, 1, 1

Here M [q, q′] = M [q, q′′] = 1/2
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Illustration.

q′ q q′′

X, 1, 2

X2 + 1, 1, 0 X + 1, 1, 0

X2, 1, 1

Here M [q, q′] = M [q, q′′] = 1/2

The decisiveness problem of an HCM with M is irreducible is decidable in
polynomial time (CONCUR2023).

The decisiveness problem of an HCM is decidable in polynomial time (new).
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Petri Nets and two-counter machines

•
p0

p1

p2

p3

t0 t1

A petri net is a tuple N = (P, T, F,m0), where

P is a finite set of places;

T is a finite set of transitions;

P ∩ T = ∅
F ⊆ (P × T ) ∪ (T × P ) is the flow relation

m0 : P → N is the initial marking

A variant of 2-counter machine C is defined by two counters {c1, c2} and a set of
instructions {0, . . . , n}, where the instruction n is halt, and for all i < n, the
instruction i is

either (1) cj ← cj + 1;goto i′ with 1 ≤ j ≤ 2 and 0 ≤ i′ ≤ n

or (2) if cj > 0 then cj ← cj − 1;goto i′, else goto i′′ with 1 ≤ j ≤ d and
0 ≤ i′, i′′ ≤ n

The halting problem asks, given C and v1, v2 ∈ N, whether C eventually halts.
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Polynomial Probabilistic Petri Nets: Decisiveness
The decisiveness problem of polynomial pPNs
w.r.t. an upward closed set is undecidable.

Sketch of Proof.

By reduction of the halting problem for a normalized counter machine C.
A normalized CM resets the counters at the start and the end of the computation.

The probabilistic Petri net infinitely repeats a weak simulation for C
incrementing a counter of simulations sim,

which is the single variable of the polynomial weights

with at each instruction some (variable) probability to exit the simulation.

weak simulation of C

· · · pn sim

•

p0

stop

again
exiti exiti′
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Sketch of Proof (continued)

Simulation of an incrementation

i : cj ← cj + 1;goto i′

pi

cj

pi′

stop

inci exiti

Simulation of a decrementation

i : if cj > 0 then
cj ← cj − 1;goto i′

else
goto i′′

pi

cj

qi

pi′ pi′′ stop
sim

deci

begZi

endZi

exiti

rmi
2

When cheating the net is punished by a possible decrementation of sim.
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Sketch of Proof (continued)

Due to the choice of the polynomial weights, when sim goes to infinity,

If i is an incrementation, W (exiti) = o(W (inci));

If i is a decrementation, W (exiti) = o(W (begZi)) and W (begZi) = o(W (deci)).

Thus the more the simulations are achieved without cheating

the less probable the net will stop or cheat.

Assume that C halts.

The infinite path corresponding to the repetition of the correct simulation of C

has a non null probability.

Thus the net is not decisive w.r.t. ↑stop.
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Sketch of Proof (ended)

Assume that C does not halt.

The set of paths that do not stop can be (countably) partionned as follows.

For all n ∈ N, Pn, the set of of paths that perform exactly n simulations

and never stop during the nth simulation;

P∞, the set of paths that perform an infinite number of simulations.

• A path in Pn has at most n tokens in sim implying that

the probability to stop during an instruction is lower bounded by some constant.

Thus Pn has a null probability to avoid to mark stop.

• If P∞ has a non null probability, then one proves that almost surely

a path in P∞ achieves infinitely often a simulation with one token in sim

and thus reaches ↑stop: a contradiction.

So the net is decisive w.r.t. ↑stop.
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Probabilistic Regular Petri Nets

A marked Petri net is regular if the language of its firing sequences is regular.

One can decide whether a Petri net is regular in EXPSPACE.

(Demri JCSS 2013, Blockelet & Schmitz MFCS 2011)

Probabilistic Regular Petri Nets are decisive w.r.t. a finite set
whatever the weights.

Sketch of Proof. Based on the following property

(Ginzburg and Yoeli JCSS 1980)

Let (N ,m0) be a marked regular Petri net.

There exists a bound B(N ,m0) such that:

for all m1 reachable from m0,

and all m2 with some place p fullfilling m2(p) +B(N ,m0) < m1(p),

m2 is unreachable from m1.
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Probabilistic Regular Petri Nets

Sketch of Proof (continued)

A finite graph is built as follows, suppose A = {m1}

Push on the stack m0.

While the stack is not empty, pop from the stack some marking m. Compute

the set of transition firings m
t−→m′. Push on the stack m′ if:

1 m′ is not already present in the graph,
2 and m′ ̸= m1,
3 and for all p ∈ P , m1(p) +B(N ,m0) ≥ m′(p).

Due to the third condition, this algorithm terminates. On the finite graph, one
keeps the weights and adds loops for states without successors. Two types of
bottom strongly connected components (BSCC)

the BSCC consists of m1

a BSCC from which one cannot reach m1

As one can reach some BSCC almost surely, thus the net is decisive w.r.t. m1.
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Conclusion

Contributions

Study the relationship between decisiveness and recurrent;

Obtain decidability results of decisiveness w.r.t. subclasses of dynamic
probabilistic counter machines;

Demonstrate decidability results of decisiveness w.r.t. subclasses of dynamic
probabilistic Petri nets.

Perspectives

Study the decidability of decisiveness of static pPN w.r.t. arbitrary finite set;

Establish sufficient conditions for decisiveness for models with undecidability
of decisiveness;

Examine the relationship between two properties: decisiveness and divergence.
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